Molecular and Biological Characterization of Chilli Leaf Curl Virus and Associated Tomato Leaf Curl Betasatellite Infecting Toba

Total Page:16

File Type:pdf, Size:1020Kb

Molecular and Biological Characterization of Chilli Leaf Curl Virus and Associated Tomato Leaf Curl Betasatellite Infecting Toba Shahid et al. Virology Journal (2019) 16:131 https://doi.org/10.1186/s12985-019-1235-4 RESEARCH Open Access Molecular and biological characterization of Chilli leaf curl virus and associated Tomato leaf curl betasatellite infecting tobacco in Oman Muhammad Shafiq Shahid1*† , Muhammad Shafiq1†, Amir Raza1, Abdullah M. Al-Sadi1 and Rob W. Briddon2 Abstract Background: In Oman tobacco (Nicotiana tabacum; family Solanaceae) is a minor crop, which is produced only for local consumption. In 2015, tobacco plants exhibiting severe downward leaf curling, leaf thickening, vein swelling, yellowing and stunting were identified in fields of tobacco in Suhar Al-Batina region, Oman. These symptoms are suggestive of begomovirus (genus Begomovirus, family Geminiviridae) infection. Methods: Circular DNA molecules were amplified from total DNA extracted from tobacco plants by rolling circle amplification (RCA). Viral genomes were cloned from RCA products by restriction digestion and betasatellites were cloned by PCR amplification from RCA product, using universal primers. The sequences of full-length clones were obtained by Sanger sequencing and primer walking. Constructs for the infectivity of virus and betasatellite were produced and introduced into plants by Agrobacterium-mediated inoculation. Results: The full-length sequences of 3 begomovirus and 3 betasatellite clones, isolated from 3 plants, were obtained. Analysis of the full-length sequences determined showed the virus to be a variant of Chilli leaf curl virus (ChiLCV) and the betasatellite to be a variant of Tomato leaf curl betasatellite (ToLCB). Both the virus and the betasatellite isolated from tobacco show the greatest levels of sequence identity to isolates of ChiLCV and ToLCB identified in other hosts in Oman. Additionally clones of ChiLCV and ToLCB were shown, by Agrobacterium-mediated inoculation, to be infectious to 3 Nicotiana species, including N. tabacum.InN. benthamiana the betasatellite was shown to change the upward leaf rolling symptoms to a severe downward leaf curl, as is typical for many monopartite begomoviruses with betasatellites. Conclusions: The leaf curl disease of tobacco in Oman was shown to be caused by ChiLCV and ToLCB. This is the first identification of ChiLCV with ToLCB infecting tobacco. The study shows that, despite the low diversity of begomoviruses and betasatellites in Oman, the extant viruses/betasatellites are able to fill the niches that present themselves. Keywords: Geminivirus, Begomovirus, Betasatellite, Chilli leaf curl virus, Tomato leaf curl betasatellite, Nicotiana tabacum * Correspondence: [email protected] †Muhammad Shafiq Shahid and Muhammad Shafiq contributed equally to this work. 1Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, 123 Muscat, Oman Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Shahid et al. Virology Journal (2019) 16:131 Page 2 of 9 Background The study described here has analysed the etiology of Viruses of the genus Begomovirus (family Geminiviridae) a leaf curl disease of tobacco recently identified for the cause economically important diseases of many crops first time in Oman. The results show that the disease is throughout tropical and subtropical regions. Begomo- associated with ChiLCV and ToLCB. Additionally Agro- viruses have circular single-stranded (ss) DNA genomes, bacterium-mediated inoculation of the cloned virus and that are encapsidated in distinctive twinned icosahedral betasatellite were used to satisfy Koch’s postulates. The (geminate) particles and are transmitted exclusively by the significance of the findings is discussed. whitefly Bemisia tabaci [1]. The genomes of begomo- viruses are either bipartite, consisting of two ~ 2.6–2.8 kb Methods genomic components known as DNA A and DNA B, or DNA extraction and initial detection of a begomovirus monopartite, consisting of a single ~ 2.6–2.8 kb compo- and satellite by polymerase chain reaction nent that is a homolog of the