Tone Deafness and Perfect Pitch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Absolute and Relative Pitch Processing in the Human Brain: Neural and Behavioral Evidence
bioRxiv preprint doi: https://doi.org/10.1101/526541; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Absolute and relative pitch processing in the human brain: Neural and behavioral evidence Simon Leipold a, Christian Brauchli a, Marielle Greber a, Lutz Jäncke a, b, c Author Affiliations a Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland b University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland c Department of Special Education, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia Corresponding Authors Simon Leipold Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Lutz Jäncke Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Keywords Absolute Pitch, Multivariate Pattern Analysis, Neural Efficiency, Pitch Processing, fMRI Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF), grant no. 320030_163149 to LJ. We thank our research interns Anna Speckert, Chantal Oderbolz, Désirée Yamada, Fabian Demuth, Florence Bernays, Joëlle Albrecht, Kathrin Baur, Laura Keller, Marilena Wilding, Melek Haçan, Nicole Hedinger, Pascal Misala, Petra Meier, Sarah Appenzeller, Tenzin Dotschung, Valerie Hungerbühler, Vanessa Vallesi, -
Absolute Pitch (AP)
Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors -
Transposition, Hors-Série 2 | 2020, « Sound, Music and Violence » [Online], Online Since 15 March 2020, Connection on 13 May 2020
Transposition Musique et Sciences Sociales Hors-série 2 | 2020 Sound, Music and Violence Son, musique et violence Luis Velasco-Pufleau (dir.) Electronic version URL: http://journals.openedition.org/transposition/3213 DOI: 10.4000/transposition.3213 ISSN: 2110-6134 Publisher CRAL - Centre de recherche sur les arts et le langage Electronic reference Luis Velasco-Pufleau (dir.), Transposition, Hors-série 2 | 2020, « Sound, Music and Violence » [Online], Online since 15 March 2020, connection on 13 May 2020. URL : http://journals.openedition.org/ transposition/3213 ; DOI : https://doi.org/10.4000/transposition.3213 This text was automatically generated on 13 May 2020. La revue Transposition est mise à disposition selon les termes de la Licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International. 1 TABLE OF CONTENTS Introduction Introduction. Son, musique et violence Luis Velasco-Pufleau Introduction. Sound, Music and Violence Luis Velasco-Pufleau Articles Affordance to Kill: Sound Agency and Auditory Experiences of a Norwegian Terrorist and American Soldiers in Iraq and Afghanistan Victor A. Stoichita Songs of War: The Voice of Bertran de Born Sarah Kay Making Home, Making Sense: Aural Experiences of Warsaw and East Galician Jews in Subterranean Shelters during the Holocaust Nikita Hock Interview and Commentaries De la musique à la lutte armée, de 1968 à Action directe : entretien avec Jean-Marc Rouillan Luis Velasco-Pufleau From Music to Armed Struggle, from 1968 to Action Directe: An Interview with Jean-Marc -
Classical Net Review
The Internet's Premier Classical Music Source BOOK REVIEW The Psychology of Music Diana Deutsch, editor Academic Press, Third Edition, 2013, pp xvii + 765 ISBN-10: 012381460X ISBN-13: 978-0123814609 The psychology of music was first explored in detail in modern times in a book of that name by Carl E. Seashore… Psychology Of Music was published in 1919. Dover's paperback edition of almost 450 pages (ISBN- 10: 0486218511; ISBN-13: 978-0486218519) is still in print from half a century later (1967) and remains a good starting point for those wishing to understand the relationship between our minds and music, chiefly as a series of physical processes. From the last quarter of the twentieth century onwards much research and many theories have changed the models we have of the mind when listening to or playing music. Changes in music itself, of course, have dictated that the nature of human interaction with it has grown. Unsurprisingly, books covering the subject have proliferated too. These range from examinations of how memory affects our experience of music through various forms of mental disabilities, therapies and deviations from "standard" auditory reception, to attempts to explain music appreciation psychologically. Donald Hodges' and David Conrad Sebald's Music in the Human Experience: An Introduction to Music Psychology (ISBN-10: 0415881862; ISBN-13: 978- 0415881869) makes a good introduction to the subject; while Aniruddh Patel's Music, Language, and the Brain (ISBN-10: 0199755302; ISBN-13: 978-0199755301) is a good (and now classic/reference) overview. Oliver Sacks' Musicophilia: Tales of Music and the Brain (ISBN-10: 1400033535; ISBN-13: 978-1400033539) examines specific areas from a clinical perspective. -
