Tomato, Capsicum, Chilli and Eggplant a Field Guide for the Identification of Insect Pests, Beneficials, Diseases and Disorders in Australia and Cambodia

Total Page:16

File Type:pdf, Size:1020Kb

Tomato, Capsicum, Chilli and Eggplant a Field Guide for the Identification of Insect Pests, Beneficials, Diseases and Disorders in Australia and Cambodia Tomato, capsicum, chilli and eggplant A field guide for the identification of insect pests, beneficials, diseases and disorders in Australia and Cambodia i Tomato, capsicum, chilli and eggplant A field guide for the identification of insect pests, beneficials, diseases and disorders in Australia and Cambodia Sandra McDougall, Andrew Watson, Ben Stodart, Tony Napier, Gerard Kelly, David Troldahl and Len Tesoriero 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries andAustralia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected]. McDougall S., Watson A., Stodart B., Napier T., Kelly G., Troldahl D. and Tesoriero L. 2013. Tomato, capsicum, chilli and eggplant: a field guide for the identification of insect pests, beneficials, diseases and disorders in Australia and Cambodia. ACIAR Monograph No. 157, Australian Centre for International Agricultural Research: Canberra. 233 pp. ACIAR Monograph No. 157 ACIAR Monographs – ISSN 1031-8194 (print), ISSN 1447-090X (PDF) ISBN 978 1 922137 53 1 (print) ISBN 978 1 922137 54 8 (PDF) ISBN 978 1 922137 70 8 (EPUB) Technical editing and design by Biotext Pty Ltd, Canberra Cover images: (Left to right) Helicoverpa larva on tomato (M. Hill), capsicum with blossom end split (I. Walker), chilli with anthracnose fruit rot (AVRDC), Paracoccus marginatus colony on eggplant (S. Ramasamy), (in background) illustration of green lacewing (B. Cowper) Foreword Vegetable consumption in Cambodia is currently one of the lowest in Asia. The Cambodian Government has a long-term plan to increase both vegetable production and consumption to improve the nutritional and health status of its people. In line with this plan, an Australian Centre for International Agricultural Research (ACIAR) program in Cambodia supports applied research and development that underpins agricultural diversification, particularly into non-rice field and horticultural crops. ACIAR has funded research into developing new vegetable varieties; improved production practices such as fertiliser recommendations, raised beds, mulching and irrigation; improved supply-chain handling, storage and packaging; and increased capacity to identify and manage vegetable diseases. Further work was funded to take these research outcomes to a wider audience in Cambodia and Australia. In Australia, most of the Khmer-speaking vegetable growers grow tomato, capsicum, chilli and eggplant crops. In both Australia and Cambodia there was an absence of a suitable grower-friendly field guide to help growers identify key pest insects, likely natural enemies of these pest insects (‘beneficials’), crop diseases or nutritional disorders. This field guide will assist farmers, advisers to farmers and extension officers to manage their tomato, capsicum, chilli and eggplant crops through better recognition of the causes of crop damage. Key steps in an integrated pest management system are knowing what pest organisms are present in a crop, and understanding the basic biology of those pests, how they are spread and what factors may limit or control the populations. This guide provides information on key pests and diseases that are likely to be found in Cambodia and Australia, as well as basic information on minimising pest incursions and damage. Dr Nick Austin Chief Executive Officer, ACIAR Foreword 3 Contents Foreword ................................................................................................................3 Index to pests, beneficials, diseases and disorders ..........................................6 Acknowledgments ...............................................................................................13 How to use this guide .........................................................................................14 Integrated pest management ..............................................................................15 Growing guide .....................................................................................................16 About insects and mites .....................................................................................20 About plant diseases and disorders ..................................................................22 Signs of plant damage ........................................................................................24 Seedlings ...............................................................................................................26 Plants .....................................................................................................................26 Roots ......................................................................................................................27 Stems .....................................................................................................................27 Leaves....................................................................................................................28 Flowers...................................................................................................................29 Fruit ........................................................................................................................29 Insect and mite pests ..........................................................................................31 Beneficial organisms ..........................................................................................89 Bacterial diseases .............................................................................................131 Fungal and fungal-like diseases ......................................................................145 Viral diseases .....................................................................................................183 Other diseases ...................................................................................................199 Disorders ............................................................................................................205 Glossary .............................................................................................................228 Resources and further reading ........................................................................230 Insect and mite management practices ..........................................................232 Disease management practices .............................................. inside back cover Contents 5 Index to pests, beneficials, diseases and disorders Insect and mite pests .......................................................31 Mites—Order Acari .................................................................................................32 Family Eriophyidae Aculops lycopersici (tomato russet mite) Family Tetranychidae Tetranychus ludeni (bean spider mite) Tetranychus urticae (two-spotted [spider] mite) Family Tarsonemidae Polyphagotarsonemus latus (broad mite) Thrips—Order Thysanoptera .................................................................................34 Family Thripidae Frankliniella occidentalis (western flower thrips) Franklinella schultzei (tomato thrips) Scirtothrips dorsalis (chilli thrips) Thrips imaginis (plague thrips) Thrips palmi (melon thrips) Thrips tabaci (onion thrips) Bugs—Order Hemiptera Family Aphididae.. .....................................................................................36 Aphis gossypii (cotton aphid) Aulacorthum solani (foxglove aphid) Macrosiphum euphorbiae (tomato/potato aphid) Myzus persicae (green peach aphid) Family Cicadellidae....................................................................................38 Amrasca devastans (cotton leafhopper) Austroasca viridigrisea (vegetable leafhopper) Orosius orientalis (common brown leafhopper) Family Aleyrodidae ....................................................................................40 Aleurodicus dispersus (spiraling whitefly) Bemisia tabaci (silverleaf whitefly) Trialeurodes vaporariorum (greenhouse whitefly) Family Pseudococcidae .............................................................................42 Paracoccus marginatus (papaya mealybug) Phenacoccus solenopsis (cotton mealybug) Family Pentatomidae .................................................................................44 Nezara viridula (green vegetable bug) Family Lygaeidae .......................................................................................46
Recommended publications
  • 4Th National IPM Symposium
    contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs.