DNA A of bipartite viruses. Total nucleic acid was extracted from leaf samples using a The majority of begomoviruses native to the New World cetyltrimethylammonium bromide-based method [12]and are bipartite, whereas the majority of begomoviruses kept at − 20 °C. Extracted DNA was used as a template in native to the Old World (OW) are monopartite [1]. The polymerase chain reaction (PCR) with primer pairs for the genomes (or DNA A components) of begomoviruses detection of begomoviruses (TYLCD-356 (5′-ATCATT originating from the OW encode six genes. In the TCCACKCCCGYCTCGA-3′/TYLCD-1044 5′-GCRTGM complementary-sense the genes encode the replication- GTACABGCCATATACA-3′), amplifying an ~ 800 nt associated protein, the transcriptional-activator protein, product, betasatellites (Sat101/Sat102), amplifying an ~ the replication-enhancer protein and the (A) C4 protein. 1350 nt product [13], and alphasatellites (DNA101/ The two genes in the virion-sense encode the (A) V2 pro- DNA102), amplifying an ~ 1380 nt product [14]. Addition- tein and the coat protein [2]. ally the primer pair βC1F (5′-AGACCCGGGATGAC Most monopartite begomoviruses are associated with a GATCAGATATAATAACA-3′)/βC1R (5′-ACGTCGAC group of ssDNA satellites collectively known as betasa- TCACACACACACTTTCGTACA-3′), amplifying a ~ tellites [3, 4]. Betasatellites are approximately half the 350 nt product, was used in PCR for the detection of size of their helper begomoviruses (~ 1.4 kb) and depend betasatellites. on the helper virus for their replication, movement in plants and transmission between plants [4]. The struc- Rolling circle amplification, cloning and sequencing ture of betasatellites is highly conserved comprising of a Circular DNA molecules in nucleic acid samples were sequence rich in adenine (A-rich), a sequence conserved enriched using rolling circle amplification (RCA) as between all betasatellites, known as the satellite con- described earlier [15]. Restriction of the high molecular served region (SCR), that contains a predicted hairpin weight concatameric RCA products with BamHI resulted structure with the nonanucleotide sequence TAATAT- in ~ 2.7 kb fragments, which were eluted from agarose gels TAC forming part of the loop, and a single conserved using a GeneJet Gel Extraction Kit (Thermo Fisher (between all betasatellites) gene with a capacity to en- Scientific) and cloned in BamHI restricted pGEM-3zf (+) code an ≥118 amino acid product known as βC1 [5]. (Promega Madison, USA). Potentially full-length clones The first disease caused by a begomovirus in Oman resulting from RCA (for begomovirus) and PCR (for beta- was identified in 1993, although the causative viruses satellite) were sequenced commercially using the primer- and satellites were not characterized until much later walking approach (Macrogen Inc., South Korea). [6]. Despite this the identified diversity of begomoviruses and betasatellites in Oman remains low relative to the Sequence assembly and analysis known diversity on the Indian sub-continent. The ma- Sequences were assembled using SeqMan, part of the jority of these viruses and satellites appear to have been Lasergene package of sequence analysis software (DNA introduced to the country or have evolved from intro- Star Inc., Madison, WI, USA). Related sequences available duced species. In this respect Oman holds an unusual in the GenBank database were identified using the Basic position, being at the front of a meeting of begomo- Local Alignment Search Tool nucleotide (BLASTn) [16] viruses introduced from Africa, such as Tomato leaf curl run on-line (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Open Sudan virus and African cassava mosaic Zanzibar virus reading frames (ORFs) in sequences were identified using [7, 8], begomoviruses and satellites introduced from the the ORF Finder program run on-line (https://www.ncbi. Indian sub-continent, such as Chilli leaf curl virus nlm.nih.gov/orffinder/). The Species Demarcation Tool (ChiLCV) and Tomato leaf curl betasatellite (ToLCB [9]; (SDT), with the MUSCLE option, was used to calculate ), and viruses native to the Middle East region, such as sequence identity values [17]. Pairwise multiple sequence Tomato yellow leaf curl virus (TYLCV) and Watermelon alignments