A Appendix: Radiometry and Photometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CIE Technical Note 004:2016
TECHNICAL NOTE The Use of Terms and Units in Photometry – Implementation of the CIE System for Mesopic Photometry CIE TN 004:2016 CIE TN 004:2016 CIE Technical Notes (TN) are short technical papers summarizing information of fundamental importance to CIE Members and other stakeholders, which either have been prepared by a TC, in which case they will usually form only a part of the outputs from that TC, or through the auspices of a Reportership established for the purpose in response to a need identified by a Division or Divisions. This Technical Note has been prepared by CIE Technical Committee 2-65 of Division 2 “Physical Measurement of Light and Radiation" and has been approved by the Board of Administration as well as by Division 2 of the Commission Internationale de l'Eclairage. The document reports on current knowledge and experience within the specific field of light and lighting described, and is intended to be used by the CIE membership and other interested parties. It should be noted, however, that the status of this document is advisory and not mandatory. Any mention of organizations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any lists, up to the time of going to press, these may not be comprehensive. CIE 2016 - All rights reserved II CIE, All rights reserved CIE TN 004:2016 The following members of TC 2-65 “Photometric measurements in the mesopic range“ took part in the preparation of this Technical Note. The committee comes under Division 2 “Physical measurement of light and radiation”. -
Appendix A: Symbols and Prefixes
Appendix A: Symbols and Prefixes (Appendix A last revised November 2020) This appendix of the Author's Kit provides recommendations on prefixes, unit symbols and abbreviations, and factors for conversion into units of the International System. Prefixes Recommended prefixes indicating decimal multiples or submultiples of units and their symbols are as follows: Multiple Prefix Abbreviation 1024 yotta Y 1021 zetta Z 1018 exa E 1015 peta P 1012 tera T 109 giga G 106 mega M 103 kilo k 102 hecto h 10 deka da 10-1 deci d 10-2 centi c 10-3 milli m 10-6 micro μ 10-9 nano n 10-12 pico p 10-15 femto f 10-18 atto a 10-21 zepto z 10-24 yocto y Avoid using compound prefixes, such as micromicro for pico and kilomega for giga. The abbreviation of a prefix is considered to be combined with the abbreviation/symbol to which it is directly attached, forming with it a new unit symbol, which can be raised to a positive or negative power and which can be combined with other unit abbreviations/symbols to form abbreviations/symbols for compound units. For example: 1 cm3 = (10-2 m)3 = 10-6 m3 1 μs-1 = (10-6 s)-1 = 106 s-1 1 mm2/s = (10-3 m)2/s = 10-6 m2/s Abbreviations and Symbols Whenever possible, avoid using abbreviations and symbols in paragraph text; however, when it is deemed necessary to use such, define all but the most common at first use. The following is a recommended list of abbreviations/symbols for some important units. -
Fundametals of Rendering - Radiometry / Photometry
Fundametals of Rendering - Radiometry / Photometry “Physically Based Rendering” by Pharr & Humphreys •Chapter 5: Color and Radiometry •Chapter 6: Camera Models - we won’t cover this in class 782 Realistic Rendering • Determination of Intensity • Mechanisms – Emittance (+) – Absorption (-) – Scattering (+) (single vs. multiple) • Cameras or retinas record quantity of light 782 Pertinent Questions • Nature of light and how it is: – Measured – Characterized / recorded • (local) reflection of light • (global) spatial distribution of light 782 Electromagnetic spectrum 782 Spectral Power Distributions e.g., Fluorescent Lamps 782 Tristimulus Theory of Color Metamers: SPDs that appear the same visually Color matching functions of standard human observer International Commision on Illumination, or CIE, of 1931 “These color matching functions are the amounts of three standard monochromatic primaries needed to match the monochromatic test primary at the wavelength shown on the horizontal scale.” from Wikipedia “CIE 1931 Color Space” 782 Optics Three views •Geometrical or ray – Traditional graphics – Reflection, refraction – Optical system design •Physical or wave – Dispersion, interference – Interaction of objects of size comparable to wavelength •Quantum or photon optics – Interaction of light with atoms and molecules 782 What Is Light ? • Light - particle model (Newton) – Light travels in straight lines – Light can travel through a vacuum (waves need a medium to travel in) – Quantum amount of energy • Light – wave model (Huygens): electromagnetic radiation: sinusiodal wave formed coupled electric (E) and magnetic (H) fields 782 Nature of Light • Wave-particle duality – Light has some wave properties: frequency, phase, orientation – Light has some quantum particle properties: quantum packets (photons). • Dimensions of light – Amplitude or Intensity – Frequency – Phase – Polarization 782 Nature of Light • Coherence - Refers to frequencies of waves • Laser light waves have uniform frequency • Natural light is incoherent- waves are multiple frequencies, and random in phase. -
