5 Colour Constancy

Total Page:16

File Type:pdf, Size:1020Kb

5 Colour Constancy Human colour perception. A psychophysical study of human colour perception for real and computer- simulated two-dimensional and three-dimensional objects. Item Type Thesis Authors Hedrich, Monika Rights <a rel="license" href="http://creativecommons.org/licenses/ by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by- nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http:// creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. Download date 04/10/2021 11:53:02 Link to Item http://hdl.handle.net/10454/4304 1 Table of contents 1 INTRODUCTION .................................................................................................... 6 1.1 OVERVIEW OF THE FOLLOWING CHAPTERS......................................................... 8 2 PHYSIOLOGY OF COLOUR VISION .................................................................. 10 2.1 THEORIES OF COLOUR VISION ......................................................................... 15 3 COLOUR SPACES .............................................................................................. 17 3.1 INTRODUCTION ............................................................................................... 17 3.1.1 Arranging colour in a three-dimensional space......................................... 18 3.2 DEVELOPMENT OF THE CIE 1931 XYZ COLOUR SPACE.................................... 19 3.2.1 Metamers.................................................................................................. 22 3.2.2 Blackbody locus........................................................................................ 22 3.3 CIE 1976 L*A*B* ............................................................................................ 23 3.4 NATURAL COLOR SYSTEM .............................................................................. 26 3.4.1 NCS colour space..................................................................................... 26 3.4.2 Colour notation ......................................................................................... 28 3.5 RGB COLOUR SPACE...................................................................................... 29 3.6 COLOUR APPEARANCE MODELS....................................................................... 30 4 COLOUR MEMORY............................................................................................. 32 4.1 INTRODUCTION TO MEMORY ............................................................................ 32 4.2 INTRODUCTION TO COLOUR MEMORY............................................................... 33 4.3 COLOUR MEMORY OVER TIME.......................................................................... 35 4.3.1 Summary .................................................................................................. 39 4.4 MEMORY COLOURS FOR FAMILIAR OBJECTS..................................................... 42 4.5 RELATION BETWEEN COLOUR TERMS AND COLOUR MEMORY ............................ 49 4.6 GENERAL SUMMARY ....................................................................................... 51 4.6.1 Measuring colour memory ........................................................................ 53 4.6.2 Shifts in colour memory ............................................................................ 53 5 COLOUR CONSTANCY ...................................................................................... 55 5.1 INTRODUCTION ............................................................................................... 55 5.1.1 Discriminating illuminant and surface changes......................................... 56 5.1.2 Why should the visual system be colour constant? .................................. 57 2 5.1.3 Overview of the chapter............................................................................ 58 5.2 METHODS OF MEASURING COLOUR CONSTANCY .............................................. 59 5.2.1 Matching to an internal standard .............................................................. 59 5.2.2 Asymmetric colour matching..................................................................... 60 5.2.3 Colour naming .......................................................................................... 60 5.2.4 Instructions ............................................................................................... 61 5.3 MECHANISMS AND CUES CONTRIBUTING TO COLOUR CONSTANCY .................... 62 5.3.1 Chromatic adaptation................................................................................ 62 5.3.2 Cone-excitation ratio................................................................................. 63 5.3.3 Shadows ................................................................................................... 64 5.3.4 Specular highlights ................................................................................... 65 5.3.5 Mutual illumination .................................................................................... 65 5.3.6 Cues to depth ........................................................................................... 66 5.4 APPROACHES TOWARDS COLOUR CONSTANCY RESEARCH ............................... 68 5.4.1 Two-dimensional abstract stimuli.............................................................. 70 5.4.2 Two-dimensional images of natural (three-dimensional) scenes.............. 