were produced using the MUSCLE algo- chlorotic stunt virus [10, 11]. rithm implemented in MEGA6 [18]. The evolutionary Shahid et al. Virology Journal (2019) 16:131 Page 3 of 9 relationships between sequences were determined by con- yellowing and stunting (Fig. 1). In the fields between 60 structing phylogenetic trees using Clustal X (neighbor- and 70% of plants were exhibiting symptoms. joining method) and displayed using Treeview [19]. Leaves from four symptomatic N. tabacum plants, originating from two independent but neighbouring Production of constructs for Agrobacterium-mediated fields (500 m apart), were collected, as well as a non- inoculation of plants symptomatic
Recommended publications
  • Disease Management for Leaf Curl in Chilli JPP 2020; 9(3): 863-866 Received: 23-03-2020 Accepted: 27-04-2020 Dr
    Journal of Pharmacognosy and Phytochemistry 2020; 9(3): 863-866 E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com Disease management for leaf curl in Chilli JPP 2020; 9(3): 863-866 Received: 23-03-2020 Accepted: 27-04-2020 Dr. Ram Prakash Sharma, RK Verma and Dr. Bipul Mandal Dr. Ram Prakash Sharma Subject Matter Specialist, Krishi Abstract Vigyan Kendra, Madhepura, A field trial was conducted during kharif 2019 cropping seasons. An attempt was made to find out the BAU, Sabour, Bhagalpur, Bihar, effective management practice through application of agrochemicals to minimize vector activites &the India crop loss. Three bio rational molecules viz., Imidacloprid 17.8 SL @ 1.0 ml/3liter water, Acetamiprid 20% SP @1.0 gm/ liter water and KEM (Immunity Builder) @2.0 ml/ liter were sprayed at 15 day R. K. Verma interval and were evaluated against vector activity to reduce the leaf curl disease incidence. The Subject Matter Specialist, Krishi minimum disease incidence was recorded to the extent of (27.25%) coupled with highest fruit yield of Vigyan Kendra, Madhepura, 63.13 q/ha in the treatment T2 having two spraying of Acetamiprid 20% SP @1.0 gm/ liter water at an BAU, Sabour, Bhagalpur, Bihar, interval of fifteen days during Kharif 2019 cropping season. Maximum disease incidence (32.25%) in India control with lowest yield (54.23/ha). Infection by chili leaf curl disease complex adversely affected yield attributing characters during Kharif season. Highest cost-benefit ratio of 1:11.49 was obtained by two Dr. Bipul Mandal spraying of Acetamiprid 20% SP @1.0 gm/ liter water during Kharif crop season.
    [Show full text]
  • An Overview of Chilli Thrips, Scirtothrips Dorsalis (Thysanoptera: Thripidae) Biology, Distribution and Management
    Chapter 3 An Overview of Chilli Thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) Biology, Distribution and Management Vivek Kumar, Garima Kakkar, Cindy L. McKenzie, Dakshina R. Seal and Lance S. Osborne Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55045 1. Introduction The industrial revolution, globalization and international trade liberalization are some of the important events that have afforded vast opportunities for invasive insect species to establish in new territories [1]. These invasive species, facing no challenge by their natural enemies, thrive well in the new environment [2]. In addition to the disturbance they cause to the biodiversity, pest invasion in any country results in increased pressure on biosecurity, national economy, and human health management systems [1, 3, 4]. Apart from economic loss in managing them, these pests pose a significant detrimental impact on tourism and recreational value of the region, which further adds in indirect economic damage to the nation [5]. Of this large group of invasive pests, thrips are one of the most important members. The invasive status gained by thrips across the globe is due to their high degree of polyphagy, wide host range and easy dispersal that can be anthropogenic or natural (wind-mediated). The earliest fossil record of order Thysanoptera dates back to the Late Triassic period, from the state of Virginia in the United States and the country Kazakhstan in Central Asia, but their abundance was rare until the Cretaceous period from which many specimens of Thysanoptera have been recorded [6]. The order Thysanoptera was given its current taxonomic rank by an Irish entomologist, A.
