Tribological Characterization of Reptile Scales and Their Application As Technical Surfaces with Tunable Friction Anisotropy

Total Page:16

File Type:pdf, Size:1020Kb

Tribological Characterization of Reptile Scales and Their Application As Technical Surfaces with Tunable Friction Anisotropy Tribological characterization of reptile scales and their application as technical surfaces with tunable friction anisotropy Zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften von der KIT-Fakultät für Maschinenbau des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von M.Eng. Weibin Wu Tag der mündlichen Prüfung: 25. September 2020 Hauptreferent: apl. Prof. Dr. Hendrik Hölscher Korreferenten: Prof. Dr. Manfred Kohl Prof. Dr. André Schirmeisen Abstract Some reptiles surprise humans with excellent tribological properties in terms of adhesion, friction, and wear, which originate from the long time of evolution in their respective living environment. Mimicking these unique tribological properties enables researchers to develop reptile-inspired surfaces with similar or even more advanced abilities. Thus, studying the tribological properties of reptiles as well as transferring their design to the artificial surfaces are of great importance for finding new solutions to engineering prob- lems which are related to friction and wear. After a brief introduction into the topic and a short recall of the applied methodologies, four chapters of this thesis deal with different aspects of reptile scales. Chapter 3 focuses on the sandfish (Scincus scincus), which is widely known for its special ability to swim in loose, aeolian sand without noticeable wear on its scales. The microscopic structural and tribological properties of single sandfish scales are characterized by atomic force microscopy (AFM) with various types of probe including sharp silicon tips, spherical glass tips, and sand debris. Snake scales together with several technical surfaces are also analyzed for compari- son. The experimental analysis demonstrates that scales of sandfish and snakes show lower friction coeffi- cients than most technical surfaces. However, their adhesion and abrasion resistant properties are not supe- rior to those of technical surfaces. Sandfish scales do not show any exceptional tribological properties if compared to snake scales. Other reasons such as the elastic properties of its epidermis or the dynamics of its locomotion are supposed to be responsible for the observed low wear rates of sandfish scales during the sand swimming. The multi-functionality of the scales from different regions of the snake bodies (i.e. dorsal, ventral, and spectacle scales) are investigated in the next chapter. For an individual snake species, the micro-ornamen- tations on these three types of scales were found to be very different. The dorsal scales of different snake species feature diverse microstructures. However, the ventral scales of most investigated snakes show very similar oriented micro-fibril structures, and the spectacle scales demonstrate stitching polygon like struc- tures. Characterization of the cross sectional architecture indicates stacked, layered structures on snake scales of all body regions. Ventral scales are nearly three times as thick as dorsal scales of the same species. Wettability, adhesion force, and spectral transmittance property were characterized and correlated with the micro-ornamentations on the scales. Dorsal scales are considered as the self-cleaning surface and light scattering filter to protect snakes from contamination and solar radiation. Spectacle snake scales sacrifice self-cleaning capability for obtaining high spectral transmittance in visible light and near-infrared spectrum. They can also block harmful ultraviolet light. Although displaying similar wettability and spectral trans- mitting ability as spectacle scales, ventral scales are widely accepted as a frictional component for optimiz- ing the locomotion performances of snakes. The fifth chapter deals with the frictional anisotropy of snake and sandfish scales. A sharp AFM tip scan- ning along the micro-fibril structures on ventral snake scales (i.e. upward and downward the nano-steps at the fibril ends) reveals significant friction anisotropy. Scanning up and down the nano-step structures of dorsal sandfish scales shows the same effect. The friction for an AFM tip scanning upward a nano-step increases significantly with the step height, while the increase is not apparent for downward scans. This effect leads to a nano-step height dependent friction anisotropy. A larger step height causes a larger friction anisotropy. With the micro-fibrils pointing towards the tail, snakes move much easier in forward than back- ward direction, which is favorable for them when climbing slops. The same effect is also found on a poly- meric replica of N. atra ventral scale. Experiments with micro-tribometer coincide with the above results. More interestingly, snakes vary nano-step