Convergent Evolution in a Large Cross-Cultural Database of Musical Scales
Convergent evolution in a large cross-cultural database of musical scales John M. McBride1,* and Tsvi Tlusty1,2,* 1Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea 2Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea *[email protected], [email protected] August 3, 2021 Abstract We begin by clarifying some key terms and ideas. We first define a scale as a sequence of notes (Figure 1A). Scales, sets of discrete pitches used to generate Notes are pitch categories described by a single pitch, melodies, are thought to be one of the most uni- although in practice pitch is variable so a better descrip- versal features of music. Despite this, we know tion is that notes are regions of semi-stable pitch centered relatively little about how cross-cultural diversity, around a representative (e.g., mean, meadian) frequency or how scales have evolved. We remedy this, in [10]. Thus, a scale can also be thought of as a sequence of part, we assemble a cross-cultural database of em- mean frequencies of pitch categories. However, humans pirical scale data, collected over the past century process relative frequency much better than absolute fre- by various ethnomusicologists. We provide sta- quency, such that a scale is better described by the fre- tistical analyses to highlight that certain intervals quency of notes relative to some standard; this is typically (e.g., the octave) are used frequently across cul- taken to be the first note of the scale, which is called the tures. -
Memory and Production of Standard Frequencies in College-Level Musicians Sarah E
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Memory and Production of Standard Frequencies in College-Level Musicians Sarah E. Weber University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Cognition and Perception Commons, Fine Arts Commons, Music Education Commons, and the Music Theory Commons Weber, Sarah E., "Memory and Production of Standard Frequencies in College-Level Musicians" (2013). Masters Theses 1911 - February 2014. 1162. Retrieved from https://scholarworks.umass.edu/theses/1162 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF MUSIC September 2013 Music Theory © Copyright by Sarah E. Weber 2013 All Rights Reserved Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER _____________________________ Gary S. Karpinski, Chair _____________________________ Andrew Cohen, Member _____________________________ Brent Auerbach, Member _____________________________ Jeff Cox, Department Head Department of Music and Dance DEDICATION For my parents and Grandma. ACKNOWLEDGEMENTS I would like to thank Kristen Wallentinsen for her help with experimental logistics, Renée Morgan for giving me her speakers, and Nathaniel Liberty for his unwavering support, problem-solving skills, and voice-over help. -
Major Heading
THE APPLICATION OF ILLUSIONS AND PSYCHOACOUSTICS TO SMALL LOUDSPEAKER CONFIGURATIONS RONALD M. AARTS Philips Research Europe, HTC 36 (WO 02) Eindhoven, The Netherlands An overview of some auditory illusions is given, two of which will be considered in more detail for the application of small loudspeaker configurations. The requirements for a good sound reproduction system generally conflict with those of consumer products regarding both size and price. A possible solution lies in enhancing listener perception and reproduction of sound by exploiting a combination of psychoacoustics, loudspeaker configurations and digital signal processing. The first example is based on the missing fundamental concept, the second on the combination of frequency mapping and a special driver. INTRODUCTION applications of even smaller size this lower limit can A brief overview of some auditory illusions is given easily be as high as several hundred hertz. The bass which serves merely as a ‘catalogue’, rather than a portion of an audio signal contributes significantly to lengthy discussion. A related topic to auditory illusions the sound ‘impact’, and depending on the bass quality, is the interaction between different sensory modalities, the overall sound quality will shift up or down. e.g. sound and vision, a famous example is the Therefore a good low-frequency reproduction is McGurk effect (‘Hearing lips and seeing voices’) [1]. essential. An auditory-visual overview is given in [2], a more general multisensory product perception in [3], and on ILLUSIONS spatial orientation in [4]. The influence of video quality An illusion is a distortion of a sensory perception, on perceived audio quality is discussed in [5]. -
