Genetic Epidemiology of Diabetes M

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Epidemiology of Diabetes M Washington University School of Medicine Digital Commons@Becker Open Access Publications 2005 Genetic epidemiology of diabetes M. Alan Permutt Washington University School of Medicine in St. Louis Jonathon Wasson Washington University School of Medicine in St. Louis Nancy Cox University of Chicago Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Permutt, M. Alan; Wasson, Jonathon; and Cox, Nancy, ,"Genetic epidemiology of diabetes." The ourJ nal of Clinical Investigation.,. 1431-1439. (2005). https://digitalcommons.wustl.edu/open_access_pubs/1460 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Downloaded on June 9, 2013. The Journal of Clinical Investigation. More information at www.jci.org/articles/view/24758 Review series Genetic epidemiology of diabetes M. Alan Permutt,1 Jonathon Wasson,1 and Nancy Cox2 1Department of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA. 2Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA. Conventional genetic analysis focuses on the genes that account for specific phenotypes, while traditional epide- miology is more concerned with the environmental causes and risk factors related to traits. Genetic epidemiology is an alliance of the 2 fields that focuses on both genetics, including allelic variants in different populations, and environment, in order to explain exactly how genes convey effects in different environmental contexts and to arrive at a more complete comprehension of the etiology of complex traits. In this review, we discuss the epidemiology of diabetes and the current understanding of the genetic bases of obesity and diabetes and provide suggestions for accelerated accumulation of clinically useful genetic information. Definition of the problem Prevalence Diabetes is a metabolic condition in which the body fails to pro- The prevalence of diabetes in the United States has risen 40%, from duce enough insulin. Type 1 diabetes (T1D) results from autoim- 4.9% in 1990 to 6.9% in 1999 (7). A breakdown of the prevalence of mune destruction of insulin-producing β cells, which leaves the diabetes by state from 1990 through 2001 and of obesity by state patient dependent on insulin injections for survival (1) T2D, for- from 1991 through 2003 is shown in Figure 1, A and B, respective- merly known as adult-onset diabetes, occurs when impaired insulin ly (8, 9). The disease affects various groups differently, occurring effectiveness (insulin resistance) is accompanied by the failure to 10 times more commonly in those older than 65 years compared produce sufficient β cell insulin. Patients can be placed on regimens with those younger than 45 years. Minority racial groups including to reduce weight or manage diet or treated with medication and, Hispanics, African Americans, and Native Americans are generally less often, insulin injections. This latter form of diabetes accounts affected at a rate 2–4 times that for white individuals. The recent for as much as 95% of cases. Gestational diabetes is another form of increased prevalence has also been noted in children and adoles- diabetes, defined as a state of glucose intolerance during pregnancy cents, where T2D may now occur more commonly than T1D (10). that usually subsides after delivery but has major implications for The estimated lifetime risk of developing diabetes for individuals subsequent risk of T2D, as pregnancy serves as an “environmental” born in the United States in 2000 is 33% for males and 39% for stressor that reveals a genetic predisposition. Other less common females (7). It is highest among Hispanic females, at 53%. Diabetes forms of diabetes include the rare, genetically determined disease is associated with large reductions in life expectancy, on the order maturity onset diabetes of the young (MODY), diabetes resulting of 11 years in males diagnosed at age 40. While an estimated 18.2 from surgery, and other illnesses that constitute only 1–5% of cases. million persons had diabetes in the United States in 2002 (11), dia- Based on plasma glucose measurements, 2 conditions have been betes worldwide has been estimated to affect 151 million persons, identified with increased risk of the disease (2): (a) impaired glucose and that number projected to increase to 324 million by 2025 (2). tolerance (IGT) is defined as hyperglycemia intermediate between normal and diabetic levels following a glucose load; (b) impaired The medical burden of diabetes fasting glucose (IFG), like IGT, is associated with increased cardio- The burden of diabetes is to a large extent the consequence of vascular disease (CVD) and future diabetes. Because complications macrovascular and microvascular complications of the disease, of diabetes may develop years before overt disease, many consider which result in large increases in morbidity and mortality. For the disease part of a cluster of CVD risk factors that include hyper- example, the prevalence of ischemic heart disease is 2–14 times tension, hyperinsulinemia, dyslipidemia, visceral obesity, hyperco- the rate in age-matched nondiabetics (12). Diabetic retinopathy agulability, and microalbuminuria. This collection of risk factors is is the chief cause of blindness in the US. In 2000, diabetic renal also known as the metabolic syndrome (3, 4). disease accounted for 40% of new cases of end-stage renal disease, While insulin therapy can reverse many of the metabolic distur- and diabetics are the largest group receiving dialysis (more than bances, and numerous improvements in management have been 50% of all cases) and renal transplants (approximately 25%). Lower introduced (5), the disease has reached epidemic proportions. extremity disease resulting from a combination of peripheral vas- According to the WHO (6), it is likely to be one of the most sub- cular disease and neuropathy causes an increase in lower extremity stantial threats to human health in the 21st century. amputations. While improved glycemic control has been shown to reduce the incidence of microvascular complications, episodes of severe symptomatic hypoglycemia were 3 times higher in those Nonstandard abbreviations used: ASP, affected sibling pair; CVD, cardiovascular receiving intensive insulin management therapy (13). Along with disease; DZ, dizygotic; IGT, impaired glucose tolerance; IRAS, Insulin Resistance Ath- experiencing physical and cognitive disabilities, adults with dia- erosclerosis Study; MODY, maturity onset diabetes of the young; MZ, monozygotic; betes have an age-adjusted mortality rate estimated to be twice SNP, single nucleotide polymorphism; T1D, type 1 diabetes; T2D, type 2 diabetes; VNTR, variable number of tandem repeats. that of nondiabetics (12). Risk factors for CVD, including systolic Conflict of interest: The authors have declared that no conflict of interest exists. hypertension, elevated cholesterol levels, and cigarette smoking, Citation for this article: J. Clin. Invest. 115:1431–1439 (2005). independently predict CVD mortality, and any 1 risk factor affects doi:10.1172/JCI24758. outcomes more in persons with diabetes (14). The Journal of Clinical Investigation http://www.jci.org Volume 115 Number 6 June 2005 1431 Downloaded on June 9, 2013. The Journal of Clinical Investigation. More information at www.jci.org/articles/view/24758 review series Figure 1 (A) Diabetes trends among adults in the US. *Includes gestational diabetes. Adapted from ref. 8. (B) Obesity trends among US adults. **BMI ≥ 30 (about 30 pounds overweight for a 5-ft 4-in. individual). Adapted from ref. 9. Although increase in diabetes prevalence occurs mostly in mid- The molecular and physiological relationships between obesity dle-aged and older adults, there is strong evidence of an increase and diabetes are not fully understood, and this subject is an area of in the prevalence of T2D in children (10). For example, in Japan intense investigation (see ref. 22 for review). The “thrifty genotype” the incidence in school children (6–15 years old) has doubled over hypothesis was proposed to account for a genetic advantage of a 20-year period, such that T2D is now more common than T1D accelerated fat deposition during times of restricted availability of (15). In the US, up to 45% of the newly diagnosed diabetics in the calories, which leaves individuals faced with harmful consequenc- pediatric age group have T2D (10). This rise in diabetes rates in es given the abundant food supply and reduced levels of physical children reflects, at least in part, the growing prevalence of obesity activity in developed countries today (24). Noting an association in this age group (16). between low birth weight and increased incidence of diabetes in Direct medical expenditures and lost productivity due to diabe- later life, Hales and Barker have hypothesized that intrauterine mal- tes were estimated to cost the US $132 billion in 2002 (17). The nutrition result in reduced birth weight and to subsequent changes per capita expenditures were twice those for individuals without leading to disease in adults (25, 26). This phenomenon, also known the disease. While the prevalence of diagnosed diabetes is less than as the “thrifty phenotype” hypothesis, proposes that fetal malnutri- 5% of the population,