height and therefore the subsequent friction anisotropy in differ- ent segments of their bodies. A general distribution pattern of friction anisotropy is observed along the body i Abstract of the examined snakes, i.e., larger friction anisotropy in the middle and tail section than in the other areas. Snakes might benefit from such design to realize optimized frictional performances during locomotion. Inspired by the step height dependent friction anisotropy found on the ventral scales of snakes, a tunable friction anisotropy surface was fabricated with shape memory polymers (SMPs) via hot embossing in Chap- ter 6. The shape memory effect of the polymers enables the surface to reversibly switch between a flattened topography and a micro-fibril structured topography, resulting in tunable anisotropic friction along the mi- cro-fibrils. AFM characterization shows that the shape-changing capability in terms of nano-step height and friction anisotropy can reach up to nearly 1000% and 300%, respectively. Moreover, the SMP topog- raphy recovers continuously and controllably with heating time allowing it to achieve desired step height and friction anisotropy on the surface by abruptly terminating the heating before full recovery. Long-term stability and reusability tests reveal that, at any arbitrary stage of the SMP programming/recovery cycle, the step height at the micro-fibril ends is highly stable in three months or after eleven programming cycles. Finally, the tunable friction anisotropy surface was utilized as a functional platform for unidirectional transport of micro-particles. As an example, a single PDMS microsphere was unidirectionally transported for nearly 5 mm on the structured SMP surface, while no significant movement (less than 0.1 mm) was observed on the flattened surface. The structured surface can also simultaneously transport many micro- spheres or micro sand particles towards a desired direction. This mechanism provides a promising prospect for applications such as dry self-cleaning coatings without liquids or particles sorting or separation devices. ii Kurzfassung Einige Reptilien überraschen den Menschen mit hervorragenden tribologischen Eigenschaften in Bezug auf Adhäsion, Reibung und Verschleiß, die aus der langen Entwicklungszeit in ihrem jeweiligen Lebensumfeld stammen. Durch die Nachahmung dieser einzigartigen tribologischen Eigenschaften können Forscher von Reptilien inspirierte Oberflächen mit ähnlichen oder noch fortgeschritteneren Fähigkeiten entwickeln. Daher sind Versuche, die tribologischen Eigenschaften von Reptilien zu untersuchen und sie auf künstliche Oberflächen zu übertragen, von großer Bedeutung, um neue Lösungen für technische Probleme zu finden, die mit Reibung und Verschleiß zusammenhängen. Nach einer kurzen Einführung in das Thema und einem kurzen Rückblick auf die angewandten Methoden befassen sich vier Kapitel dieser Arbeit mit verschiedenen Aspekten der Reptilienschuppen. Kapitel 3 konzentriert sich auf den Sandfisch (Scincus scincus), welcher weithin bekannt ist für seine besondere Fähigkeit, in lockerem, äolischem Sand zu schwimmen, ohne dass sich die Schuppen merklich abnutzen. Diese Arbeit charakterisiert die mikroskopischen strukturellen und tribologischen Eigenschaften einzelner Sandfischschuppen durch Rasterkraftmikroskopie (AFM) mit verschiedenen Arten von Sonden, einschließlich scharfer Siliziumspitzen, kugelförmiger Glasspitzen und Sandtrümmern. Zum Vergleich wurden auch Schlangenschuppen zusammen mit mehreren technischen Oberflächen analysiert. Die experimentelle Analyse zeigt, dass Schuppen von Sandfischen und Schlangen niedrigere Reibungskoeffizienten aufweisen als die meisten technischen Oberflächen. Jedoch sind Ihre Haft- und Abriebfestigkeitseigenschaften denen technischer Oberflächen nicht überlegen. Sandfischschuppen zeigen im Vergleich zu Schlangenschuppen keine außergewöhnlichen tribologischen Eigenschaften. Andere Gründe wie die elastischen Eigenschaften der Epidermis oder die Dynamik der Fortbewegung sollen für die beobachteten geringen Verschleißraten der Sandfischschuppen während dem „schwimmen“ durch den Sand verantwortlich sein. Die Multifunktionalität der Schuppen aus verschiedenen Regionen der Schlangenkörper (d. h. dorsale, ventrale, und Brillenschuppen) werden im nächsten Kapitel untersucht. Die Mikroornamente auf diesen drei Arten von Schuppen war für eine Schlange sehr unterschiedlich. Die Rückenschuppen verschiedener Schlangenarten weisen unterschiedliche Mikrostrukturen auf. Jedoch zeigen die ventralen Schuppen der meisten untersuchten Schlangen sehr ähnlich ausgerichtete Mikrofibrillenstrukturen auf, und die Brillenschuppen besitzen nähende polygonartige Strukturen. Die Charakterisierung der Querschnittsarchitektur zeigt, dass gestapelte Schichtstrukturen auf Schlangenschuppen in allen Körperregionen
Recommended publications
  • A Review of Southern Iraq Herpetofauna
    Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species.