Scaling Lightness Perception and Differences Above and Below Diffuse White and Modifying Color Spaces for High-Dynamic-Range Scenes and Images Ping-Hsu Chen
Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2011 Scaling lightness perception and differences above and below diffuse white and modifying color spaces for high-dynamic-range scenes and images Ping-hsu Chen Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Chen, Ping-hsu, "Scaling lightness perception and differences above and below diffuse white and modifying color spaces for high- dynamic-range scenes and images" (2011). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Scaling Lightness Perception and Differences Above and Below Diffuse White and Modifying Color Spaces for High-Dynamic-Range Scenes and Images by Ping-hsu Chen B.S. Shih Hsin University, Taipei, Taiwan (2001) M.S. Shih Hsin University, Taipei, Taiwan (2003) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Color Science in the Center for Imaging Science, Rochester Institute of Technology Signature of the Author Accepted By Coordinator, M.S. Degree Program Data CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY CERTIFICATE OF APPROVAL M.S. DEGREE THESIS The M.S. Degree Thesis of Ping-hsu Chen has been examined and approved by two members of the Color Science faculty as satisfactory for the thesis requirement for the Master of Science degree Prof. -
Development of a Methodology for Analyzing the Color Content of a Selected Group of Printed Color Analysis Systems
AN ABSTRACT OF THE THESIS OF Edith E. Collin for the degree of Master of Sciencein Clothing, Textiles and Related Arts presented on April 7, 1986. Title: Development of a Methodology for Analyzing theColor Content of a Selected Group of Printed Color Analysis Systems Redacted for Privacy Abstract approved: Ardis Koester The purpose of this study was to develop amethodology to compare the color choice recommendationsfor each personal color analysis category identified by the authorsof selected publications. The procedure used included: (1) identification of publications with color analysis systemsdirected toward female clientele; (2) comparison of number and names of categoriesused; (3) identification, by use of Munsell colornotations, the visual and written color recommendations ascribed toeach category; and (4) comparison of the publications on the basisof: (a) number and names of categories; (b) numberof color recommendations in each category; (c) range of hue value and chroma presented;(d) comparison of visual and written color recommendations by categoryand author. With the exception of comparison of publications onthe basis of written color recommendations, all components of themethodology were successful. Comparison of the publications used in development ofthe methodology revealed that: 1. The majority of authors use the seasonal category system. 2. The number of color recommendations per category was quite consistent within a publication but varied widely among authors. 3. There were few similarities in color recommendations even among authors using the same name categories. 4. There was poor agreement between written and visual color recommendations within all color categories. 5. There was no discernable theoretical basis for the color recommendations presented by any author included in this study. -
Color Measurement1 Agr1c Ü8 ,
I A^w /\PK4 1946 USDA COLOR MEASUREMENT1 AGR1C ü8 , ,. 2001 DEC-1 f=> 7=50 AndA ItsT ApplicationA rL '"NT SERIAL Í to the Grading of Agricultural Products A HANDBOOK ON THE METHOD OF DISK COLORIMETRY ui By S3 DOROTHY NICKERSON, Color Technologist, Producdon and Marketing Administration 50! es tt^iSi as U. S. DEPARTMENT OF AGRICULTURE Miscellaneous Publication 580 March 1946 CONTENTS Page Introduction 1 Color-grading problems 1 Color charts in grading work 2 Transparent-color standards in grading work 3 Standards need measuring 4 Several methods of expressing results of color measurement 5 I.C.I, method of color notation 6 Homogeneous-heterogeneous method of color notation 6 Munsell method of color notation 7 Relation between methods 9 Disk colorimetry 10 Early method 22 Present method 22 Instruments 23 Choice of disks 25 Conversion to Munsell notation 37 Application of disk colorimetry to grading problems 38 Sample preparation 38 Preparation of conversion data 40 Applications of Munsell notations in related problems 45 The Kelly mask method for color matching 47 Standard names for colors 48 A.S.A. standard for the specification and description of color 50 Color-tolerance specifications 52 Artificial daylighting for grading work 53 Color-vision testing 59 Literature cited 61 666177—46- COLOR MEASUREMENT And Its Application to the Grading of Agricultural Products By DOROTHY NICKERSON, color technologist Production and Marketing Administration INTRODUCTION cotton, hay, butter, cheese, eggs, fruits and vegetables (fresh, canned, frozen, and dried), honey, tobacco, In the 16 years since publication of the disk method 3 1 cereal grains, meats, and rosin. -