Recommended publications
  • DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof
    Mr. Mrs. (IN UPPER CASE, please) Name:……………………………………………………. Maiden Name:……………………………………. DMGL / Service de Médecine Génétique Centre d’accueil des prélèvements (CAP) First name :………………………………………………… Bâtiment des Laboratoires (BATLab), local 8D-0-850.1 Date of birth : ............ / ........... / …………… 4 rue Gabrielle-Perret-Gentil, 1211 Genève 14 Legal representative (for minors) : father mother Molecular and Genomic Diagnostics Laboratory Name/first name :…………………………………………… Street/N°:……………………………………………………… http://www.hug-ge.ch/feuilles-de-demande DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof. Stylianos ANTONARAKIS Hospitalisation Unit: …………… Physician :…………………… Lab managers: N° EdS : …………………………………………………………… Dr J.-L. BLOUIN, Dr Th. NOUSPIKEL, Dr. M. GUIPPONI Invoice address: Patient Prescriptor Insurance [email protected], [email protected], [email protected] Type of case : Disease AI Accident Pregnancy Lab direct or results: Phone/FAX: +41 (0) 22 37 21 826 / 21 860 N° AVS (Mandatory for AI) : ………………………...................... Sample Entrance Center (CAP) : Phone +41 (0) 22 37 21 800 Insurance : ………………… Insured N° : ……………………… PHYSICIAN PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) COPY TO OTHER PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) « The laboratory is granted permission by the Physician/Patient to transmit copies of the report to other physicians» Opposition of the patient to the registration of this request results in the electronic patient record (DPI) of the HUG If the patient belongs to a family already known to the laboratory, please indicate index case NAME: CLINICAL INFORMATIONS given by the physician: Ethnic origins Father Mother Currently pregnant Date of last menses Number of weeks of amenorrhea SAMPLE(S) Most of our tests work from 4 ml of blood in EDTA (children <2 ans : 1 On every and single NAME First name ml : ok) or from purified DNA (some exceptions apply for some tests) tube.
    [Show full text]
  • Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore
    Discovery and Analysis of Patients with Monogenic Diabetes in Multiple Cohorts to Guide Future Diagnosis Item Type dissertation Authors Kleinberger, Jeffrey Publication Date 2017 Abstract Monogenic diabetes is hyperglycemia caused by a variant in a single gene, and it accounts for approximately 1-2% of all diabetes cases. A genetic diagnosis of monogenic diabetes is important because the most common gene etiologies can be effectively ... Keywords MODY; monogenic diabetes; screening; Clinical Trial; Diabetes Mellitus, Type 2; Zebrafish Download date 05/10/2021 09:00:42 Link to Item http://hdl.handle.net/10713/7072 Jeffrey Kleinberger Ph.D. Candidate Molecular Medicine Program, Genome Biology Track Graduate Program in Life Sciences, University of Maryland, Baltimore Contact Information Medical School Teaching Facility 357 685 West Baltimore St. Baltimore, MD 21201 [email protected] Education Juniata College Huntingdon, PA August 2004 – May 2008 Cum Laude distinction (GPA: 3.701) Biochemistry major Coursework included: Organic Chemistry, Bioinorganic Chemistry, Analytical Chemistry, Physical Chemistry, Chemistry Research, Biology, Cell Biology, Genetics, Biostatistics, Molecular Techniques, Physiology, Microbiology, Biochemistry and Molecular Biology (I-III), Calculus (I&II), Physics (I&II), Scientific Glassblowing, College Writing Seminar, Art of Public Speaking, Intro to Psychology, Learning & Conditioning, Mod. Knowledge & The Self, United States to 1877, The American Revolution, Survey of Western Art, Modern Architecture,
    [Show full text]
  • 一般演題(口演)/Oral Sessions