70 5.4.3 Rendered images viewed stereoscopically............................................... 71 5.4.4 Real three-dimensional objects ................................................................ 72 5.4.5 Observers’ tasks in experiments using real 3D objects ............................ 76 5.5 QUANTIFYING COLOUR CONSTANCY ................................................................ 78 5.6 FINAL REMARK................................................................................................ 81 6 COLOUR CATEGORIES ..................................................................................... 82 6.1 INTRODUCTION ............................................................................................... 82 6.2 ORIGIN OF COLOUR CATEGORISATION – NATURE VERSUS NURTURE.................. 82 6.3 BASIC COLOUR TERMS .................................................................................... 83 6.4 COLOUR CATEGORIES IN OTHER AREAS OF VISION RESEARCH .......................... 83 6.4.1 Colour memory within and across colour categories ................................ 87 6.5 SUMMARY ...................................................................................................... 88 7 CROSS-MEDIA STUDIES IN VISION RESEARCH............................................. 89 7.1 TECHNOLOGICAL APPROACH TOWARDS COLOUR REPRODUCTION ..................... 90 7.1.1 Testing colour appearance models under varying viewing conditions...... 91 7.2 PERFORMANCE COMPARABILITY FOR CROSS-MEDIA STUDIES ........................... 95 7.2.1 Comparing CRT and Munsell focal colours .............................................. 96 7.2.2 Matching surface and displayed colours................................................... 97 7.2.3 Comparing lightness matching across media ........................................... 98 3 7.2.4 Contrasting observers’ performance for real-world and computer-simulated scenes 100 7.3 SUMMARY .................................................................................................... 101 8 METHODS.......................................................................................................... 103 8.1 REAL WORLD................................................................................................ 103 8.1.1 Experimental setup ................................................................................. 103 8.1.2 Illuminants............................................................................................... 103 8.1.3 Stimuli ..................................................................................................... 107 8.1.4 Learning and test palettes ...................................................................... 109 8.1.5 Three-dimensional scene ....................................................................... 111 8.1.6 Analysis of the stimuli ............................................................................. 112 8.1.6.1 Metamerism-analysis ...................................................................... 113 8.1.6.2 Colour differences-analysis............................................................. 114 8.1.6.3 Level of difficulty ............................................................................. 118 8.2 COMPUTER SIMULATION................................................................................ 121 8.2.1 Setup ...................................................................................................... 121 8.2.2 Material ................................................................................................... 121 8.2.3 Monitor check ......................................................................................... 122 8.2.4 Transformation of the experimental colours............................................ 123 8.2.5 Accuracy of the simulated colours .......................................................... 124 8.2.6 Learning and test palettes ...................................................................... 126 8.2.7 Three-dimensional
Recommended publications
  • Scaling Lightness Perception and Differences Above and Below Diffuse White and Modifying Color Spaces for High-Dynamic-Range Scenes and Images Ping-Hsu Chen
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2011 Scaling lightness perception and differences above and below diffuse white and modifying color spaces for high-dynamic-range scenes and images Ping-hsu Chen Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Chen, Ping-hsu, "Scaling lightness perception and differences above and below diffuse white and modifying color spaces for high- dynamic-range scenes and images" (2011). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Scaling Lightness Perception and Differences Above and Below Diffuse White and Modifying Color Spaces for High-Dynamic-Range Scenes and Images by Ping-hsu Chen B.S. Shih Hsin University, Taipei, Taiwan (2001) M.S. Shih Hsin University, Taipei, Taiwan (2003) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Color Science in the Center for Imaging Science, Rochester Institute of Technology Signature of the Author Accepted By Coordinator, M.S. Degree Program Data CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY CERTIFICATE OF APPROVAL M.S. DEGREE THESIS The M.S. Degree Thesis of Ping-hsu Chen has been examined and approved by two members of the Color Science faculty as satisfactory for the thesis requirement for the Master of Science degree Prof.