    [Show full text]
  • Survey of Chilli Leaf Curl Complex Disease in Eastern Part of Uttar Pradesh
    Volume 1- Issue 7 : 2017 DOI: 10.26717/BJSTR.2017.01.000589 RS Mishra. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access Survey of Chilli Leaf Curl Complex Disease in Eastern Part of Uttar Pradesh AN Chaubey and RS Mishra* Department of Plant Pathology, ND University of Agriculture & Technology, India Received: December 04, 2017; Published: December 13, 2017 *Corresponding author: RS Mishra, Department of Plant Pathology, ND University of Agriculture & Technology, Kumarganj, Faizabad-224229, UP, India Abstract Chili (Capsicum annuum L.) is an economically important and widely cultivated crop of India. Chilli leaf curl virus is one of the major selected in eastern Uttar Pradesh viz, Sultanpur and Faizabad districts during 2014 and 2015 from March to May each year. The highest leaf curllimiting incidence factors was in chili noticed production, in Sewra which (67.39 decreases %) followed yield by significantly. Hasuimukundpur The experiment (65.22%) wasand Etwaracarried (64.07%)out in one in hundred 2014, whereas fifty villages in 2015, randomly it was found maximum in Sewra (61.44%), Hasuimukundpur (59.79%) and Isawli (57.07%). In case of block wise, the maximum incidence was found Amaniganj (59.53, 50.79%) and Kurwar (54.70, 52.91%) in 2014 and 2015 respectively. While the lowest incidence was observed at Milkipur 47.46 % in 2014 and 41.48% in 2015 the average leaf curl disease incidence was recorded highest in 2014 at both districts. Keywords: Survey; Chilli leaf curl; Eastern Uttar Pradesh Introduction Chilli (Capsicum annuum L) is one of the most valuable cash Materials and Methods crops of India.
    [Show full text]
  • Molecular Characterization of Begomoviruses Associated with Yellow Leaf Curl Disease in Solanaceae and Cucurbitaceae Crops from Northern Sumatra, Indonesia
    The Horticulture Journal 89 (4): 410–416. 2020. e Japanese Society for doi: 10.2503/hortj.UTD-175 JSHS Horticultural Science http://www.jshs.jp/ Molecular Characterization of Begomoviruses Associated with Yellow Leaf Curl Disease in Solanaceae and Cucurbitaceae Crops from Northern Sumatra, Indonesia Elly Kesumawati1,2*, Shoko Okabe3, Munawar Khalil2, Gian Alfan2, Putra Bahagia1, Nadya Pohan1, Sabaruddin Zakaria1,2 and Sota Koeda3 1Faculty of Agriculture, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia 2Graduate School of Agriculture, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia 3Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan Begomoviruses, transmitted by whiteflies (Bemisia tabaci), have emerged as serious constraints to the cultivation of a wide variety of vegetable crops worldwide. Leaf samples from Solanaceae (tomato, tobacco, and eggplant) and Cucurbitaceae (cucumber and squash) plants exhibiting typical begomoviral yellowing and/or curling symptoms were collected in Northern Sumatra, Aceh province, Indonesia. Rolling circle amplification was conducted using DNA isolated from cucumber, squash, eggplant, and tobacco, and the full- length sequences of the begomoviruses were evaluated. The following viruses were isolated: bipartite begomoviruses Tomato leaf curl New Delhi virus (ToLCNDV), Squash leaf curl China virus (SLCCNV), Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV), and a monopartite begomovirus Ageratum yellow vein virus (AYVV). Begomovirus diagnosis was conducted by PCR using begomovirus species-specific primers for Pepper yellow leaf curl Indonesia virus (PepYLCIV), Pepper yellow leaf curl Aceh virus (PepYLCAV), ToLCNDV, SLCCNV, TYLCKaV, and AYVV, which are the predominant begomoviruses. The primary begomovirus species for each plant were as follows: PepYLCAV for tomato, AYVV for tobacco, TYLCKaV for eggplant, ToLCNDV for cucumber, and SLCCNV for squash.
    [Show full text]
  • Management of Viruses and Viral Diseases of Pepper (Capsicum Spp.)
    Chapter Management of Viruses and Viral Diseases of Pepper (Capsicum spp.) in Africa Olawale Arogundade, Titilayo Ajose, Itinu Osijo, Hilary Onyeanusi, Joshua Matthew and Taye H. Aliyu Abstract Increasing outbreaks of virus species infecting pepper (Capsicum spp.) is a major problem for growers in Africa due to a combination of factors, including expansion of pepper cultivation, abundance of insect vectors and climate change. More than 45 viruses have been identified to infect pepper crops causing economic loss in terms of reduced quality and marketable yield, sometimes up to 100%. The Pepper veinal mottle virus (PVMV), Potato virus Y (PVY) and Cucumber mosaic virus (CMV) are endemic in many countries including Uganda, Mali, Cameroon, Morocco and Nigeria. Current management options for virus infection in Capsicum spp. is by the integration of several approaches. More importantly, eradication of infected plants, cultivation of disease resistant varieties, improved cultural prac- tices and judicious use of insecticides especially when plants are young and easily colonized by vectors. In recent years, eco-friendly control measures are needful to reduce occurrence of virus diseases in Capsicum spp. Keywords: climate change, economic loss, outbreaks, management options, virus infection 1. Introduction Peppers (Capsicum spp.) are one of the most important spices and vegetable crops in the economic and social life of people living worldwide [1]. Viruses are among the most important factors threatening Capsicum spp. production in several regions like Australia [2], Europe [3], Asia [4] and Africa [5]. They cause diseases that not only reduce yield and quality of fruits, but also increase the cost of preven- tive measures and cost of producing clean planting materials.