    一般演題(口演)!Oral Sessions ご ! 案 第 60 回大会賞候補セッション(口演) Oral Presentation Award Session 内 日 時:10 月 16 日(金)11:25~12:20 第 2 会場(南館 4 階 錦) 座 長:稲澤 譲治(東京医科歯科大学難治疾患研究所ゲノム応用医学研究部門(分子細胞遺伝)) 田中 敏博(東京医科歯科大学疾患バイオリソースセンター) Date:Oct. 16 (Fri.) 11:25~12:20 Room 2(Nishiki, South Tower 4F) Chairs:Johji Inazawa(Tokyo Medical and Dental University) Toshihiro Tanaka(Tokyo Medical and Dental University) プ ロ BO-1 ゲノムワイド関連解析(GWAS)データを活用した in silico 解析による新規抗パーキンソン病薬 グ の探索 ラ In silico drug discovery for Parkinson’s disease by using genome!wide association study ム (GWAS)data ○上中 健 1(Takeshi Uenaka)、佐竹 渉 1(Wataru Satake)、謝 珮琴 1(Pei"Chieng Cha)、 岡田 随象 2(Yukinori Okada)、戸田 達史 1(Tatsushi Toda) 1 神戸大学大学院医学研究科神経内科!分子脳科学 指 (Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan) 定 2 東京医科歯科大学大学院医歯学総合研究科疾患多様性遺伝学分野 演 (Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, 題 Tokyo Medical and Dental University, Tokyo, Japan) 抄 録 BO-2 MIRAGE 症候群:機能亢進型 SAMD9 変異を原因とする新規症候群の発見 MIRAGE syndrome:New genetic syndrome caused by activating SAMD9 mutations ○鳴海 覚志 1(Satoshi Narumi)、天野 直子 1(Naoko Amano)、石井 智弘 1(Tomohiro Ishii)、 一 勝又 規行 2(Noriyuki Katsumata)、福澤 龍二 3(Ryuji Fukuzawa)、芝田 晋介 4(Shinsuke Shibata)、 般 4 5 6 演 岡野 栄之 (Hideyuki Okano)、清水 厚志 (Atsushi Shimizu)、三宅 紀子 (Noriko Miyake)、 題 松本 直通 6(Naomichi Matsumoto)、長谷川 奉延 1(Tomonobu Hasegawa) ( 1 慶應義塾大学医学部小児科 口 (Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan) 演 ) 2 国立成育医療研究センター研究所分子内分泌研究部 抄 (Department of Molecular Endocrinology, National Research
    [Show full text]
  • UNSCEAR 2001 Report to the General Assembly, with Scientific Annex
    HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS New York, 2001 NOTE The report of the Committee without its scientific annex appears as Official Records of the General Assembly. Fifty-sixth Session, Supplement No. 46 (N56146). The designation employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the pad of the Secretariat of the United Nationsconcerning the legal status of any country, temtory, city orarea, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, In most cases, those that were in use at the time the data were collected or the text prepared. In othercases, however, the names have been updated, where this was posslble and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.O1 .IX.2 ISBN 92-1-1 42244-2 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly 1. During the past few years, the United Nations 4. The Committee wishes to acknowledge the assistance Scientific Committee on the Effects of Atomic Radiation1 of the consultant, K. Sankaranarayanan, in the preparation has undertaken broad reviews of the sources and effects of of the scientific annex and the advice of the international ionizing radiation.
    [Show full text]
  • Uncommon Forms of Diabetes
    Clinical Medicine 2021 Vol 21, No 4: e337–41 CME: DIABETES Uncommon forms of diabetes Authors: Yun-Ni LeeA and Mohammed SB HudaB Diabetes mellitus is a common condition which all clinicians and insulin independence. It is estimated to account for 1%–2% will encounter in their clinical practice. The most common of patients diagnosed with diabetes and, in the UK, the prevalence form is type 2 diabetes followed by type 1 diabetes. However, of MODY is estimated to be at 108 cases per million.3 However, there are many other atypical forms of diabetes which are it may be a significant underestimate and these figures are not important for a clinician to consider as it can impact on the accurate until large population screening studies are performed. ABSTRACT diagnosis and their management. The most common mutations are hepatocyte nuclear factor-1- This article focuses on maturity onset diabetes of the young alpha (HNF1α; 52%), glucokinase (GCK; 32%) and HNF4α (10%), (MODY), latent autoimmune diabetes in adults (LADA), see Table 2.3 ketosis-prone diabetes and other secondary forms of diabetes such as pancreatic cancer and haemochromatosis. We briefly Hepatocyte nuclear factor-1-alpha gene describe the key clinical features of these forms of diabetes and their investigations and treatment. Formerly called MODY3, mutations on the HNF1α gene on chromosome 3 are associated with a progressive defect of insulin secretion.4 Mutations here also result in low renal threshold for 5 Introduction glucose and thus mutation carriers have detectable glycosuria. In the UK, around 90% of people with diabetes have type 2 diabetes (T2D), around 8% have type 1 diabetes (T1D) and around 2% have other forms of diabetes.1 Key points Typically, we see T1D present in a young, lean patient with Suspect other uncommon forms of diabetes if the clinical marked symptoms of polyuria, polydipsia, weight loss and diabetic picture does not fit type 1 or type 2 diabetes.