    [Show full text]
  • Development of a Methodology for Analyzing the Color Content of a Selected Group of Printed Color Analysis Systems
    AN ABSTRACT OF THE THESIS OF Edith E. Collin for the degree of Master of Sciencein Clothing, Textiles and Related Arts presented on April 7, 1986. Title: Development of a Methodology for Analyzing theColor Content of a Selected Group of Printed Color Analysis Systems Redacted for Privacy Abstract approved: Ardis Koester The purpose of this study was to develop amethodology to compare the color choice recommendationsfor each personal color analysis category identified by the authorsof selected publications. The procedure used included: (1) identification of publications with color analysis systemsdirected toward female clientele; (2) comparison of number and names of categoriesused; (3) identification, by use of Munsell colornotations, the visual and written color recommendations ascribed toeach category; and (4) comparison of the publications on the basisof: (a) number and names of categories; (b) numberof color recommendations in each category; (c) range of hue value and chroma presented;(d) comparison of visual and written color recommendations by categoryand author. With the exception of comparison of publications onthe basis of written color recommendations, all components of themethodology were successful. Comparison of the publications used in development ofthe methodology revealed that: 1. The majority of authors use the seasonal category system. 2. The number of color recommendations per category was quite consistent within a publication but varied widely among authors. 3. There were few similarities in color recommendations even among authors using the same name categories. 4. There was poor agreement between written and visual color recommendations within all color categories. 5. There was no discernable theoretical basis for the color recommendations presented by any author included in this study.
    [Show full text]
  • Color Measurement1 Agr1c Ü8 ,
    I A^w /\PK4 1946 USDA COLOR MEASUREMENT1 AGR1C ü8 , ,. 2001 DEC-1 f=> 7=50 AndA ItsT ApplicationA rL '"NT SERIAL Í to the Grading of Agricultural Products A HANDBOOK ON THE METHOD OF DISK COLORIMETRY ui By S3 DOROTHY NICKERSON, Color Technologist, Producdon and Marketing Administration 50! es tt^iSi as U. S. DEPARTMENT OF AGRICULTURE Miscellaneous Publication 580 March 1946 CONTENTS Page Introduction 1 Color-grading problems 1 Color charts in grading work 2 Transparent-color standards in grading work 3 Standards need measuring 4 Several methods of expressing results of color measurement 5 I.C.I, method of color notation 6 Homogeneous-heterogeneous method of color notation 6 Munsell method of color notation 7 Relation between methods 9 Disk colorimetry 10 Early method 22 Present method 22 Instruments 23 Choice of disks 25 Conversion to Munsell notation 37 Application of disk colorimetry to grading problems 38 Sample preparation 38 Preparation of conversion data 40 Applications of Munsell notations in related problems 45 The Kelly mask method for color matching 47 Standard names for colors 48 A.S.A. standard for the specification and description of color 50 Color-tolerance specifications 52 Artificial daylighting for grading work 53 Color-vision testing 59 Literature cited 61 666177—46- COLOR MEASUREMENT And Its Application to the Grading of Agricultural Products By DOROTHY NICKERSON, color technologist Production and Marketing Administration INTRODUCTION cotton, hay, butter, cheese, eggs, fruits and vegetables (fresh, canned, frozen, and dried), honey, tobacco, In the 16 years since publication of the disk method 3 1 cereal grains, meats, and rosin.
    [Show full text]
  • Effect of Area on Color Harmony in Interior Spaces
    EFFECT OF AREA ON COLOR HARMONY IN INTERIOR SPACES A Ph.D. Dissertation by SEDEN ODABAŞIOĞLU Department of Interior Architecture and Environmental Design İhsan Doğramacı Bilkent University Ankara June 2015 To my parents EFFECT OF AREA ON COLOR HARMONY IN INTERIOR SPACES Graduate School of Economics and Social Sciences of İhsan Doğramacı Bilkent University by SEDEN ODABAŞIOĞLU In Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in THE DEPARTMENT OF INTERIOR ARCHITECTURE AND ENVIRONMENTAL DESIGN İHSAN DOĞRAMACI BİLKENT UNIVERSITY ANKARA June 2015 I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assoc. Prof. Dr. Nilgün Olguntürk Supervisor I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Prof. Dr. Halime Demirkan Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assist. Prof. Dr. Katja Doerschner Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assoc. Prof. Dr. Sezin Tanrıöver Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design.