    [Show full text]
  • Addenda and Amendments to a Checklist of the Lepidoptera of the British Isles on Account of Subsequently Published Data
    Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 98 94 Entomologist’s Rec. J. Var. 128 (2016) ADDENDA AND AMENDMENTS TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES ON ACCOUNT OF SUBSEQUENTLY PUBLISHED DATA 1 DAVID J. L. A GASSIZ , 2 S. D. B EAVAN & 1 R. J. H ECKFORD 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF This update incorpotes information published before 25 March 2016 into A Checklist of the Lepidoptera of the British Isles, 2013. CENSUS The number of species now recorded from the British Isles stands at 2535 of which 57 are thought to be extinct and in addition there are 177 adventive species. CHANGE OF STATUS (no longer extinct) p. 17 16.013 remove X, Hall (2013) p. 25 35.006 remove X, Beavan & Heckford (2014) p. 40 45.024 remove X, Wilton (2014) p. 54 49.340 remove X, Manning (2015) ADDITIONAL SPECIES in main list 12.0047 Infurcitinea teriolella (Amsel, 1954) E S W I C 15.0321 Parornix atripalpella Wahlström, 1979 E S W I C 15.0861 Phyllonorycter apparella (Herrich-Schäffer, 1855) E S W I C 15.0862 Phyllonorycter pastorella (Zeller, 1846) E S W I C 27.0021 Oegoconia novimundi (Busck, 1915) E S W I C 35.0299 Helcystogramma triannulella (Herrich-Sch äffer, 1854) E S W I C 41.0041 Blastobasis maroccanella Amsel, 1952 E S W I C 48.0071 Choreutis nemorana (Hübner, 1799) E S W I C 49.0371 Clepsis dumicolana (Zeller, 1847) E S W I C 49.2001 TETRAMOERA Diakonoff, [1968] langmaidi Plant, 2014 E S W I C 62.0151 Delplanqueia inscriptella (Duponchel, 1836) E S W I C 72.0061 Hypena lividalis (Hübner, 1790) Chevron Snout E S W I C 70.2841 PUNGELARIA Rougemont, 1903 capreolaria ([Denis & Schiffermüller], 1775) Banded Pine Carpet E S W I C 72.0211 HYPHANTRIA Harris, 1841 cunea (Drury, 1773) Autumn Webworm E S W I C 73.0041 Thysanoplusia daubei (Boisduval, 1840) Boathouse Gem E S W I C 73.0301 Aedia funesta (Esper, 1786) Druid E S W I C Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 99 Entomologist’s Rec.