Frequency Ratios and the Perception of Tone Patterns
Psychonomic Bulletin & Review 1994, 1 (2), 191-201 Frequency ratios and the perception of tone patterns E. GLENN SCHELLENBERG University of Windsor, Windsor, Ontario, Canada and SANDRA E. TREHUB University of Toronto, Mississauga, Ontario, Canada We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted for judgments of consonance and dissonance and for judgments of similarity across a wide range of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by musically experienced and inexperienced listeners. These findings confirm the generality ofpre vious suggestions of perceptual processing advantages for pairs of tones related by simple fre quency ratios. Since the time of Pythagoras, the relative simplicity of monics of a single complex tone. Currently, the degree the frequency relations between tones has been consid of perceived consonance is believed to result from both ered fundamental to consonance (pleasantness) and dis sensory and experiential factors. Whereas sensory con sonance (unpleasantness) in music. Most naturally OCCUf sonance is constant across musical styles and cultures, mu ring tones (e.g., the sounds of speech or music) are sical consonance presumably results from learning what complex, consisting of multiple pure-tone (sine wave) sounds pleasant in a particular musical style. components. Terhardt (1974, 1978, 1984) has suggested Helmholtz (1885/1954) proposed that the consonance that relations between different tones may be influenced of two simultaneous complex tones is a function of the by relations between components of a single complex tone. ratio between their fundamental frequencies-the simpler For single complex tones, ineluding those of speech and the ratio, the more harmonics the tones have in common. -
Toward a New Comparative Musicology
Analytical Approaches To World Music 2.2 (2013) 148-197 Toward a New Comparative Musicology Patrick E. Savage1 and Steven Brown2 1Department of Musicology, Tokyo University of the Arts 2Department of Psychology, Neuroscience & Behaviour, McMaster University We propose a return to the forgotten agenda of comparative musicology, one that is updated with the paradigms of modern evolutionary theory and scientific methodology. Ever since the field of comparative musicology became redefined as ethnomusicology in the mid-20th century, its original research agenda has been all but abandoned by musicologists, not least the overarching goal of cross-cultural musical comparison. We outline here five major themes that underlie the re-establishment of comparative musicology: (1) classification, (2) cultural evolution, (3) human history, (4) universals, and (5) biological evolution. Throughout the article, we clarify key ideological, methodological and terminological objections that have been levied against musical comparison. Ultimately, we argue for an inclusive, constructive, and multidisciplinary field that analyzes the world’s musical diversity, from the broadest of generalities to the most culture-specific particulars, with the aim of synthesizing the full range of theoretical perspectives and research methodologies available. Keywords: music, comparative musicology, ethnomusicology, classification, cultural evolution, human history, universals, biological evolution This is a single-spaced version of the article. The official version with page numbers 148-197 can be viewed at http://aawmjournal.com/articles/2013b/Savage_Brown_AAWM_Vol_2_2.pdf. omparative musicology is the academic comparative musicology and its modern-day discipline devoted to the comparative study successor, ethnomusicology, is too complex to of music. It looks at music (broadly defined) review here. -
Perception of Relative Pitch with Different References: Some Absolute