    [Show full text]
  • ,論説 REVIEW ARTICLES Visualization of Color Order
    Japanese SooietySociety for the ScienceSoienoe of Design 研 究 論文 ,論説 REVIEW ARTICLES Received December 10,1997 ; Accepted June 6,1998 535.61 535.649 ー 色 の 世 界 の ビ ジ ュ ア ラ イ ゼ シ ョ ン Visualization of Color Order ● 時 長 逸 子 ● 荒 生 薫 岡 山 県 立 大 学 岡 山 県 立 大 学 Tokinaga Itsuko Arou Kaoru O んαツα 1η α Prefecturα l Ohay α m α Prefeeturα l University University ● Key words : Color Order , Color Order System . Color Notation 要 旨 1,は じ め に 色 に は 、顔料 あ る い は 染 料 と し て の 物 質 性 と 文 化 的 に 関 わ っ 色 の 世界 を 表 わ す た め に 我 々 が 用 い る の は ,民 族 固有 の 言 語 ‘’ て き た 象徴性 と い う二 面 が 存 在 す る。例 え ば 、赤 を 意 味 す る 言 に よ る 表 現 と ,色 相 ,明 度 ,彩 度 と い っ た 専 門 用 語 に よ っ て シ 葉 が 血 液 を表 す こ とが 多 い こ と か ら 、そ れ が 生 命 と い う シ ン ボ ス テ マ チ ッ ク に構 成 さ れ た 色 空 間 と して の 表 現 と が あ る。後 者 ル に 結 び つ き 、さ ら に 色 に 象徴 さ れ る と い う こ と が 言 わ れ て い は カ ラ ーオ ーダ ーと呼 ば れ て お り,か な り早 い 時期 に二 次 元 だ る 。ま た 、中 国 に お い て 、東西 南北 に そ れ ぞ れ 配 置 さ れ だ 四 象 け で は 表 現 で きな い こ と が 判 っ て い た 。 そ の た め 様 々 な三 次 元 は 春 秋 戦 国 時 代 後 に 、五 方 配 五 色 の 説 法 の 流 行 か ら青 龍 、白 虎 、 的展 開 を 行う こ と が 試み ら れ て きた の で あ る 。実試料 に よ っ て 朱雀 、玄 武 と い う 名 称 を 得 る [注 1]。中 国 の 宇宙 観 と し て 考 え 色 を 系統 的 に 表 す こ と が で き る よ う に な る と ,色 の 世 界 は よ り ー ー ー ら れ る こ れ ら の 配 置 は 循 環 を 表 し て お り 、方 位 と 色 と 生 物 に 綿 密 に 構 築 さ れ る よ う に な っ て い っ た カ ラ オ ダ シ ス テ 。 = = よ っ て 象 徴 さ れ る 。こ の 考 え 方 か ら は 方 位 色 生 物 の 図 式 が ム の 概 念 は こ の よ う な 背 景 か ら 生 ま 礼 実試 料 を シ ス テ ム に 従 っ 成 り立 ち 、お 互 い の 連 想 を 可 能 と す る 。 て 空 間 的 に 配 置 して 表 す カ ラ ーア トラ ス が 開 発 さ れ た 。ア トラ 一一 こ の よ うに 、色 と い う の は 「物 質 の 属 性 に す ぎ な い け れ ど ス の 存 在 は ,我 々 に そ の シ ス テ ム の 理 解 を 早 め る と い う点
    [Show full text]
  • Papers of Dr. Deane Brewster Judd
    INACTIVE - ALL ITEMS SUPERSEDED OR OBSOLETE Schedule Number: NC-167-75-001 All items in this schedule are inactive. Items are either obsolete or have been superseded by newer NARA approved records schedules. Description: The agency was approved to donate the records to other archival repositories. Date Reported: 1/2/2021 INACTIVE - ALL ITEMS SUPERSEDED OR OBSOLETE RE.QUi:ST' • AUTHORITY - .. LEAVE BLANK ' TO DISPOSE OF RECORDS DATE RECEIVED JOB./'1O. (See Instructions on Reverse) SEP2aa:, -N_'C -1 TO: GENERAL SERVICES ADMINISTRATION, 7-75 1 NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, D.C. 20408 NOTIFICATION TO AGENCY - 1. FROM (AGENCY OR ESTABLISHMENT) In accordance with the provisions of 44 U.S. C. 3 303a the dis­ Department of Commerce posal request, including amendments, is approved except for items that may be stamped "disposal not approved" or "with­ 2. MAJOR SUBDIVISION drawn" in column 10. National Bureau of Standards I . 3. MINOR SUBDIVISION Records Management Office -4. NAME OF PERSON WITH WHOM TO CONFER 5. TEL. EXT. Philip V. Proulx 921-3895 6. CERTIFICATE OF AGENCY REPRESENTATIVE: I _h...e.rebv. certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Reques06fK ~~) ore not now needed for the business of this agency or will not be needed after the retention periods specified. 8-6-74 Records Management Officer (Date) 9. 7. SAMPLE OR 10. ITEM NO. ( With Inclusive Dates or Retention Periods) JOB NO. ACTION TAKEN Papers of Dr. Deare Brewster Judd 1900-1972 These papers, from 1930s - 1972, are mostly re­ ference and research materials relating to color and vision, created, received, purchased or otherwise accumulated by Dr.
    [Show full text]
  • Effects of Light-Emitting Diode (Led) Lighting Color on Human Emotion, Behavior, and Spatial Impression
    EFFECTS OF LIGHT-EMITTING DIODE (LED) LIGHTING COLOR ON HUMAN EMOTION, BEHAVIOR, AND SPATIAL IMPRESSION By Heejin Lee A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Planning, Design and Construction – Doctor of Philosophy 2019 ABSTRACT EFFECTS OF LIGHT-EMITTING DIODE (LED) LIGHTING COLOR ON HUMAN EMOTION, BEHAVIOR, AND SPATIAL IMPRESSION By Heejin Lee With the rapid advancement of light-emitting diode (LED) lighting technology, the use of colored LED lighting has increased tremendously. However, few studies have examined the actual effects of lighting color in interior spaces. The purpose of this study was to investigate the effects of six colors of LED lighting (i.e., red, green, blue, yellow, orange, and purple) (1) on occupants’ emotional states (i.e., pleasure and arousal) and behavioral intentions (i.e., approach or avoidance), and (2) on spatial impressions (i.e., cheerfulness, attractiveness, comfort, pleasantness, relaxation, and warmness/coolness) based on the Mehrabian and Russell’s M-R model (1974). Additionally, this study examined (3) the impact of socio-demographics (i.e., gender, age, and cultural background) on color preference of LED lighting. An experimental research project was conducted with 101 participants using a voluntary sampling method. The experiment measured participants’ emotional states, behavioral intentions, spatial impression, and color preference under six different colors of LED lighting. One-way Analysis of variance (ANOVA) and regression analysis were conducted to analyze the collected data. The results of the study demonstrated that LED lighting colors significantly affect people’s emotional states, behavioral intentions, and spatial impressions. Cultural differences in color preference of LED lighting was significant, whereas no significant differences in gender or age were identified.
    [Show full text]
  • Elemen Warna Dalam Pengembangan Multimedia Pembelajaran Agama Islam
    ELEMEN WARNA DALAM PENGEMBANGAN MULTIMEDIA PEMBELAJARAN AGAMA ISLAM Sigit Purnama • Abstract wtlrna adalah elemen penting dalam pengembangan multimedia pembelajaran. Pemilihan warna dalam pengembangan multimedia pembelajaran merupakan hal penting yang turut menentukan kelayakan sebuah program paket multime­ dia. Penggunaan warna yang sesuai dalam multimedia pembelajaran dapat membangkitkan motivasi, perasaan, perhatian, dan kesediaan siswa dalam be/ajar. Oleh karena itu, pemahaman yang baik dalam pemilihan warna sangat diperlukan bagi para pengembangan multimedia pembelajaran, termasuk multimedia pembelajaran Agama Islam. Pewarnaan terhadap unsur-unsur multimedia harus memperhatikan keserasian/ keselarasan (harmoni) warna. Unsur-unsur multimedia antara lain: teks, gam bar, latar belakang (background), dan symbol-simbol. Pewarnaan yang baik terhadap unsur-unsur tersebut dapat memberikan kesan yang kuat dan mempermudah mengingat bagi siswa terhadap materi-materi yang terkandung dalam multimedia pembelajaran. Keyword: warna, pengembangan, multimedia, pembelaja:ran PAl 'J Dosen Teknologi Pendidikan Fakultas Tarbiyah UIN Sunan Kalijaga Yogyakarta Elemen warna dalam pengembangan multimedia ... {Sigit Purnama) 113 A. Pendahuluan Warna adalah bagian dari keindahan. "Sesungguhnya Allah itu indah dan menyukai keindahan". Setiap orang secara alamiah menyukai sesuatu yang indah. Dalam mendesain produk-produk pembelajaran pewarnaan merupakan salah satu unsur yang sangat penting. Ia memberikan keindahan pada unsur-unsur visual yang ditampilkan. Pewarnaan
    [Show full text]
  • Modelling the Colour Difference by Artificial Neural Network
    Lappeenranta University of Technology Faculty of Technology Management Degree Program in Intelligent Computing Master’s Thesis Alireza Adli MODELLING THE COLOUR DIFFERENCE BY ARTIFICIAL NEURAL NETWORK Examiners: Assoc. Prof. Arto Kaarna MSc. Aidin Hassanzadeh Supervisors: Assoc. Prof. Arto Kaarna MSc. Aidin Hassanzadeh ABSTRACT Lappeenranta University of Technology Faculty of Technology Management Degree Program in Intelligent Computing Alireza Adli MODELLING THE COLOUR DIFFERENCE BY ARTIFICIAL NEURAL NET- WORK Master’s Thesis 2016 68 pages,23 figures,11 tables. Examiners: Assoc. Prof. Arto Kaarna MSc. Aidin Hassanzadeh Keywords: color difference, artificial neural network, chromaticity discrimination, HVS This thesis work studies the modelling of the colour difference using artificial neural net- work. Multilayer percepton (MLP) network is proposed to model CIEDE2000 colour difference formula. MLP is applied to classify colour points in CIE xy chromaticity diagram. In this context, the evaluation was performed using Munsell colour data and MacAdam colour discrimination ellipses. Moreover, in CIE xy chromaticity diagram just noticeable differences (JND) of MacAdam ellipses centres are computed by CIEDE2000, to compare JND of CIEDE2000 and MacAdam ellipses. CIEDE2000 changes the ori- entation of blue areas in CIE xy chromaticity diagram toward neutral areas, but on the whole it does not totally agree with the MacAdam ellipses. The proposed MLP for both modelling CIEDE2000 and classifying colour points showed good accuracy and achieved acceptable results. PREFACE I would like to thank my supervisor Professor Arto Kaarna for guiding me from the very beginning of this master thesis to the end of it and for answering my questions patiently. I would also like to thank my supervisor and dear friend MSc.
    [Show full text]
  • Oral Presentation Sat. 30 Nov. 2019
    Oral Presentation ★ Sat. 30 Nov. 2019 Room A Room C Room A West 3F Room C West 4F COLOR PREFERENCE <1> Diversity COLOR MANAGEMENT SAT-1A SAT-1C Akira Asano(JP) / Tien-Rein Lee(TW) Motonori Doi(JP) / Changjun Li(CN) Invited Talk: Communicating Colour with an Advanced SAT-1C-1 Phil Green UK SAT-1A-1 Kim Min-Kyong KR Personal Color Analysis for Korean Colour Management Framework Women’s (For women in their 20s and 30s) Yuki Akizuki, Futoshi The Issue of Color Appearance in Masaya Nishimoto and Preference for Color Composition of Art SAT-1C-2 Ohyama and Satoshi JP SAT-1A-2 JP Telemedicine System Shigeki Nakauchi Paintings and its Individual Differences Iwamoto Hathaichanok Khemthong, Kazuji Matsumoto and Development of Portable Spectral SAT-1C-3 JP Pratthana Thammachat, Use of Smoke in Advertising Hot Drink Misao Takamatsu Gonio-Photometer SAT-1A-3 TH Natthamon Piengthisong Photography Production Xiandou Zhang, and Chanida Saksirikosol Mengmeng Wang, Metamer Mismatching for Different SAT-1C-4 CN Pantakan Sukontee, Minchen Wei, Shangfei Number of Camera Combinations Chanprapha Li and Shuo Liu Color of Cooked Rice to Improve SAT-1A-4 Phuangsuwan, Hiroyuki TH Appetite for Elderly Congcong Zhang, Iyota, Hideki Sakai and Xiaoxuan Liu, Cheng Gao, Local Adaptation Approach for Camera SAT-1C-5 CN Mitsuo Ikeda Zhifeng Wang, Yang Xu Characterization Based on Lightness Color Satisfaction on Printed Media and Changjun Li Ploy Srisuro, of Foundation for Rehabilitation and SAT-1A-5 Warin Chuen-Aram and TH Pei-Li Sun, Wei-Chih Su, A Low-cost Method to Predict
    [Show full text]
  • History of Color Systems
    APPENDIX A 1766 1810 1853 1868 1889 1905 1929 1947 1976 BC350 FIRE 1646 W 0.60 550 [ 570 William Benson Arthur Pope CIE L*u*v color system 590 British architect William Benson published 600 This is the double cone-shaped color The XYZ color system is A 650 History of Color Systems History of Color A feature in this chapter covering 500 DRY 0.50 700nm the Cube of Colors model in his work an excellent system for D50 solid devised by art teacher Pope. 15 D65 HOT Principles of the Science of Colour, likely C color circles omits a large number From above, it features 12 pure colors expressing individual 490 the first three-dimensional color system. 0.40 as in Itten’s work, but when viewed colors, but is not suited to EARTH A number of center axes intersect to form of other important color system from the side, it features a center expressing mutual color the interior of the solid. 10 differences. This is because 0.30 AIR achromatic axis in nine gradations The colors at the intersections are 480 diagrams, since the selection from white to black, numbered in physical color space does indicated on the periphery of the diagram. Charles Henry Albert Henry Munsell Hermann Günther Grassmann reverse of Munsell's scheme. The not appear uniform to the Moses Harris Despite a distant resemblance to the Henry's color circle placed black at the Art teacher Munsell divided color space into hue, 0.20 of illustrations focused on WET Otto Philipp Runge Grassmann's color circle developed Newton's color pure color equator is inclined in Julio Villalobos: PURE human eye.
    [Show full text]
  • Interactive Models for Latent Information Discovery in Satellite Images
    Interactive Models for Latent Information Discovery in Satellite Images DISSERTATION zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften vorgelegt von Dipl.-Eng. Dragos Bratasanu eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Siegen 2014 Koordinator: Prof. Dr. Otmar Loffeld Koordinator: Prof. Dr. Mihai Datcu Datum der Mündlichen Prüfung: 30 Mai 2014 To my parents 1 Abstract The recent increase in Earth Observation (EO) missions has resulted in unprecedented volumes of multi-modal data to be processed, understood, used and stored in archives. The advanced capabilities of satellite sensors become useful only when translated into accurate, focused information, ready to be used by decision makers from various fields. Two key problems emerge when trying to bridge the gap between research, science and multi-user platforms: (1) The current systems for data access permit only queries by geographic location, time of acquisition, type of sensor, but this information is often less important than the latent, conceptual content of the scenes; (2) simultaneously, many new applications relying on EO data require the knowledge of complex image processing and computer vision methods for understanding and extracting information from the data. This dissertation designs two important concept modules of a theoretical image information mining (IIM) system for EO: semantic knowledge discovery in large databases and data visualization techniques. These modules allow users to discover and extract relevant conceptual information directly from satellite images and generate an optimum visualization for this information. The first contribution of this dissertation brings a theoretical solution that bridges the gap and discovers the semantic rules between the output of state-of-the-art classification algorithms and the semantic, human-defined, manually-applied terminology of cartographic data.
    [Show full text]