    [Show full text]
  • Mat Kadi Tora Tutti O Al Ut Hit Hitta Atuh
    MAT KADI TORA TUTTI USO AL20180235194A1 UT HIT HITTA ATUH ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0235194 A1 Fahrenkrug et al. (43 ) Pub . Date : Aug . 23, 2018 ( 54 ) MULTIPLEX GENE EDITING Publication Classification (51 ) Int. Ci. ( 71 ) Applicant: Recombinetics , Inc ., Saint Paul, MN A01K 67/ 027 (2006 . 01 ) (US ) C12N 15 / 90 ( 2006 .01 ) (72 ) Inventors : Scott C . Fahrenkrug, Minneapolis , (52 ) U . S . CI. MN (US ) ; Daniel F . Carlson , CPC .. .. A01K 67 / 0276 (2013 . 01 ) ; C12N 15 / 907 Woodbury , MN (US ) ( 2013 .01 ) ; A01K 67 /0275 ( 2013 .01 ) ; A01K 2267/ 02 (2013 .01 ) ; AOIK 2217 / 15 (2013 .01 ) ; AOIK 2227 / 108 ( 2013 .01 ) ; AOIK 2217 /07 (21 ) Appl. No. : 15 /923 , 951 ( 2013 .01 ) ; A01K 2227/ 101 (2013 .01 ) ; AOIK ( 22 ) Filed : Mar. 16 , 2018 2217 /075 ( 2013 .01 ) (57 ) ABSTRACT Related U . S . Application Data Materials and methods for making multiplex gene edits in (62 ) Division of application No . 14 /698 ,561 , filed on Apr. cells and are presented . Further methods include animals 28 , 2015, now abandoned . and methods of making the same . Methods of making ( 60 ) Provisional application No . 61/ 985, 327, filed on Apr. chimeric animals are presented , as well as chimeric animals . 28 , 2014 . Specification includes a Sequence Listing . Patent Application Publication Aug . 23 , 2018 Sheet 1 of 13 US 2018 / 0235194 A1 GENERATION OF HOMOZYGOUS CATTLE EDITED AT ONE ALLELE USING SINGLE EDITS Edit allele , Raise FO to Mate FO enough times Raise F1s to Mate F1 siblings Clone cell , sexual maturity , to produce enough F1 sexualmaturity , to make Implant, Gestate 2 years generation carrying 2 years homozygous KO , 9 months , birth edited allele to mate 9 months of FO with each other Generation Primary Fibroblasts ? ? ? Time, years FIG .
    [Show full text]
  • Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification Is Important Gabriel I. Uwaifo, MD Dept of Endocrinology
    Beyond Type 1 and Type 2 Diabetes; Why Correct Diabetes Classification is Important Gabriel I. Uwaifo, MD, FACP, FTOS, FACE. Dept of Endocrinology, Diabetes, Metabolism and Weight Management, Ochsner Medical Center Objectives To highlight various classification methods of diabetes To highlight the importance and consequences of appropriate diabetes classification To provide suggested processes for diabetes classification in primary care settings and indices for specialty referral Presentation outline 1. Case presentations 2. Diabetes classification; past present and future 3. Diabetes classification; why is it important? 4. Suggested schemas for diabetes classification 5. Case presentation conclusions 6. Summary points and conclusions 3 Demonstrative cases Patient DL is a 56 yr old AA gentleman with a BMI of 24 referred for management of his “type 2 diabetes”. He is on basal bolus insulin with current HBA1c of 8.3. His greatest concern is on account of recent onset progressive neurologic symptoms and gaite unsteadiness Patient CY is a 21 yr old Caucasian lady with BMI of 28 and strong family history of diabetes referred for management of her “type 2 diabetes”. She is unsure if she even has diabetes as she indicates most of the SMBGs are under 160 and her current HBA1 is 6.4 on low dose metformin. Patient DR is a 54 yr old Asian lady with BMI of 36 and long standing “type 2 diabetes”. She has been referred because of poor diabetes control on multiple oral antidiabetics and persistent severe hypertriglyceridemia. Questions; Do all
    [Show full text]
  • Endocrine Genetic Test List
    Endocrine Genetic Test List Associated conditions Test No. Test Name Genes Included and phenotypes Bone HPP, X-Linked Hypophosphatemia, X-Linked Hypophosphatemic Rickets, XLH, Hypophosphatemic Rickets, X-Linked Hypophosphatasia and Dominant Hypophosphatemic Rickets (XLHR), ALPL, CLCN5, CYP2R1, CYP27B1, DMP1, ENPP1, FGF23, PHEX, 630292 Hypophosphatemic Rickets X-Linked Rickets (XLR), Vitamin D-Resistant SLC34A3, VDR Panel Rickets, X-Linked Vitamin D-Resistant Rickets (VDRR), Hypophosphatemic Vitamin D-Resistant Rickets (HPDR), Phosphate Diabetes, Familial Hypophosphatemic Rickets BMP1, COL1A1, COL1A2, CREB3L1, CRTAP, FKBP10, IFITM5, LRP5, Osteogenesis Imperfecta 630543 MBTPS2, P3H1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, SPARC, OI, Juvenile Primary Osteoporosis Genetic Panel TENT5A, TMEM38B, WNT1 Cancer Familial Isolated Hyperparathyroidism, VistaSeq® Endocrine Cancer CDC73, MAX, MEN1, NF1, PRKAR1A, PTEN, RET, SDHB, SDHC, SDHD, 481374 Multiple Endocrine Neoplasia, Paraganglioma, Panel* TMEM127, TP53 and VHL Parathyroid Cancer, Pheochromocytoma Diabetes and Insulin Maturity-Onset Diabetes of the 630568 GCK, HNF1A, HNF1B, HNF4A Young (MODY) 4-gene Panel Maturity-Onset Diabetes of ABCC8, APPL1, BLK, GCK, HNF1A, HNF1B, HNF4A, INS, KCNJ11, 630513 the Young (MODY) Expanded KLF11, NEUROD1, PAX4, PDX1 Genetic Panel Congenital Hyperinsulinism ABCC8, GCK, GLUD1, HADH, HNF1A, HNF4A, KCNJ11, PGM1, PMM2, 630500 Hypoglycemia Genetic Panel SLC16A1, UCP2 Growth and Development Combined Pituitary Hormone GLI1, HESX1, LHX3, LHX4, OTX2, POU1F1, PROKR2, PROP1,
    [Show full text]
  • An Interesting Case of Young Onset Diabetes Mellitus
    International Journal of Research in Medical Sciences Gulati S et al. Int J Res Med Sci. 2017 Sep;5(9):4178-4180 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174007 Case Report An interesting case of young onset diabetes mellitus Shipra Gulati*, Tanvi Batra, Akshay A. Dhamne, Vijayashree S. Gokhale Department of Medicine, Dr. DY Patil Medical College and Hospital, Pimpri, Pune, Maharashtra, India Received: 23 June 2017 Accepted: 22 July 2017 *Correspondence: Dr. Shipra Gulati, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT A 24 years old female, was admitted with symptoms of urinary tract infection. She was married and had bad obstetric history. She was known diabetic for 16 years of age and was on regular treatment with injection human insulin mixtard since the time of diagnosis, but had no episode of diabetic ketosis/ ketoacidosis. She had a positive family history of diabetes. She was further evaluated and was found to have normal C peptide levels and islet cell antibodies were found to be negative. Hence, the possibility of MODY (monogenic diabetes) was considered. Her genetic testing could not be done due to financial constraints. But a trial of sulfonylureas was given along with reduction in the dose of insulin to which she responded well and is presently well controlled.
    [Show full text]
  • Servicios GENYCA 20171218 ENGLISH
    RARE DISEASES GENYCA_2018 TAT* CODE TEST OMIM ANALYSIS OF: GENES SAMPLE SPECIALITY (turnaraound time) 5 ml blood EDTA/Saliva SRD5A1-S Steroid 5-alpha-reductase *184753 cds SRD5A1 1 month Oncologic on swab 5 ml blood EDTA/Saliva ABL1-S ABL1, Gene *189980 cds ABL1 3 months Oncologic on swab 5 ml blood EDTA/Saliva GCDH-S Glutaric Acidemia Type I 231670 cds GCDH 4 weeks Metabolic on swab ACAT1, BCKDHA, BCKDHB, DBT, 251000, 251100, 251110, GCDH, HMGCL, IVD, MMAA, ACID-N Isolated Methylmalonic Acidemia 251120, 277410, 607481, cds 5 ml blood EDTA 3 months Metabolic MMAB, MMACHC, MCCC1, 607568, 608419, 609058 MCCC2, MUT, PCCA, PCCB 5 ml blood EDTA/Saliva SLC4A1-S Renal Tubular Distal Acidosis 611590 cds SLC4A1 6 weeks Hematologic on swab 5 ml blood EDTA/Saliva AUH-S 3-methylglutaconic aciduria, type I 250950 cds AUH 2 months Metabolic on swab 5 ml blood EDTA/Saliva IDH2-S D-2-hydroxyglutaric aciduria 2 613657 cds IDH2 6 weeks Multisystemic on swab ACYL-COA Dehydrogenase Medium-Chain, c.985A>G 5 ml blood EDTA/Saliva ACADM-V 201450 ACADM 1 month Metabolic Deficiency of (p.Lys304Glu) on swab ACYL-COA Dehydrogenase Medium-Chain, ACADM-S 201450 cds ACADM 5 ml blood EDTA 2 months Metabolic Deficiency of 5 ml blood EDTA/Saliva FGFR3-V Achondroplasia 100800 p.G380R, p.G375C FGFR3 2 weeks Musculoskeletal on swab 5 ml blood EDTA/Saliva ITGB2-S Leukocyte adhesion deficiency (LAD) 116920 cds ITGB2 2 months Hematologic on swab 5 ml blood EDTA/Saliva ADIPOQ-V Adiponectin (Hipoadiponectinemia) 612556 c.276G>T ADIPOQ 1 week Metabolic on swab ABCD1-D Adrenoleukodystrophy
    [Show full text]
  • Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus
    Reviews/Commentaries/ADA Statements POSITION STATEMENT Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus 1 6 DAVID B. SACKS M. SUE KIRKMAN mellitus, formerly known as insulin- 2 7 MARK ARNOLD AKE LERNMARK 3 8 dependent diabetes mellitus (IDDM) or GEORGE L. BAKRIS BOYD E. METZGER 4 9 juvenile-onset diabetes mellitus, is usu- DAVID E. BRUNS DAVID M. NATHAN 5 ally caused by autoimmune destruction ANDREA RITA HORVATH of the pancreatic islet b-cells, rendering the pancreas unable to synthesize and se- crete insulin (2). Type 2 diabetes mellitus, BACKGROUND—Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies formerly known as non-IDDM or adult- substantially. onset diabetes, is caused by a combina- tion of insulin resistance and inadequate APPROACH—An expert committee compiled evidence-based recommendations for the use of insulin secretion (3,4). Gestational diabe- laboratory testing for patients with diabetes. A new system was developed to grade the overall quality tes mellitus (GDM), which resembles type of the evidence and the strength of the recommendations. Draft guidelines were posted on the fi 2diabetesmorethantype1,develops Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modi ed in during approximately 7% (range, 5%– response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence- 15%) of pregnancies, usually remits after Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly delivery, and constitutes a major risk fac- reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee tor for the development of type 2 diabetes and subsequently approved by the Executive Committee of the American Diabetes Association.
    [Show full text]
  • Abstracts of Lectures Gfh ÖGH SGMG Tagungsband Abstracts
    patients were significantly different across pop mosomal level, but not generally at both levels. Abstracts of Lectures ulations with frequency maximum of the com In this view, the aneuploid karyotype is the read mon mutations in EastEurope (W151X, V326L), out of an underlying chromosomal instability NorthWestEurope (IVS81G>C), and SouthEu (CIN). In a small proportion of cancers display 1. Symposia rope (T93M). ing CIN the loss of this checkpoint is associated Carrier frequency analysis of the IVS81G>C, with the mutational inactivation of a human ho W151X, T93M, and V326L mutations in 2250 mologue of the yeast BUB1 gene. BUB1 controls S1 healthy individuals from different European pop mitotic checkpoints and chromosome segrega ulations revealed much higher frequencies for tion in yeast. The Human SHOX Mutation Database these common mutations (e.g. 1:50 for the IVS8 Because the MIN and CIN forms of instability are Beate Niesler, Christine Fischer and Gudrun A. 1G>C in Austria, and 1:84 for the W151X in rarely found to coexist in tumours, it would seem Rappold Poland) than expected from the reported preva that one form of instability is sufficient to drive Institute of Human Genetics, University of lence of the SLOS. Based on these frequencies tumorigenesis. Heidelberg, Im Neuenheimer Feld 328, the expected incidence of SLOS patients with Genetic instability appears early in tumorigene 69120 Heidelberg, Germany null mutations ranges from 1:2000 to 1:16.000. sis and is believed to play a critical role in the The human SHOX gene (Short Stature Home This discrepancy might be due to underdiagno malignant process.
    [Show full text]