Effect of Area on Color Harmony in Interior Spaces
EFFECT OF AREA ON COLOR HARMONY IN INTERIOR SPACES A Ph.D. Dissertation by SEDEN ODABAŞIOĞLU Department of Interior Architecture and Environmental Design İhsan Doğramacı Bilkent University Ankara June 2015 To my parents EFFECT OF AREA ON COLOR HARMONY IN INTERIOR SPACES Graduate School of Economics and Social Sciences of İhsan Doğramacı Bilkent University by SEDEN ODABAŞIOĞLU In Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in THE DEPARTMENT OF INTERIOR ARCHITECTURE AND ENVIRONMENTAL DESIGN İHSAN DOĞRAMACI BİLKENT UNIVERSITY ANKARA June 2015 I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assoc. Prof. Dr. Nilgün Olguntürk Supervisor I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Prof. Dr. Halime Demirkan Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assist. Prof. Dr. Katja Doerschner Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. --------------------------------- Assoc. Prof. Dr. Sezin Tanrıöver Examining Committee Member I certify that I have read this thesis and have found that it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy in Interior Architecture and Environmental Design. -
Variable Star Photometry with a DSLR Camera
Variable star photometry with a DSLR camera Des Loughney Introduction now be studied. I have used the method to create lightcurves of stars with an amplitude of under 0.2 magnitudes. In recent years it has been found that a digital single lens reflex (DSLR) camera is capable of accurate unfiltered pho- tometry as well as V-filter photometry.1 Undriven cameras, Equipment with appropriate quality lenses, can do photometry down to magnitude 10. Driven cameras, using exposures of up to 30 seconds, can allow photometry to mag 12. Canon 350D/450D DSLR cameras are suitable for photome- The cameras are not as sensitive or as accurate as CCD try. My experiments suggest that the cameras should be cameras primarily because they are not cooled. They do, used with quality lenses of at least 50mm aperture. This however, share some of the advantages of a CCD as they allows sufficient light to be gathered over the range of have a linear response over a large portion of their range1 exposures that are possible with an undriven camera. For and their digital data can be accepted by software pro- bright stars (over mag 3) lenses of smaller aperture can be grammes such as AIP4WIN.2 They also have their own ad- used. I use two excellent Canon lenses of fixed focal length. vantages as their fields of view are relatively large. This makes One is the 85mm f1.8 lens which has an aperture of 52mm. variable stars easy to find and an image can sometimes in- This allows undriven photometry down to mag 8. -
Chapter 4 Introduction to Stellar Photometry
Chapter 4 Introduction to stellar photometry Goal-of-the-Day Understand the concept of stellar photometry and how it can be measured from astro- nomical observations. 4.1 Essential preparation Exercise 4.1 (a) Have a look at www.astro.keele.ac.uk/astrolab/results/week03/week03.pdf. 4.2 Fluxes and magnitudes Photometry is a technique in astronomy concerned with measuring the brightness of an astronomical object’s electromagnetic radiation. This brightness of a star is given by the flux F : the photon energy which passes through a unit of area within a unit of time. The flux density, Fν or Fλ, is the flux per unit of frequency or per unit of wavelength, respectively: these are related to each other by: Fνdν = Fλdλ (4.1) | | | | Whilst the total light output from a star — the bolometric luminosity — is linked to the flux, measurements of a star’s brightness are usually obtained within a limited frequency or wavelength range (the photometric band) and are therefore more directly linked to the flux density. Because the measured flux densities of stars are often weak, especially at infrared and radio wavelengths where the photons are not very energetic, the flux density is sometimes expressed in Jansky, where 1 Jy = 10−26 W m−2 Hz−1. However, it is still very common to express the brightness of a star by the ancient clas- sification of magnitude. Around 120 BC, the Greek astronomer Hipparcos ordered stars in six classes, depending on the moment at which these stars became first visible during evening twilight: the brightest stars were of the first class, and the faintest stars were of the sixth class. -
Photometric Calibrations —————————————————————————