    [Show full text]
  • Trade-Offs Between Burrowing and Biting Force in Fossorial Scincid Lizards?
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, XX, 1–10. With 2 figures. Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa031/5839769 by Museum National d'Histoire Naturelle user on 19 May 2020 Trade-offs between burrowing and biting force in fossorial scincid lizards? MARGOT LE GUILLOUX1, AURÉLIEN MIRALLES2, JOHN MEASEY3, BIEKE VANHOOYDONCK4, JAMES C. O’REILLY5, AURÉLIEN LOWIE6, and ANTHONY HERREL1,4,6,*, 1UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, 55 rue Buffon, 75005, Paris, France 2Institut de Systématique, Evolution, Biodiversité, (UMR 7205 Muséum national d’Histoire naturelle, CNRS UPMC EPHE, Sorbonne Universités), CP30, 25 rue Cuvier 75005, Paris, France 3Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa 4Deparment of Biology, University of Antwerp, Universiteitsplein 1, B2610 Antwerpen, Belgium 5Department of Biomedical Sciences, Ohio University, Cleveland Campus, SPS-334C, Cleveland, 45701 Ohio, USA 6Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Received 27 December 2019; revised 17 February 2020; accepted for publication 19 February 2020 Trade-offs are thought to be important in constraining evolutionary divergence as they may limit phenotypic diversification. The cranial system plays a vital role in many functions including defensive, territorial, predatory and feeding behaviours in addition to housing the brain and sensory systems. Consequently, the morphology of the cranial system is affected by a combination of selective pressures that may induce functional trade-offs.
    [Show full text]
  • Tribological Analysis of Ventral Scale Structure in a Python Regius in Relation to Laser Textured Surfaces H
    Tribological Analysis of Ventral Scale Structure in a Python Regius in Relation to Laser Textured Surfaces H. A. Abdel-Aal* Arts et Métiers ParisTech, LMPF-EA4106, Rue Saint Dominique BP 508, 51006, Châlons-en-Champagne, France *[email protected] M. El Mansori Ecole Nationale Supérieure d'Arts et Métiers, 151 Boulevard de l'Hôpital, 75013 PARIS, France ABSTRACT Laser Texturing is one of the leading technologies applied to modify surface topography. To date, however, a standardized procedure to generate deterministic textures is virtually non- existent. In nature, especially in squamata, there are many examples of deterministic structured textures that allow species to control friction and condition their tribological response for efficient function. In this work, we draw a comparison between industrial surfaces and reptilian surfaces. We chose the python regius species as a bio-analogue with a deterministic surface. We first study the structural make up of the ventral scales of the snake (both construction and metrology). We further compare the metrological features of the ventral scales to experimentally recommended performance indicators of industrial surfaces extracted from open literature. The results indicate the feasibility of engineering a Laser Textured Surface based on the reptilian ornamentation constructs. It is shown that the metrological features, key to efficient function of a rubbing deterministic surface, are already optimized in the reptile. We further show that optimization in reptilian surfaces is based on synchronizing surface form, textures and aspects to condition the frictional response. Mimicking reptilian surfaces, we argue, may form a design methodology potentially capable of generating advanced deterministic surface constructs capable of efficient tribological function.
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Species Identification of Shed Snake Skins in Taiwan and Adjacent Islands
    Zoological Studies 56: 38 (2017) doi:10.6620/ZS.2017.56-38 Open Access Species Identification of Shed Snake Skins in Taiwan and Adjacent Islands Tein-Shun Tsai1,* and Jean-Jay Mao2 1Department of Biological Science and Technology, National Pingtung University of Science and Technology 1 Shuefu Road, Neipu, Pingtung 912, Taiwan 2Department of Forestry and Natural Resources, National Ilan University No.1, Sec. 1, Shennong Rd., Yilan City, Yilan County 260, Taiwan. E-mail: [email protected] (Received 28 August 2017; Accepted 25 November 2017; Published 19 December 2017; Communicated by Jian-Nan Liu) Tein-Shun Tsai and Jean-Jay Mao (2017) Shed snake skins have many applications for humans and other animals, and can provide much useful information to a field survey. When properly prepared and identified, a shed snake skin can be used as an important voucher; the morphological descriptions of the shed skins may be critical for taxonomic research, as well as studies of snake ecology and conservation. However, few convenient/ expeditious methods or techniques to identify shed snake skins in specific areas have been developed. In this study, we collected and examined a total of 1,260 shed skin samples - including 322 samples from neonates/ juveniles and 938 from subadults/adults - from 53 snake species in Taiwan and adjacent islands, and developed the first guide to identify them. To the naked eye or from scanned images, the sheds of almost all species could be identified if most of the shed was collected. The key features that aided in identification included the patterns on the sheds and scale morphology.
    [Show full text]
  • History and Function of Scale Microornamentation in Lacertid Lizards
    JOURNALOFMORPHOLOGY252:145–169(2002) HistoryandFunctionofScaleMicroornamentation inLacertidLizards E.N.Arnold* NaturalHistoryMuseum,CromwellRoad,LondonSW75BD,UK ABSTRACTDifferencesinsurfacestructure(ober- mostfrequentlyinformsfromdryhabitatsorformsthat hautchen)ofbodyscalesoflacertidlizardsinvolvecell climbinvegetationawayfromtheground,situations size,shapeandsurfaceprofile,presenceorabsenceoffine wheredirtadhesionislessofaproblem.Microornamen- pitting,formofcellmargins,andtheoccurrenceoflongi- tationdifferencesinvolvingotherpartsofthebodyand tudinalridgesandpustularprojections.Phylogeneticin- othersquamategroupstendtocorroboratethisfunctional formationindicatesthattheprimitivepatterninvolved interpretation.Microornamentationfeaturescandevelop narrowstrap-shapedcells,withlowposteriorlyoverlap- onlineagesindifferentordersandappeartoactadditively pingedgesandrelativelysmoothsurfaces.Deviations inreducingshine.Insomecasesdifferentcombinations fromthisconditionproduceamoresculpturedsurfaceand maybeoptimalsolutionsinparticularenvironments,but havedevelopedmanytimes,althoughsubsequentovert lineageeffects,suchaslimitedreversibilityanddifferent reversalsareuncommon.Likevariationsinscaleshape, developmentalproclivities,mayalsobeimportantintheir differentpatternsofdorsalbodymicroornamentationap- peartoconferdifferentandconflictingperformancead- genesis.Thefinepitsoftenfoundoncellsurfacesare vantages.Theprimitivepatternmayreducefrictiondur- unconnectedwithshinereduction,astheyaresmaller inglocomotionandalsoenhancesdirtshedding,especially thanthewavelengthsofmostvisiblelight.J.Morphol.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Contents Herpetological Journal
    British Herpetological Society Herpetological Journal Volume 31, Number 3, 2021 Contents Full papers Killing them softly: a review on snake translocation and an Australian case study 118-131 Jari Cornelis, Tom Parkin & Philip W. Bateman Potential distribution of the endemic Short-tailed ground agama Calotes minor (Hardwicke & Gray, 132-141 1827) in drylands of the Indian sub-continent Ashish Kumar Jangid, Gandla Chethan Kumar, Chandra Prakash Singh & Monika Böhm Repeated use of high risk nesting areas in the European whip snake, Hierophis viridiflavus 142-150 Xavier Bonnet, Jean-Marie Ballouard, Gopal Billy & Roger Meek The Herpetological Journal is published quarterly by Reproductive characteristics, diet composition and fat reserves of nose-horned vipers (Vipera 151-161 the British Herpetological Society and is issued free to ammodytes) members. Articles are listed in Current Awareness in Marko Anđelković, Sonja Nikolić & Ljiljana Tomović Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase New evidence for distinctiveness of the island-endemic Príncipe giant tree frog (Arthroleptidae: 162-169 copies and/or for details of membership should be made Leptopelis palmatus) to the Hon. Secretary, British Herpetological Society, The Kyle E. Jaynes, Edward A. Myers, Robert C. Drewes & Rayna C. Bell Zoological Society of London, Regent’s Park, London, NW1 4RY, UK. Instructions to authors are printed inside the Description of the tadpole of Cruziohyla calcarifer (Boulenger, 1902) (Amphibia, Anura, 170-176 back cover. All contributions should be addressed to the Phyllomedusidae) Scientific Editor. Andrew R. Gray, Konstantin Taupp, Loic Denès, Franziska Elsner-Gearing & David Bewick A new species of Bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus Gray, 1827) from the Garo 177-196 Hills, Meghalaya State, north-east India, and discussion of morphological variation for C.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Comparative Study of the Osteology and Locomotion of Some Reptilian Species
    International Journal Of Biology and Biological Sciences Vol. 2(3), pp. 040-058, March 2013 Available online at http://academeresearchjournals.org/journal/ijbbs ISSN 2327-3062 ©2013 Academe Research Journals Full Length Research Paper Comparative study of the osteology and locomotion of some reptilian species Ahlam M. El-Bakry2*, Ahmed M. Abdeen1 and Rasha E. Abo-Eleneen2 1Department of Zoology, Faculty of Science, Mansoura University, Egypt. 2 Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. Accepted 31 January, 2013 The aim of this study is to show the osteological characters of the fore- and hind-limbs and the locomotion features in some reptilian species: Laudakia stellio, Hemidactylus turcicus, Acanthodatylus scutellatus, Chalcides ocellatus, Chamaeleo chamaeleon, collected from different localities from Egypt desert and Varanus griseus from lake Nassir in Egypt. In the studied species, the fore- and hind-feet show wide range of variations and modifications as they play very important roles in the process of jumping, climbing and digging which suit their habitats and their mode of life. The skeletal elements of the hand and foot exhibit several features reflecting the specialized methods of locomotion, and are related to the remarkable adaptations. Locomotion is a fundamental skill for animals. The animals of the present studies can take various forms including swimming, walking as well as some more idiosyncratic gaits such as hopping and burrowing. Key words: Lizards, osteology, limbs, locomotion. INTRODUCTION In vertebrates, the appendicular skeleton provides (Robinson, 1975). In the markedly asymmetrical foot of leverage for locomotion and support on land (Alexander, most lizards, digits one to four of the pes are essentially 1994).
    [Show full text]
  • AG-472-02 Snakes
    Snakes Contents Intro ........................................................................................................................................................................................................................1 What are Snakes? ...............................................................1 Biology of Snakes ...............................................................1 Why are Snakes Important? ............................................1 People and Snakes ............................................................3 Where are Snakes? ............................................................1 Managing Snakes ...............................................................3 Family Colubridae ...............................................................................................................................................................................................5 Eastern Worm Snake—Harmless .................................5 Red-Bellied Water Snake—Harmless ....................... 11 Scarlet Snake—Harmless ................................................5 Banded Water Snake—Harmless ............................... 11 Black Racer—Harmless ....................................................5 Northern Water Snake—Harmless ............................12 Ring-Necked Snake—Harmless ....................................6 Brown Water Snake—Harmless .................................12 Mud Snake—Harmless ....................................................6 Rough Green Snake—Harmless .................................12
    [Show full text]