The impact of climate change on lakes in Central Europe

Martin T. Dokulil Contributors • Katrin Teubner, Vienna, • Alfred Jagsch, , Austria • Ulrike Nickus, Innsbruck, Austria • Rita Adrian, Berlin, Germany • Dietmar Straile, Konstanz, Germany • David Livingstone, Zürich, Switzerland • Thomas Jankowski, Zürich, Switzerland • Alois Herzig, Illmitz, Austria • Judit Padisák, Veszprem, Hungary EC-projects CLIME & REFLECT Layout

• Setting the stage • Describing climatic changes • Defining the actors • Indices (NAO, AO, MOI, RI) • Impacts on temperature, stability and timing • Regional coherence • Chemical and biological effects • Summary • References Central Europe Climate change in progress 1940 Pasterze and Großglockner Austria

2003

www.gletscherarchiv.de © Gesellschaft für ökologische Forschung / Wolfgang Zängl Climate Scenarios Central Europe © Samuelson Patrick Climate Diagrams

From Mühr (2006) http://www.klimadiagramme.de Temperature Anomalies, IPCC BP

1.5

1 Alps

0.5

Global 0

-0.5 T from 1961 [°C] - 1990 1961 T from Δ Modified from BenistonModified (1997) -1

-1.5 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Prognosis for the Alps

Temperature increase is estimated to range between 2-4°C with higher winter temperatures and more marked increase in summer From: Kromp-Kolb, H. & Formayer, H. (2001) - Austria Klimaänderungen in Bayern (1999) - Bavaria Beniston, M. (2004) - Switzerland

Changes in the pattern of precipitation may have an even greater impact than rising temperatures. A 10% decline in precipitation in the Alps plus a 1-2°C rise in temperature could produce a 40-70% reduction in runoff. Ecological zones will tend to move uphill. From: Unit on Climate Change (IUCC), UNEP, Switzerland Perialpine Lakes

Ammersee Skg LD

Neusiedler See L. Constance

Carinthian LD http://visibleearth.nasa.gov Balaton

20.12.2003, 12:05 Location of lakes in Central Europe

Neusiedlersee Balaton Satellite image of

Mattsee Irrsee Attersee Traunsee Wallersee Mondsee

Fuschlsee Wolfgangsee

Altausser see Grundlsee Hallstättersee Images of lakes

Müggelsee

Lake Constance Walensee

Zürichsee Neusiedlersee Fertö

Lake Geneva

Not to Scale! Balaton Morphometry of selected Lakes

Geographical Altitude Area Z Z Volume Tw Catchment Lake Country max avg Position [m] [km²] [m] [m] [106 m3] [y] area [km²]

L. Constance, LC A/CH/D 47.39N/09.18E 395.0 472.00 253.0 101.0 47,600 4.2 11890.0 Zürichsee, LZ CH 47.20N/08.35E 406.0 67.00 140.0 49.0 29 1.2 1740 Walensee, WS CH 47.10N/09.15E 419.0 24.00 151.0 105.0 25 1.4 1061.0 L. Geneva, LL CH/F 46.27N/06.32E 372.0 582.00 309.0 152.0 89,000 11.4 7395.0 Mondsee, MO A 47.48N/13.24E 481.0 14.21 68.3 36.0 510 1.7 247.0 Attersee, AS A 47.48N/13.30E 469.2 45.90 170.6 84.2 3,945 7.0 463.5 Hallstättersee, HS A 47.36N/13.42E 508.0 8.58 125.2 64.9 557 0.5 646.5 Traunsee, TS A 47.53N/13.48E 422.0 25.60 191.0 89.7 2,302 1.0 1417.0 NAO vs. Met data

2.0 600 Air temperature Precipitation 1.5 r² = 0.32*** r² = - 0.35*** P = 0.0039; n = 24 400 P = 0.0031; n = 24 1.0

0.5 200

0.0

0 -0.5

-1.0 -200 -1.5 Annaual mean deviation [°C] Annual mean deviation [mm] deviation mean Annual

-2.0 -400 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

] Annual NAO Index Annual NAO Index 120 12 -2 100 Insolation, TIR 10 Water level 80 r² = 0.28* 8 r² = - 0.18 P = 0.0202; n = 19 P = 0.049; n = 21 60 6

40 4

20 2

0 0

-20 -2

-40 -4

-60 -6

-80 [cm] deviation mean Annual -8

-100 -10 Annual mean deviation [Joule.cm -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Annual NAO Index Annual NAO Index LST in Mondsee

30 Avg 1982-1996 2000 2001 25 2002 2003 IPCC 1961-1990

20

15

10

Lake Surface Temperature [°C] 5

0 JFMAMJJASOND Month NAOWinter vs. Air & LST From Livingstone & Dokulil (2001) L & O 46, 1220-1227 Coefficient of determination (r²Coefficient of %) NAOWinter vs. LST

50 50 50 Altausseer See Grundlsee Irrsee 40 40 40

30 30 30

20 20 20

10 10 10 P<0.05 0 0 0

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND

50 50 50 Mattsee Wallersee Holzöstersee 40 40 40

30 30 30

20 20 20

10 10 10

0 0 0

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND

50 50 50 Neusiedlersee Millstättersee Ossiachersee Coefficient of determination (r²Coefficient of %) 40 40 40

30 30 30

20 20 20

10 10 10

0 0 0 J FMAMJJ ASOND JFMAMJJASOND J FMAMJJASOND MOIWinter vs. LST & Ice cover

40

30

20 r² (%) 10

0 JFMAMJJASOND

Lake Ice NAO AO MOI Müggelsee Duration -0.762*** -0.612*** n.s. Ice-off -0.609*** -0.504* n.s. Irrsee Duration -0.494*** -0.410*** n.s. Ice-off -0.671*** -0.330* n.s. Mondsee Duration -0.570** -0.443* n.s. Mediterranean Oscillation Index Mediterranean Ice-off -0.724** -0.774** n.s. Neusiedler See Duration -0.451* n.s. -0.503* Ice-off -0.511** -0.461* -0.650** Balaton Duration -0.261* n.s. -0.381* Ice-off -0.528*** -0.323** -0.486**

NAO vs Chl-a spring peak

160 r = - 0.68*** p < 0.001; n = 23 140

120

100 Mondsee

80 Timing of chl-a spring peak [days] of chl-a Timing 60 -2-1012345

NAOJF Index On average, the chlorophyll-a spring peak has shifted earlier by about 48 days Onset of stratification

170

160 150 data are detrended 140

130 JD onset stratification JD

120 From 1980 1985 1990 1995 2000 2005 Teubner et al., in prep. Years

NAOJFM Steinacker-NMAM Mondsee

20 30

r ²=0.35 20 r ²=0.57 10

10 0

0

-10 -10

-20 -20

-30 -30 -4 -3 -2 -1 0 1 2 3 4 -4 -2 0 2 4 6 JD onset stratifi cation detrended JD onset stratification detrended NAOJFM index detrended Steinacker-NgrossMAM index detrended Thermal stability

160 r = - 0.57*** p < 0.001; n = 30 150

140

130 260 r = 0.65*** p < 0.001; n = 30 120 240

110 220 Mondsee Timing of stability onset [day] onset stability Timing of 100 200 90 -6 -4 -2 0 2 4 6 180 NAOJFM Index

160 Timing of maximum stability [day] Timing of maximum stability

140 -6 -4 -2 0 2 4 6

NAOJFM Index Regional Index (RI)

10 weather types: -8 flow patterns (NW, N, NE, E, SE, S, SW, W): based on the prevailing air flow across the Central Eastern Alps

Examples for the -‘High pressure’ type 8 flow types (H): weak pressure (European Meteorological gradient, wind velocity Bulletin, 12 UTC, 850 hPa) < 15 knots -‘Variable’ type days with a marked change of flow direction (generally due to frontal passage) Regional Index (RI)

R2 > 0.2 coloured: + correlation RED - correlation BLUE

From Nickus & Thies (2004)

• Winter (Dec to Mar) -No significant signal of NAO in LST -Weak correlation of distinct weather patterns with LST -No correlation at Piburger See due to ice cover • Summer (May to Oct) -Significant correlation between weather patterns (North and South) and LST (p <0.001) Northerly vs. LST

Bodensee Zellersee Holzöstersee Mattsee Wallersee 60 60 60 60 60

50 50 50 50 50

40 40 40 40 40

30 30 30 30 30

20 20 20 20 20

10 10 10 10 10

0 0 0 0 0

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND

Fuschlsee Irrsee Mondsee Attersee Neusiedlersee 60 60 60 60 60

50 50 50 50 50

40 40 40 40 40

30 30 30 30 30

20 20 20 20 20

10 10 10 10 10

0 0 0 0 0

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND

Grundlsee Altausseer See Hallstättersee Wolfgangsee Traunsee 60 60 60 60 60

Coefficient of determination (r²Coefficient of %) 50 50 50 50 50

40 40 40 40 40

30 30 30 30 30 y 20 20 20 20 20

10 10 10 10 10

0 0 0 0 0

J FMAMJ J ASOND JFMAMJJASOND J FMAMJ J ASOND JFMAMJ JASOND J FMAMJ J ASOND Deep water temperatures

HS MO (LC) Ammersee (AM)

5 5 5

5

4 4 100m 60m

Hypolimnetic temperature [°C] 80m 40m 200m 70m 4 50m 100m 250m 80m 120m 60m 4 1970 1980 1990 2000 1985 1990 1995 2000 1970 1980 1990 2000 1970 1980 1990 2000 5 TS AS Zürichsee (LZ) Walensee (WS)

5 6 5

5 From Dokulil et al.( 2006) 100m 100m Hypolimnetic temperature [°C] Hypolimnetic 4 60m 60m 140m 120m 4 100m 100m 190m 160m 130m 140m 4 1970 1980 1990 2000 1970 1980 1990 2000 1985 1990 1995 2000 1985 1990 1995 2000 Deep water temperatures

50

40 Lake Geneva Lake Constance 30 100 100 (%)

2 r 20 200 200

300 250 10 p<0.05 0 0 5 10 15 20 25 0 5 10 15 20 25 h n d r c n te ri t raun Mondsee eneva Mo A T Traunsee G Zü Wale Ammer Constance Hallstätter Depth (m) 40 100

50 120

From Dokulil et al.( 2006) 60 140

0 1020304050 0 1020304050 Increase in deep water temperature r2 (%) r2 (%) related to the mean NAO Jan - May

The signal fades with depth Deep water temperature and oxygen Lake Constance From Straile et al. (2003) Coherence between lakes

Irrsee 0.36 (Ir) Attersee 66 0.60 Mondsee (At) 0. (Mo) 0.30 0.59 0.40 Fuschlsee 0.55 Traunsee (Fu) 0.44 0.36 (Tr)

Wolfgangsee 0.65 (Wo) 0.45 Hallstättersee (Ha) From Dokulil & Teubner (2002) Verh. Int. Verein. Limnol. 28, 1861-1864 Coherence Coherence: Cascading effect

Coherence From: Dokulil & Teubner (2002) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Physical Chemical Verh. Int.Verein. Limnol. 28, 1861-1864 Nutrients Biological Nutrients TP & Phytoplankton richness

From Jankowski, subm.

R / TPw Walensee upper Zürichsee Bodensee lower Zürichsee Greifensee r = -0.73 r = -0.71 r = -0.77 n 2 3 r = -0.82 3 2 2 p = 0.0001 r = -0.90

o p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 t k

n 0

a 0 0 l

p 0 0 o t richness y

h -2

p -3 -2 -2 -3 040 050 10 50 0 100 20 120 0 winter phosphorus concentration [mg-3 m ] R / NAOw detrended 3 .8 2 2 r = -0.58 2 r = -0.43 r = -0.29 r = -0.19 r = 0.03 p = 0.002 p = 0.03 s l

a 0

u 0 0

d 0 i 0 richness res -2 -2 -1 -2 Swiss lakes phytoplankton -1 -6 40 -6 40 -6 40 -6 40 -6 40

residuals NAOw Phytoplankton growth

Balaton

30

25

20

15

10 From Padisák (1998)

5 Aug-Sept Cylindrospermopsis avg. biomass mg / L mg / biomass avg. Aug-Sept Cylindrospermopsis 0

-20246 Temperature deviation from mean (°C) coherenceEcosystem level Cascading effect From: Straile (2000) Oecologia 122 (2000) Oecologia From: Straile Limnologie ÖAW Summary 1 Limnologie ÖAW ™ Air temperature will drastically increase during summer ™ Precipitation will decrease Æ wet now, dry in the future ™ More run-off during winter ™ Number of extreme events will increase ™ Earlier ice off and shorter duration ™ Lake surface temperature (LST) will increase by about 4°C ™ Deep water temperatures (DWT) increase by about 0.1- 0.2°C per decade (PROBE modeled HCA2 ~ 0.5°C)

™ Higher DWT Æ lower O2 concentrations, higher P release ™ Length of stratification will increase ™ Central Europe affected mainly by the NAO but also from the AO and, in more continental situations by the MO Summary 2 Limnologie ÖAW high NAO Biological Effects

increased air temperature earlier phytoplankton spring peak mismatch between chla and TP higher insolation later peak of TP reduced species diversity lower precipitation disruption of the linkage between Phyto- and zooplankton water level decrease fish larvae prone to mismatch the dynamics of their food Selected References Limnologie ÖAW Dokulil, M.T., Jagsch, A., George, G.D., Anneville, A., Jankowski, T., Wahl, B., Lenhart, B., Blenckner, T. & Teubner, K., 2006. Twenty years of spatially coherent deep-water warming in lakes across Europe related to the North Atlantic Oscillation, Limnology & Oceanography 51, 2787-2793. Dokulil, M.T., Teubner, K., & Jagsch, A., 2006. Climate change affecting hypolimnetic water temperatures in deep alpine lakes. Verh. Internat. Verein. Limnol. 29, 1285-1288. Dokulil, M.T. & Teubner, K., 2005. The global warming versus re-oligotrophication controversy in lakes: Can effects on phytoplankton be disentangled? Phycologia 44 (Suppl.), 28-29. Dokulil, M.T. & Teubner, K., 2003. Klimaeinflüsse auf Seen in Europa (CLIME). Österreichs Fischerei 56, 176-180. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57, 203-225. Livingstone, D. M. & Dokulil, M. T., 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology & Oceanography 46, 1220-1227. Nickus, U. & Thies, H., 2004. Climate signals in alpine lakes – from large scale North Atlantic Oscillation to regional weather patterns. Poster, SIL Conference, Lahti. Nickus, U., Thies, H., Pierson, D., Schneiderman, E., Moore, K. & Samuelsson, P., 2005. Lake watershed modelling in the Austrian Alps under present and predicted future climate. Poster, Climate change & Mountains Conference, Perth. Straile, D., 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122, 44-50. Straile, D., Jöhnk, K. & Rossknecht, H., 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology & Oceanography 48, 1432-1438. Teubner, K., Tolotti, M., Greisberger, S., Morscheid, H., Dokulil, M.T. & Kucklentz, V. 2006. Steady state of phytoplankton and implications for climatic changes in a deep pre-alpine lake: epilimnetic versus metalimnetic assemblages. Verh. Internat. Verein. Limnol. 29, 1688-1692.