NIST Special Publication 250-37 NIST MEASUREMENT SERVICES: PHOTOMETRIC CALIBRATIONS ————————————————————————— Yoshihiro Ohno Optical Technology Division Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Supersedes SP250-15 Reprint with changes July 1997 ————————————————————————— U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Robert E. Hebner, Acting Director PREFACE The calibration and related measurement services of the National Institute of Standards and Technology are intended to assist the makers and users of precision measuring instruments in achieving the highest possible levels of accuracy, quality, and productivity. NIST offers over 300 different calibrations, special tests, and measurement assurance services. These services allow customers to directly link their measurement systems to measurement systems and standards maintained by NIST. These services are offered to the public and private organizations alike. They are described in NIST Special Publication (SP) 250, NIST Calibration Services Users Guide. The Users Guide is supplemented by a number of Special Publications (designated as the “SP250 Series”) that provide detailed descriptions of the important features of specific NIST calibration services. These documents provide a description of the: (1) specifications for the services; (2) design philosophy and theory; (3) NIST measurement system; (4) NIST operational procedures; (5) assessment of the measurement uncertainty including random and systematic errors and an error budget; and (6) internal quality control procedures used by NIST. These documents will present more detail than can be given in NIST calibration reports, or than is generally allowed in articles in scientific journals. In the past, NIST has published such information in a variety of ways. -
Basics of Photometry Photometry: Basic Questions
Basics of Photometry Photometry: Basic Questions • How do you identify objects in your image? • How do you measure the flux from an object? • What are the potential challenges? • Does it matter what type of object you’re studying? Topics 1. General Considerations 2. Stellar Photometry 3. Galaxy Photometry I: General Considerations 1. Garbage in, garbage out... 2. Object Detection 3. Centroiding 4. Measuring Flux 5. Background Flux 6. Computing the noise and correlated pixel statistics I: General Considerations • Object Detection How do you mathematically define where there’s an object? I: General Considerations • Object Detection – Define a detection threshold and detection area. An object is only detected if it has N pixels above the threshold level. – One simple example of a detection algorithm: • Generate a segmentation image that includes only pixels above the threshold. • Identify each group of contiguous pixels, and call it an object if there are more than N contiguous pixels I: General Considerations • Object Detection I: General Considerations • Object Detection Measuring Flux in an Image • How do you measure the flux from an object? • Within what area do you measure the flux? The best approach depends on whether you are looking at resolved or unresolved sources. Background (Sky) Flux • Background – The total flux that you measure (F) is the sum of the flux from the object (I) and the sky (S). F = I + S = #Iij + npix " sky / pixel – Must accurately determine the level of the background to obtaining meaningful photometry ! (We’ll return to this a bit later.) Photometric Errors Issues impacting the photometric uncertainties: • Poisson Error – Recall that the statistical uncertainty is Poisson in electrons rather than ADU. -
Paper Code and Title: H01RS Residential Space Designing Module Code and Name: H01RS19 Light – Measurement, Related Terms and Units Name of the Content Writer: Dr
Paper Code and Title: H01RS Residential Space Designing Module Code and Name: H01RS19 Light – measurement, related terms and units Name of the Content Writer: Dr. S. Visalakshi Rajeswari LIGHT – MEASUREMENT, RELATED TERMS AND UNITS Introduction Light is that part of the electromagnetic spectrum which will stimulate a response in the receptors of the eye. Its frequency usually expressed as wavelength determines the colour of light and its amplitude determines its intensity. Accommodation from the individual’s part enables focusing of vision. Hence the need to study lighting in interiors. Especially when activities are carried out indoors it is necessary to provide some sort of artificial illumination. In such circumstances, the designer should be aware of what (lighting) is provided and the satisfaction the ‘user’ derives out of it. 1. The radiant energy spectrum Vs visible spectrum Light is visually evaluated radiant energy (electromagnetic), which moves at a constant speed in vacuum. The entire radiant energy spectrum consists of waves of radiant energy that vary in wavelength of a wide range; an array of all rays - cosmic, gamma, UV, infra red, radar, x rays, the visible spectrum, FM, TV- and radio broadcast waves and power transmission. The portion of the radiant energy which is seen as light, identified as the spectrum visible to the human eye ranges from about 380 (400) to 780 (700) mµ (referred to as nanometers or millimicrons). A nanometer (nm) is a unit of wavelength equal to 10 -9 m. Light can thus be thought of as the aspect of radiant energy that is visible. Colour perception is attributed to the varying wavelengths noticeable within the spectrum of visible light.