    [Show full text]
  • Plant Resistance in Chillies Capsicum Spp Against Whitefly, Bemisia Tabaci Under Field and Greenhouse Condition
    Journal of Entomology and Zoology Studies 2018; 6(2): 1904-1914 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Plant resistance in chillies Capsicum spp against JEZS 2018; 6(2): 1904-1914 © 2018 JEZS whitefly, Bemisia tabaci under field and Received: 27-01-2018 Accepted: 28-02-2018 greenhouse condition Niranjanadevi Jeevanandham Agricultural College and Research Institute, Madurai, Niranjanadevi Jeevanandham, Murugan Marimuthu, Senthil Natesan, Tamil Nadu Agricultural Karthikeyan Gandhi and Sathiyamurthy Appachi University TNAU, Tamil Nadu, India Abstract Murugan Marimuthu Present studies were conducted on chillies Capsicum spp against whitefly in field and greenhouse Community Science College and screening. Forty five chillies accessions were subjected to field screening against whitefly, Bemisia Research Institute, Madurai, tabaci. Varietal resistance is further evaluated in the greenhouse condition by studying the categories of TNAU, Tamil Nadu, India resistance on whitefly. Accessions selected as ‘‘promising’’ for resistance (low whitefly populations) and susceptible accessions were reevaluated at greenhouse condition. Ten accessions of Capsicum were Senthil Natesan screened against whitefly, under greenhouse condition for categorization of the mechanism(s) of Agricultural College and resistance. Accessions P2, P4, ACC1 and ACC12 were found to be less preferred for adult settlement, Research Institute, Madurai, whereas accessions P1, P3, P5, ACC10, ACC26 and ACC27 were the most preferred one. In resistant Tamil Nadu Agricultural University TNAU,
    [Show full text]
  • 2016 Annual Report
    ANNUAL REPORT 2016 World Vegetable Center Published by World Vegetable Center P.O. Box 42 Shanhua, Tainan 74199 Taiwan T +886 6 583 7801 F +886 6 583 0009 E [email protected] avrdc.org WorldVeg Publication: 17-814 ISBN: 92-9058-221-9 © 2017, World Vegetable Center Editor: Maureen Mecozzi Graphic Design: Amy Chen Production Team: Kathy Chen, Vanna Liu Contributors Victor Afari-Sefa, Fenton Beed, Narinder Dhillon, Fekadu Dinssa, Thomas Dubois, Warwick Easdown, Andreas Gramzow, Peter Hanson, Yu-Tsai Huang, David Johnson, Philipo Joseph, Regine Kamga, Nick Kao, Lawrence Kenyon, Alaik Laizer, Didit Ledesma, Greg Luther, Iin Luther, John Macharia, I.R. Nagaraj, Ram Nair, Rhiannon O’Sullivan, Dirk Overweg, Roland Schafleitner, Pepijn Schreinemachers, Marco Wopereis, Ray-yu Yang On the cover: In Tanzania, improved screenhouse designs based on the Center’s research in protected cultivation help Maria Elias and her family keep their pepper crop safe from pests. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. Please feel free to quote or reproduce materials from his report. The World Vegetable Center requests acknowledgement and a copy of the publication or website where the citation or material appears. Suggested citation World Vegetable Center. 2017. Annual Report 2016. World Vegetable Center, Shanhua, Taiwan. Publication 17-814. 64 p. CONTENTS 2 Foreword from the Chair 3 Foreword from the Director General 4 Timeline 6 GLOBAL STRATEGY PLANNING 10 EAST & SOUTHEAST ASIA: GROWING WITH BIG DATA 12 EAST
    [Show full text]
  • