Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification Is Important Gabriel I. Uwaifo, MD Dept of Endocrinology

Total Page:16

File Type:pdf, Size:1020Kb

Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification Is Important Gabriel I. Uwaifo, MD Dept of Endocrinology Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification is Important Gabriel I. Uwaifo, MD, FACP, FTOS, FACE. Dept of Endocrinology, Diabetes, Metabolism and Weight Management, Ochsner Medical Center Objectives To highlight various classification methods of diabetes To highlight the importance and consequences of appropriate diabetes classification To provide suggested processes for diabetes classification in primary care settings and indices for specialty referral Presentation outline 1. Case presentations 2. Diabetes classification; past present and future 3. Diabetes classification; why is it important? 4. Suggested schemas for diabetes classification 5. Case presentation conclusions 6. Summary points and conclusions 3 Demonstrative cases Patient DL is a 56 yr old AA gentleman with a BMI of 24 referred for management of his “type 2 diabetes”. He is on basal bolus insulin with current HBA1c of 8.3. His greatest concern is on account of recent onset progressive neurologic symptoms and gaite unsteadiness Patient CY is a 21 yr old Caucasian lady with BMI of 28 and strong family history of diabetes referred for management of her “type 2 diabetes”. She is unsure if she even has diabetes as she indicates most of the SMBGs are under 160 and her current HBA1 is 6.4 on low dose metformin. Patient DR is a 54 yr old Asian lady with BMI of 36 and long standing “type 2 diabetes”. She has been referred because of poor diabetes control on multiple oral antidiabetics and persistent severe hypertriglyceridemia. Questions; Do all these patients have type 2 diabetes? How do we classify these patients? What impact if any does this have on treatment strategies and prognosis? ADA Etiologic classification of Diabetes Type 1 diabetes; A; immune mediated, B; Idiopathic Type 2 diabetes; Gestational Diabetes Other types of Diabetes; a) Including monogenetic beta cell dysfunctional syndromes; MODYs b) Genetic defects of insulin action including type A and B insulin resistance sydnromes, leprauchanism, Rabson Mendenhall syndrome, lipoatrophic and lipodystrophic diabetes etc. c) Exocrine pancreatopathies including pancreatitis, trauma, pancreatectomy, neoplasia, cystic fibrosis, hemochromatosis, fibrocalculous pancreatopathy etc ADA Etiologic classification of Diabetes continued d) Endocrinopathies including acromegaly, Cushing’s syndrome, glucagonoma, pheochromocytoma, hyperthyroidism, somatostatinoma, Conns syndrome, etc e) Chemicals and drugs d) Infections including CMV, congenital rubella etc e) Other rare immune mediated diabetes including Stiff man syndrome, IPEX and type 1 autoimmune polyendocrinopathy syndrome, anti insulin receptor antibody syndrome etc. f) Other genetic syndromes associated with diabetes including Down’s syndrome, Klinefelters syndrome, Turner’s syndrome, Wolframs syndrome, Maternal inherited diabetes with deafness (MIDD) Friedrich’s ataxia, Huntington’s Chorea, Laurence Moon Biedl syndrome, Myotonic dystrophy, Porphyria, Prada Will syndrome etc. What does this comprehensive classification however miss? “Type 3 diabetes”; type 1 diabetes with obesity and insulin resistance “Type 1.5 diabetes”; LADA; latent autoimmune diabetes of Aging syndromes Type 2 diabetes with islet autoimmunity Post transplant diabetes (multifactorial etiology including transplant surgery, perioperative and post transplant immunomodulatory medications, genetics etc). Check point inhibitor associated diabetes Neonatal Diabetes syndromes (distinct from the MODYs) The syndromes of ketosis-prone diabetes mellitus The syndromes of so called Malnutrition related diabetes (MRDM) Various combinations of so called “hybrid diabetes”; probably uncommon but exact prevalence unclear Etc etc. The take home point is the wide heterogeneity of diabetes and the fact that it includes very many different diseases with the commonality of chronic hyperglycemia with metabolic derangement and consequent micro nd macrovascular complications The MODYs; Maturity onset diabetes of the young Monogenic causes of diabetes mainly due to various defects of insulin secretion. Heterogenous with variable phenotypes Increasing diversity; currently there are 11 distinct MODY syndromes They are autosomal dominant linked. MODYS 1-6 are the most common and MODY 2 and 3 are by far the most prevalent MODY 1; due to HNF-4 alpha mutation and optimally treated with sulphonylureas MODY 2; due to glucokinase mutations; very mild hyperglycemia; can often be treated with diet alone (15-31% of MODYs). MODY 3; HNF -1 alpha mutations; 52-65% of MODYs and best treated with sulphonylureas MODY 4; insulin promotor 1 mutations; rare and can simulate type 1 b diabetes MODY 5; HNF-1 beta mutations; rare and associated with other anomalies including renal dysplasia, pancreatic atrophy and hypomagnesemia. These are generally insulin dependent. MODY 6; Neurogenic differentiation factor-1 mutation is very rare and the patients also are invariably insulin dependent. The Neonatal Diabetes syndromes • Distinct from but may include some of the MODY variants • Distinctive in the timing of diagnosis within the first year of life and invariably within the first 6mths of life. Can also be referred to as Congenital diabetes mellitus as it is presumed to be present even at birth but there is often delay in firm diagnosis • Relatively rare and often of genetic underlying etiology; prevalence of 1 in 300- 500,000 life births • Two major variants; permanent and transient relapsing variants • Invariably associated with small for gestational age at birth. • Underlying etiology is variable but chromosome 6 Q anomalies are the most common identified cause of the transient relapsing variant. • The genetic defects in the permanent variants are generally mutations of genes involved with beta cell and pancreatic developments as well as transcription factors. • Can be associated with distinct syndromes including the IPEX (immunodeficiency, polyendocrinopathy, enteropathy and X linked), Wolcott Rallison syndrome (bone dysplasia, pancreatic hypoplasia with cardiomegaly, mental retardation, cerebellar dysfunction, renal and hepatic disease with pancreatic exocrine deficiency and insulin dependent diabetes.) and the DEND and iDEND (intermediate DEND) syndromes; Developmental delay, Epilepsy and Neonatal Diabetes. DEND is often due to KCNJ11 or ABCC8 gene mutations which are both beta cell expressed ion channels. These forms of diabetes are much better managed with sulphonylureas than insulin or any other antidiabetics. The LADAs (latent onset diabetes of aging) Highly heterogenous with some presenting like type 1, some like type 2 and some with intermediate phenotypes. Heterogeniety related to the autoantibodies involved and titers (ICA, GAD, Zn transporter protein 8, IA-2, Insulin etc). Heterogeniety related to adiposity and presence of insulin resistance. Heterogeniety related to family history, other autoimmune diseases and HLA subtypes. Distinct from isolated low titers autoantibody positivity in type 2 diabetes patients. Syndromes of ketosis prone diabetes Heterogenous group of entities including so called ketosis prone type 2 diabetes, Flatbrush diabetes and so called atypical diabetes. Among the methods of classification are 1. Modified ADA system that includes an autoimmune variant characterized by islet antibody positivity and among the antibody negative patients an insulin dependent and insulin independent subtype 2. A BMI stratified system with those with BMI <28 presenting often like type 1 diabetes and those with BMI<28 oft presenting akin to type 2 diabetes 3. The A (antibody status) Beta (beta cell secretory status) classification system. This involves a 2 x 2 factorial and thus 4 subtypes; A +ve beta + ve (Antibody + ve with + ve beta cell function) A-ve Beta + ve (Antibody - ve with + ve beta cell function) A +ve Beta – ve (Antibody + ve with - ve beta cell function) A -ve Beta – ve (Antibody - ve with - ve beta cell function) Syndromes of ketosis prone diabetes Copyrights apply The lipodystrophy syndromes Heterogenous group of rare diseases characterized by generalized or localized lack or excess of adipose tissue depots including both subcutaneous and visceral. Can be generalized or partial and can be congenital or acquired. Often associated with multisystemic features of major insulin resistance, hyperglycemia with or without established diabetes and include severe dyslipidemia, NAFLD, proteinuric renal disease etc. Greater genetic and molecular characterization of the underlying defects causing these disorders have led to increasing heterogeneity of the cluster and its classification. Generalized congenital lipodystrophy includes the Berardinelli –Seip syndrome Generalized acquired lipodystrophy includes the Lawrence syndrome Localized congenital lipodystrophy include the Koeberling and Dunnigan syndromes Localized acquired lipodystrophy includes the Barraquer-Simons syndrome The lipodystrophy syndromes The lipodystrophy syndromes Copyrights apply Copyrights apply Copyrights apply Copyrights apply Copyrights apply Copyrights apply Drug induced Hyperglycemia and Diabetes Copyrights apply Check point inhibitors; cause insulitis and a unque form of insulinopenic diabetes akin to type 1a. Childhood onset diabetes; a unique entity Child hood onset diabetes continued Childhood onset diabetes continued Childhood onset diabetes continued The heterogeneity of diabetes in particular lends itself to the need of precision and personalized profiling and management Growing awareness of the need for other
Recommended publications
  • Studies of Streptozotocin-Induced Insulitis and Diabetes
    Proc. NatI. Acad. Sci. USA Vol. 74, No. 6, pp. 2485-2489, June 1977 "I ", .4-4" I- Cell Biology ,- -i,' Studies of streptozotocin-induced insulitis and diabetes (pancreatic beta cells/islets of Langerhans/alloxan diabetes/type C virus induction/cell-mediated reaction) ALDO A. ROSSINI*, ARTHUR A. LIKEt, WILLIAM L. CHICK*, MICHAEL C. APPELt, AND GEORGE F. CAHILL, JR. * * Joslin Research Laboratory, One Joslin Place, Boston, Massachusetts 02215 and Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02215; and t Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Communicated by Eugene Braunwald, April 4, 1977 ABSTRACT Multiple small injections of streptozotocin was a subsequent decrease in inflammation within the re- produce a delayed, progressive increase in plasma-glucose in maining islets which were small and composed almost exclu- mice within 5-6 days after the injections, in association with sively of non-beta cells. Blood glucose values remained in the pronounced insulitis and induction of type C viruses within beta cells. Multiple subdiabetogenic doses of streptozotocin in rats diabetic range and correlated well with the pathologic changes and multiple injections of another beta cell toxin, alloxan, in within the islets. Noteworthy also was the presence of numerous mice did not induce insulitis although hyperglycemia followed type C viruses within the surviving beta cells of animals studied the injection of larger quantities of both agents. In mice, the within 6 days of the last SZ injection. The delayed development prior injection of 3-O-methyl-D-glucose (3-OMG) or nicotin- of the insulitis and the nature of the inflammatory infiltrate amide attenuated the diabetic syndrome produced by strepto- zotocin; however, 3-OMG was more protective.
    [Show full text]
  • Multiple Low-Dose Streptozotocin-Induced Diabetes in the Mouse
    Multiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing beta cell line. R C McEvoy, … , S Sandler, C Hellerström J Clin Invest. 1984;74(3):715-722. https://doi.org/10.1172/JCI111487. Research Article Mice were examined for the presence of splenocytes specifically cytotoxic for a rat insulinoma cell line (RIN) during the induction of diabetes by streptozotocin (SZ) in multiple low doses (Multi-Strep). Cytotoxicity was quantitated by the release of 51Cr from damaged cells. A low but statistically significant level of cytolysis (5%) by splenocytes was first detectable on day 8 after the first dose of SZ. The cytotoxicity reached a maximum of approximately 9% on day 10 and slowly decreased thereafter, becoming undetectable 42 d after SZ was first given. The time course of the in vitro cytotoxic response correlated with the degree of insulitis demonstrable in the pancreata of the Multi-Strep mice. The degree of cytotoxicity after Multi-Strep was related to the number of effector splenocytes to which the target RIN cells were exposed and was comparable to that detectable after immunization by intraperitoneal injection of RIN cells in normal mice. The cytotoxicity was specific for insulin-producing cells; syngeneic, allogeneic, and xenogeneic lymphocytes and lymphoblasts, 3T3 cells, and a human keratinocyte cell line were not specifically lysed by the splenocytes of the Multi- Strep mice. This phenomenon was limited to the Multi-Strep mice. Splenocytes from mice made diabetic by a single, high dose of SZ exhibited a very low level of cytotoxicity against the RIN cells.
    [Show full text]
  • Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore
    Discovery and Analysis of Patients with Monogenic Diabetes in Multiple Cohorts to Guide Future Diagnosis Item Type dissertation Authors Kleinberger, Jeffrey Publication Date 2017 Abstract Monogenic diabetes is hyperglycemia caused by a variant in a single gene, and it accounts for approximately 1-2% of all diabetes cases. A genetic diagnosis of monogenic diabetes is important because the most common gene etiologies can be effectively ... Keywords MODY; monogenic diabetes; screening; Clinical Trial; Diabetes Mellitus, Type 2; Zebrafish Download date 05/10/2021 09:00:42 Link to Item http://hdl.handle.net/10713/7072 Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore Contact Information Medical School Teaching Facility 357 685 West Baltimore St. Baltimore, MD 21201 [email protected] Education Juniata College Huntingdon, PA August 2004 – May 2008 Cum Laude distinction (GPA: 3.701) Biochemistry major Coursework included: Organic Chemistry, Bioinorganic Chemistry, Analytical Chemistry, Physical Chemistry, Chemistry Research, Biology, Cell Biology, Genetics, Biostatistics, Molecular Techniques, Physiology, Microbiology, Biochemistry and Molecular Biology (I-III), Calculus (I&II), Physics (I&II), Scientific Glassblowing, College Writing Seminar, Art of Public Speaking, Intro to Psychology, Learning & Conditioning, Mod. Knowledge & The Self, United States to 1877, The American Revolution, Survey of Western Art, Modern Architecture,
    [Show full text]
  • 一般演題(口演)/Oral Sessions
    一般演題(口演)!Oral Sessions ご ! 案 第 60 回大会賞候補セッション(口演) Oral Presentation Award Session 内 日 時:10 月 16 日(金)11:25~12:20 第 2 会場(南館 4 階 錦) 座 長:稲澤 譲治(東京医科歯科大学難治疾患研究所ゲノム応用医学研究部門(分子細胞遺伝)) 田中 敏博(東京医科歯科大学疾患バイオリソースセンター) Date:Oct. 16 (Fri.) 11:25~12:20 Room 2(Nishiki, South Tower 4F) Chairs:Johji Inazawa(Tokyo Medical and Dental University) Toshihiro Tanaka(Tokyo Medical and Dental University) プ ロ BO-1 ゲノムワイド関連解析(GWAS)データを活用した in silico 解析による新規抗パーキンソン病薬 グ の探索 ラ In silico drug discovery for Parkinson’s disease by using genome!wide association study ム (GWAS)data ○上中 健 1(Takeshi Uenaka)、佐竹 渉 1(Wataru Satake)、謝 珮琴 1(Pei"Chieng Cha)、 岡田 随象 2(Yukinori Okada)、戸田 達史 1(Tatsushi Toda) 1 神戸大学大学院医学研究科神経内科!分子脳科学 指 (Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan) 定 2 東京医科歯科大学大学院医歯学総合研究科疾患多様性遺伝学分野 演 (Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, 題 Tokyo Medical and Dental University, Tokyo, Japan) 抄 録 BO-2 MIRAGE 症候群:機能亢進型 SAMD9 変異を原因とする新規症候群の発見 MIRAGE syndrome:New genetic syndrome caused by activating SAMD9 mutations ○鳴海 覚志 1(Satoshi Narumi)、天野 直子 1(Naoko Amano)、石井 智弘 1(Tomohiro Ishii)、 一 勝又 規行 2(Noriyuki Katsumata)、福澤 龍二 3(Ryuji Fukuzawa)、芝田 晋介 4(Shinsuke Shibata)、 般 4 5 6 演 岡野 栄之 (Hideyuki Okano)、清水 厚志 (Atsushi Shimizu)、三宅 紀子 (Noriko Miyake)、 題 松本 直通 6(Naomichi Matsumoto)、長谷川 奉延 1(Tomonobu Hasegawa) ( 1 慶應義塾大学医学部小児科 口 (Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan) 演 ) 2 国立成育医療研究センター研究所分子内分泌研究部 抄 (Department of Molecular Endocrinology, National Research
    [Show full text]
  • Residual Β Cell Function and Monogenic Variants in Long- Duration Type 1 Diabetes Patients
    Residual β cell function and monogenic variants in long- duration type 1 diabetes patients Marc Gregory Yu, … , Marcus G. Pezzolesi, George Liang King J Clin Invest. 2019. https://doi.org/10.1172/JCI127397. Clinical Medicine Endocrinology Metabolism In the Joslin Medalist Study (Medalists), we determined whether significant associations exist between β cell function and pathology and clinical characteristics. Individuals with type 1 diabetes (T1D) for 50 or more years underwent evaluation including HLA analysis, basal and longitudinal autoantibody (AAb) status, and β cell function by a mixed-meal tolerance test (MMTT) and a hyperglycemia/arginine clamp procedure. Postmortem analysis of pancreases from 68 Medalists was performed. Monogenic diabetes genes were screened for the entire cohort. Of the 1019 Medalists, 32.4% retained detectable C-peptide levels (>0.05 ng/mL, median: 0.21 ng/mL). In those who underwent a MMTT (n = 516), 5.8% responded with a doubling of baseline C-peptide levels. Longitudinally n( = 181, median: 4 years), C-peptide levels increased in 12.2% (n = 22) and decreased in 37% (n = 67) of the Medalists. Among those with repeated MMTTs, 5.4% (3 of 56) and 16.1% (9 of 56) had waxing and waning responses, respectively. Thirty Medalists with baseline C-peptide levels of 0.1 ng/mL or higher underwent the clamp procedure, with HLA–/AAb– and HLA+/AAb– Medalists being most responsive. Postmortem examination of pancreases from 68 Medalists showed that all had scattered insulin-positive […] Find the latest version: https://jci.me/127397/pdf The Journal of Clinical Investigation CLINICAL MEDICINE Residual β cell function and monogenic variants in long-duration type 1 diabetes patients Marc Gregory Yu,1,2 Hillary A.
    [Show full text]
  • Impaired Hormonal Responses to Hypoglycemia in Spontaneously Diabetic and Recurrently Hypoglycemic Rats
    Impaired hormonal responses to hypoglycemia in spontaneously diabetic and recurrently hypoglycemic rats. Reversibility and stimulus specificity of the deficits. A M Powell, … , R S Sherwin, G I Shulman J Clin Invest. 1993;92(6):2667-2674. https://doi.org/10.1172/JCI116883. Research Article To evaluate the roles of iatrogenic hypoglycemia and diabetes per se in the pathogenesis of defective hormonal counterregulation against hypoglycemia in insulin-dependent diabetes mellitus (IDDM), nondiabetic, and spontaneously diabetic BB/Wor rats were studied using a euglycemic/hypoglycemic clamp. In nondiabetic rats, recurrent (4 wk) insulin- induced hypoglycemia (mean daily glucose, MDG, 59 mg/dl) dramatically reduced glucagon and epinephrine responses by 84 and 94%, respectively, to a standardized glucose fall from 110 to 50 mg/dl. These deficits persisted for > 4 d after restoring normoglycemia, and were specific for hypoglycemia, with normal glucagon and epinephrine responses to arginine and hypovolemia, respectively. After 4 wk of normoglycemia, hormonal counterregulation increased, with the epinephrine, but not the glucagon response reaching control values. In diabetic BB rats (MDG 245 mg/dl with intermittent hypoglycemia), glucagon and epinephrine counterregulation were reduced by 86 and 90%, respectively. Chronic iatrogenic hypoglycemia (MDG 52 mg/dl) further suppressed counterregulation. Prospective elimination of hypoglycemia (MDG 432 mg/dl) improved, but did not normalize hormonal counterregulation. In diabetic rats, the glucagon defect appeared to be specific for hypoglycemia, whereas deficient epinephrine secretion also occurred during hypovolemia. We concluded that both recurrent hypoglycemia and the diabetic state independently lead to defective hormonal counterregulation. These data suggest that in IDDM iatrogenic hypoglycemia magnifies preexisting counterregulatory defects, thereby increasing the risk of severe hypoglycemia.
    [Show full text]
  • The Myotonic Dystrophies: Diagnosis and Management Chris Turner,1 David Hilton-Jones2
    Review J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2008.158261 on 22 February 2010. Downloaded from The myotonic dystrophies: diagnosis and management Chris Turner,1 David Hilton-Jones2 1Department of Neurology, ABSTRACT asymptomatic relatives as well as prenatal and National Hospital for Neurology There are currently two clinically and molecularly defined preimplantation diagnosis can also be performed.7 and Neurosurgery, London, UK 2Department of Clinical forms of myotonic dystrophy: (1) myotonic dystrophy Neurology, The Radcliffe type 1 (DM1), also known as ‘Steinert’s disease’; and Anticipation Infirmary, Oxford, UK (2) myotonic dystrophy type 2 (DM2), also known as DMPK alleles greater than 37 CTG repeats in length proximal myotonic myopathy. DM1 and DM2 are are unstable and may expand in length during meiosis Correspondence to progressive multisystem genetic disorders with several and mitosis. Children of a parent with DM1 may Dr C Turner, Department of Neurology, National Hospital for clinical and genetic features in common. DM1 is the most inherit repeat lengths considerably longer than those Neurology and Neurosurgery, common form of adult onset muscular dystrophy whereas present in the transmitting parent. This phenomenon Queen Square, London WC1N DM2 tends to have a milder phenotype with later onset of causes ‘anticipation’, which is the occurrence of 3BG, UK; symptoms and is rarer than DM1. This review will focus increasing disease severity and decreasing age of onset [email protected] on the clinical features, diagnosis and management of in successive generations. The presence of a larger Received 1 December 2008 DM1 and DM2 and will briefly discuss the recent repeat leads to earlier onset and more severe disease Accepted 18 December 2008 advances in the understanding of the molecular and causes the more severe phenotype of ‘congenital’ pathogenesis of these diseases with particular reference DM1 (figure 2).8 9 A child with congenital DM 1 to new treatments using gene therapy.
    [Show full text]
  • Gut Microbiota Differs in Composition and Functionality Between Children
    Diabetes Care Volume 41, November 2018 2385 Gut Microbiota Differs in Isabel Leiva-Gea,1 Lidia Sanchez-Alcoholado,´ 2 Composition and Functionality Beatriz Mart´ın-Tejedor,1 Daniel Castellano-Castillo,2,3 Between Children With Type 1 Isabel Moreno-Indias,2,3 Antonio Urda-Cardona,1 Diabetes and MODY2 and Healthy Francisco J. Tinahones,2,3 Jose´ Carlos Fernandez-Garc´ ´ıa,2,3 and Control Subjects: A Case-Control Mar´ıa Isabel Queipo-Ortuno~ 2,3 Study Diabetes Care 2018;41:2385–2395 | https://doi.org/10.2337/dc18-0253 OBJECTIVE Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. PATHOPHYSIOLOGY/COMPLICATIONS RESEARCH DESIGN AND METHODS This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors mod- ifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. 1Pediatric Endocrinology, Hospital Materno- Infantil, Malaga,´ Spain RESULTS 2Clinical Management Unit of Endocrinology and Compared with healthy control subjects, type 1 diabetes was associated with a Nutrition, Laboratory of the Biomedical Research significantly lower microbiota diversity, a significantly higher relative abundance of Institute of Malaga,´ Virgen de la Victoria Uni- Bacteroides Ruminococcus Veillonella Blautia Streptococcus versityHospital,Universidad de Malaga,M´ alaga,´ , , , , and genera, and a Spain lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and 3Centro de Investigacion´ BiomedicaenRed(CIBER)´ Lachnospira.
    [Show full text]
  • X-Linked Myotubular Myopathy and Chylothorax
    ARTICLE IN PRESS Neuromuscular Disorders xxx (2007) xxx–xxx www.elsevier.com/locate/nmd Case report X-linked myotubular myopathy and chylothorax Koenraad Smets * Department of Neonatology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium Received 10 August 2007; received in revised form 4 October 2007; accepted 24 October 2007 Abstract X-linked myotubular myopathy usually presents at birth with hypotonia and respiratory distress. Phenotypic presentation, however, can be extreme variable. We report on a newborn baby, who presented with the severe form of the disease. In the second week of life, he developed a clinically relevant chylothorax, needing drainage and treatment with octreotide acetate. Pleural effusions are frequently described in patients with congenital myotonic dystrophy. To our knowledge, the association of chylothorax and X-linked myotubular myopathy has not been described to date. As chylothorax could not be attributed to any evident condition in this child, perhaps it may be added to the clinical spectrum of X-linked myotubular myopathy. Ó 2007 Elsevier B.V. All rights reserved. Keywords: X-linked myotubular myopathy; Chylothorax 1. Introduction drainage (Fig. 1). Laboratory examination was compatible with chylothorax (5230 white blood cells/ll, 98% lympho- Congenital myopathies often present with hypotonia cytes; chylomicrons were present; triglycerides 746 mg/dl). and respiratory distress from birth, although their expres- There were no central venous catheters in place who could sion may be delayed. In most cases muscle biopsy is war- have caused thrombosis, impairing lymphatic flow, neither ranted for definitive diagnosis. In some instances could any other risk factor for chylothorax be identified.
    [Show full text]
  • Functional Imaging of Insulitis in Type 1 Diabetes
    FUNCTIONAL IMAGING OF INSULITIS IN TYPE 1 DIABETES Teemu Kalliokoski TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1135 | Medica - Odontologica | Turku 2014 University of Turku Faculty of Medicine Department of Clinical Medicine Pediatrics and Turku PET Centre Doctoral Programme of Clinical Investigation Supervised by Professor emeritus Olli Simell (MD, PhD) Adjunct professor Merja Haaparanta-Solin (MSc, PhD) University of Turku, Faculty of Medicine University of Turku, Faculty of Medicine Department of Pediatrics Turku PET Centre Reviewed by Professor Timo Otonkoski (MD, PhD) Docent Olof Eriksson (MSc, PhD) University of Helsinki Uppsala University Children’s Hospital Department of Medicinal Chemistry Opponent Professor Alberto Signore (MD, PhD) Sapienza University Nuclear Medicine Unit Rome, Italy The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-5859-7 (PRINT) ISBN 978-951-29-5860-3 (PDF) ISSN 0355-9483 Painosalama Oy - Turku, Finland 2014 Adjunct professor Merja Haaparanta-Solin (MSc, PhD) University of Turku, Faculty of Medicine Turku PET Centre To Mervi, and our children Elias and Iiris 4 Abstract ABSTRACT Teemu Kalliokoski FUNCTIONAL IMAGING OF INSULITIS IN TYPE 1 DIABETES Department of Pediatrics and Turku PET Centre, Faculty of Medicine, University of Turku Annales Universitatis Turkuensis, 2014, Turku, Finland Type 1 diabetes (T1D) is an immune-mediated disease characterized by autoimmune inflammation (insulitis), leading to destruction of insulin-producing pancreatic β-cells and consequent dependence on exogenous insulin. Current evidence suggests that T1D arises in genetically susceptible children who are exposed to poorly characterized environmental triggers.
    [Show full text]
  • Insulitis and Diabetes: a Perspective on Islet Inflammation
    ome Re un se m a rc Im h Immunome Research Burke and Collier, Immunome Res 2014, S:2 ISSN: 1745-7580 DOI: 10.4172/1745-7580.S2.e002 Editorial Open Access Insulitis and Diabetes: A Perspective on Islet Inflammation Susan J Burke and J Jason Collier* Laboratory of Islet Biology and Inflammation Pennington Biomedical Research Center 6400 Perkins Rd., Baton Rouge, LA 70808, USA *Corresponding author: J. Jason Collier, Ph.D, Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA, Tel: (225) 763-2884; E-mail: [email protected] Received date: 8 April 2014; Accepted date: 12 May 2014; Published date: 30 May 2014 Copyright: © Collier JJ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract capable of secreting moderate to high amounts of inflammatory mediators, perhaps producing a more sudden onset of diabetes. This Immune cell infiltration into pancreatic islets (termed insulitis) has scenario may explain the reported cases of fulminant diabetes, where been linked with destruction of pancreatic β-cells and thus with onset destruction of β-cells and ensuing diabetes is rapid [5]. of diabetes mellitus. Recently published guidelines for reporting insulitis may generate some deliberation on pancreatic islet Small Quantitative Insulitis with moderate inflammatory Activity: inflammation and a re-examination of the role that immune cells play Fewer leukocytes with sustained, but moderate production of in the process of β-cell death and dysfunction.
    [Show full text]
  • Procedure Name CPT Codes Mckesson Z-Code Achondroplasia
    6161 South Yale Avenue, Tulsa, OK, 74136 | 918-502-1720 Preferred Client Price List v. 1/1/2019 McKesson Procedure Name CPT codes Z-code Achondroplasia {FGFR 3} 81401 Albright Hereditary Osteodystrophy {GNAS1} 81479 Amyotrophic Lateral Sclerosis {SOD1} 81404 Androgen Insensitivity Syndrome {AR} 81173 Androgen Insensitivity Syndrome {AR}; Familial variant 81174 Angelman Syndrome {UBE3A - Methylation}/ PWS 81331 Apert Syndrome - FGFR2 exon 8 81404 ZB7K1 Blau Syndrome - NOD2/CARD15 Complete Gene Analysis 81479 BRAF codon 600 81210 Hereditary Breast and Gynecological Cancer Panel (25 genes) 81432, 81433 BRCA1/2 Gene Sequence w/ Del/Dup Analysis 81162 BRCA1 gene, familial known variant 81215 BRCA2 gene, familial known variant 81217 Hereditary Colon Cancer Panel (18 genes) 81435, 81436 81432, 81433, Hereditary Cancer Comprehensive Panel (33 genes) 81435, 81436 Congenital Adrenal Hyperplasia {CAH} 81405 Connexin 26 {CX26} 81252 ZB7LH Connexin 30 {CX30} 81254 ZB7JV 81400, 81401, Craniodysmorphology Screen {FGFR 1,2 & 3} 81404 Crohn's Disease {NOD2 - Markers} 81401 Crouzon Syndrome with Acanthosis Nigricans 81403 Cystic Fibrosis - DNA Probe 81220 Cystic Fibrosis, known familial variant 81221 Epidermal Growth Factor Receptor {EGFR - Mutation Analysis} 81235 FGFR 2 81479 Factor V Leiden Mutation 81241 Fragile X Syndrome {FRAX1} 81243 Fragile X syndrome by Southern Blot (an add-on charge) 81243 Friederich's Ataxia {FRDA} 81284 Frontotemporal Dementia - Full Gene (MAPT) 81406 Frontotemporal Dementia - Familial Variant (MAPT) 81403 Hereditary Dentatorubral
    [Show full text]