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • Characterization of the Feeding Behavior of Three Erythroneura Species on Grapevine by Histological and DC-Electrical Penetration Graph Techniques
    DOI: 10.1111/eea.12353 Characterization of the feeding behavior of three Erythroneura species on grapevine by histological and DC-electrical penetration graph techniques Julien Saguez1*, Pierre Lemoyne1, Philippe Giordanengo2,3,ChrystelOlivier4, Jacques Lasnier5,YvesMauffette6 & Charles Vincent1 1Agriculture et Agroalimentaire Canada, 430 Boulevard Gouin, Saint-Jean-sur-Richelieu, Quebec J3B 3E6, Canada, 2Universite de Picardie Jules Verne, 33 Rue St Leu, 80039 Amiens Cedex, France, 3Institut Sophia Agrobiotech, UMR 1355 INRA/Universite Nice Sophia Antipolis/7254 CNRS, 400 route des Chappes, 06903 Sophia Antipolis Cedex, France, 4Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada, 5Co-Lab R&D div. Ag-Cord, 655 Rue Delorme, Granby, Quebec J2J 2H4, Canada, and 6UniversiteduQuebec a Montreal, 141 Rue du President-Kennedy, Montreal, Quebec H2X 3Y5, Canada Accepted: 22 July 2015 Key words: mesophyll-feeder, piercing-sucking insect, plant tissues, salivary sheath, stylet penetration, Vitis, xylem, Auchenorrhyncha, Hemiptera, Cicadellidae, Vitaceae, DC-EPG Abstract Feeding behavior of three leafhopper species – Erythroneura vitis (Harris), Erythroneura ziczac (Walsh), and Erythroneura elegantula (Say) (Hemiptera: Cicadellidae) – reared on grapevine, Vitis vinifera L. cv. ‘Seyval blanc’ (Vitaceae), was investigated using histological techniques and DC-electri- cal penetration graphs (DC-EPG). Histological studies revealed that the Erythroneura species induced white stipples on the leaves and that these leafhoppers produced thin salivary sheaths in grapevine leaf tissues. The DC-EPG system allowed the characterization of five waveforms associated with stylet penetration and feeding in leaf tissues. These waveforms were characteristic of feeding phases corre- sponding to epidermis penetration pathway, salivation, and ingestion. We calculated 28 parameters (e.g., number of probes, duration of phases, and time spent in the various tissues) to describe and compare the feeding behavior of the Erythroneura species.
    [Show full text]
  • Disease Management for Leaf Curl in Chilli JPP 2020; 9(3): 863-866 Received: 23-03-2020 Accepted: 27-04-2020 Dr
    Journal of Pharmacognosy and Phytochemistry 2020; 9(3): 863-866 E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com Disease management for leaf curl in Chilli JPP 2020; 9(3): 863-866 Received: 23-03-2020 Accepted: 27-04-2020 Dr. Ram Prakash Sharma, RK Verma and Dr. Bipul Mandal Dr. Ram Prakash Sharma Subject Matter Specialist, Krishi Abstract Vigyan Kendra, Madhepura, A field trial was conducted during kharif 2019 cropping seasons. An attempt was made to find out the BAU, Sabour, Bhagalpur, Bihar, effective management practice through application of agrochemicals to minimize vector activites &the India crop loss. Three bio rational molecules viz., Imidacloprid 17.8 SL @ 1.0 ml/3liter water, Acetamiprid 20% SP @1.0 gm/ liter water and KEM (Immunity Builder) @2.0 ml/ liter were sprayed at 15 day R. K. Verma interval and were evaluated against vector activity to reduce the leaf curl disease incidence. The Subject Matter Specialist, Krishi minimum disease incidence was recorded to the extent of (27.25%) coupled with highest fruit yield of Vigyan Kendra, Madhepura, 63.13 q/ha in the treatment T2 having two spraying of Acetamiprid 20% SP @1.0 gm/ liter water at an BAU, Sabour, Bhagalpur, Bihar, interval of fifteen days during Kharif 2019 cropping season. Maximum disease incidence (32.25%) in India control with lowest yield (54.23/ha). Infection by chili leaf curl disease complex adversely affected yield attributing characters during Kharif season. Highest cost-benefit ratio of 1:11.49 was obtained by two Dr. Bipul Mandal spraying of Acetamiprid 20% SP @1.0 gm/ liter water during Kharif crop season.
    [Show full text]
  • Virus Infection Mediates the Effects of Elevated CO2 on Plants and Vectors Received: 15 December 2015 Piotr Trębicki1, Rebecca K
    www.nature.com/scientificreports OPEN Virus infection mediates the effects of elevated CO2 on plants and vectors Received: 15 December 2015 Piotr Trębicki1, Rebecca K. Vandegeer2, Nilsa A. Bosque-Pérez3, Kevin S. Powell4, Accepted: 19 February 2016 Beatriz Dader1,5, Angela J. Freeman2, Alan L. Yen2, Glenn J. Fitzgerald6 & Jo E. Luck7 Published: 04 March 2016 Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. Climate change is of global concern due to its predicted impacts on the environment and agriculture.
    [Show full text]
  • Evaluation of the Larvae Abundance of Leucinodes Orbonalis Guenee
    Journal of Animal &Plant Sciences, 2015. Vol.27, Issue 1: 4182-4192 Publication date 2/12/2015, http://www.m.elewa.org/JAPS ; ISSN 2071-7024 Evaluation of the larvae abundance of Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae) in the phenological stages of eggplants (Solanum aethiopicum ) in Azaguié, Côte d'Ivoire OBODJI Adagba 1, ABOUA Louis Roi Nondenot 1*, TANO Djè Kevin Christian 2 SERI - KOUASSI Badama Philomène 1 1 University Félix Houphouët Boigny of Cocody, UFR Biosciences, Laboratory of Zoology and Animal Biology, 22 BP 582 Abidjan 22, Côte d’Ivoire. 2 University Jean Lorougnon Guédé of Daloa,UFR Agroforesterie, Côte d’Ivoire. * Corresponding author E-mail: [email protected] , Phone number: +225 08 55 49 07 Keywords: Leucinodes orbonalis, borer larvae, abundance, Solanum aethiopicum , phenological stages. 1 SUMMARY Eggplant shoot and fruit borer (EFSB), Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae) is a major pest that causes damage to the eggplants in Côte d’Ivoire. In order to establish an effective control method against this pest, a study of the abundance of larvae L .orbonalis according to phenological stages of eggplant was conducted in the locality of Azaguié, in Guinean area of Côte d'Ivoire. Investigations were carried out from October 2013 to June 2014. The method used were to a weekly counting of larvae on three varieties of the specie Solanum th aethiopicum ( Djamba F 1, Kotobi and N'drowa issia) from 21 day after transplanting until the end of the harvest. All varieties recorded larvae during three phenological stages. The three varieties recorded more larvae at the fruiting stage than at the flowering and stage before flowering with 123.38 ± 4.09; 114.33 ± 4.22 and 106.18 ± 4.25 larvae per 24 plants respectively on Djamba F 1 , Kotobi and N’drowa issia.
    [Show full text]
  • An Overview of Chilli Thrips, Scirtothrips Dorsalis (Thysanoptera: Thripidae) Biology, Distribution and Management
    Chapter 3 An Overview of Chilli Thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) Biology, Distribution and Management Vivek Kumar, Garima Kakkar, Cindy L. McKenzie, Dakshina R. Seal and Lance S. Osborne Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55045 1. Introduction The industrial revolution, globalization and international trade liberalization are some of the important events that have afforded vast opportunities for invasive insect species to establish in new territories [1]. These invasive species, facing no challenge by their natural enemies, thrive well in the new environment [2]. In addition to the disturbance they cause to the biodiversity, pest invasion in any country results in increased pressure on biosecurity, national economy, and human health management systems [1, 3, 4]. Apart from economic loss in managing them, these pests pose a significant detrimental impact on tourism and recreational value of the region, which further adds in indirect economic damage to the nation [5]. Of this large group of invasive pests, thrips are one of the most important members. The invasive status gained by thrips across the globe is due to their high degree of polyphagy, wide host range and easy dispersal that can be anthropogenic or natural (wind-mediated). The earliest fossil record of order Thysanoptera dates back to the Late Triassic period, from the state of Virginia in the United States and the country Kazakhstan in Central Asia, but their abundance was rare until the Cretaceous period from which many specimens of Thysanoptera have been recorded [6]. The order Thysanoptera was given its current taxonomic rank by an Irish entomologist, A.
    [Show full text]
  • Survey of Chilli Leaf Curl Complex Disease in Eastern Part of Uttar Pradesh
    Volume 1- Issue 7 : 2017 DOI: 10.26717/BJSTR.2017.01.000589 RS Mishra. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access Survey of Chilli Leaf Curl Complex Disease in Eastern Part of Uttar Pradesh AN Chaubey and RS Mishra* Department of Plant Pathology, ND University of Agriculture & Technology, India Received: December 04, 2017; Published: December 13, 2017 *Corresponding author: RS Mishra, Department of Plant Pathology, ND University of Agriculture & Technology, Kumarganj, Faizabad-224229, UP, India Abstract Chili (Capsicum annuum L.) is an economically important and widely cultivated crop of India. Chilli leaf curl virus is one of the major selected in eastern Uttar Pradesh viz, Sultanpur and Faizabad districts during 2014 and 2015 from March to May each year. The highest leaf curllimiting incidence factors was in chili noticed production, in Sewra which (67.39 decreases %) followed yield by significantly. Hasuimukundpur The experiment (65.22%) wasand Etwaracarried (64.07%)out in one in hundred 2014, whereas fifty villages in 2015, randomly it was found maximum in Sewra (61.44%), Hasuimukundpur (59.79%) and Isawli (57.07%). In case of block wise, the maximum incidence was found Amaniganj (59.53, 50.79%) and Kurwar (54.70, 52.91%) in 2014 and 2015 respectively. While the lowest incidence was observed at Milkipur 47.46 % in 2014 and 41.48% in 2015 the average leaf curl disease incidence was recorded highest in 2014 at both districts. Keywords: Survey; Chilli leaf curl; Eastern Uttar Pradesh Introduction Chilli (Capsicum annuum L) is one of the most valuable cash Materials and Methods crops of India.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]