Perception & Psychophysics 1995. 57 (7). 962-970 Perception ofrelative pitch with different references: Some absolute-pitch listeners can't tell musical interval names KEN'ICHI MIYAZAKI Niigata University, Niigata, Japan 1\\'0 experiments were conducted to examine the effect of absolute-pitch possession on relative pitch processing. Listeners attempted to identify melodic intervals ranging from a semitone to an oc tave with different reference tones. Listeners with absolute pitch showed declined performance when the reference was out-of-tune C,out-of-tune E, or F#, relative to when the reference was C.In contrast, listeners who had no absolute pitch maintained relatively high performance in all reference conditions. These results suggest that absolute-pitch listeners are weak in relative-pitch processing and show a ten dency to rely on absolute pitch in relative-pitch tasks. One ofthe most important areas in our auditory experi erty and could be regarded as a medium in which tonal ence where pitch is used in a highly elaborated manner is patterns occur. music. In music ofthe tonal harmonic idiom, pitch, in as People who have good absolute pitch have been admired sociation with time, provides a tonal space in which as highly talented musicians. Indeed, absolute pitch may melodic and harmonic events occur in a hierarchical man be quite useful in musical practice, particularly when tran ner. Musical tones have different degrees of stability de scribing a heard musical passage into a musical notation or pending on the established tonal context (Lerdahl, 1988; singing a complicated melody at first sight. However, it Piston, 1987). -
Affective Evaluation of Simultaneous Tone Combinations in Congenital Amusia
Neuropsychologia 78 (2015) 207–220 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Affective evaluation of simultaneous tone combinations in congenital amusia Manuela M. Marin a,n, William Forde Thompson b, Bruno Gingras c, Lauren Stewart d,e,nn a Department of Basic Psychological Research and Research Methods, University of Vienna, Liebiggasse 5, A-1010 Vienna, Austria b Centre for Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia c Institute of Psychology, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria d Department of Psychology, Goldsmiths, University of London, New Cross, London, SE14 6NW, United Kingdom e Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark article info abstract Article history: Congenital amusia is a neurodevelopmental disorder characterized by impaired pitch processing. Al- Received 15 August 2014 though pitch simultaneities are among the fundamental building blocks of Western tonal music, affective Received in revised form responses to simultaneities such as isolated dyads varying in consonance/dissonance or chords varying in 27 September 2015 major/minor quality have rarely been studied in amusic individuals. Thirteen amusics and thirteen Accepted 2 October 2015 matched controls enculturated to Western tonal music provided pleasantness ratings of sine-tone dyads Available online 9 October 2015 and complex-tone dyads in piano timbre as well as perceived happiness/sadness ratings of sine-tone Keywords: triads and complex-tone triads in piano timbre. Acoustical analyses of roughness and harmonicity were Consonance conducted to determine whether similar acoustic information contributed to these evaluations in Emotion amusics and controls. -
Absolute Pitch
EXPLORING THE SELF-CONCEPT AND IDENTITY OF SYDNEY CONSERVATORIUM STUDENTS WITH AND WITHOUT ABSOLUTE PITCH. Julie O’Connor A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Music (Music Education) (Honours), Sydney Conservatorium of Music, University of Sydney. 2006 ii Abstract Absolute Pitch (AP) is the ability to identify pitches without external references (Parncutt & Levitin, 2001). It is a rare ability that is more prevalent among musicians. This qualitative study explored the perceptions of Sydney Conservatorium of Music students through interviews, focusing on the value of AP possession, and implications for music self-concept. The study involved 12 Conservatorium University and High School students; six participants were self- nominated absolute pitch possessors, and the remaining six were categorised as relative pitch (RP) users. Through discussions of the value, prevalence and practicality of AP, the data suggested that AP is a highly desirable ability among Conservatorium students, and particularly valued by those who possess it. The results also suggested that RP students tend to have less positive self-concepts in aural perception and music theory, while having more positive self-concepts in other musical arenas. The majority of the AP participants had a desire to become a solo performer, and the RP participants’ tended to plan broader musical goals such as combining teaching and ensemble performance. These results suggested that the possession of AP has had a significant effect on the identity of these individuals. iii Acknowledgements First and foremost, I would like to thank my supervisor, James Renwick, whose insightful advice (and subtle pushing) inspired and motivated me throughout the study.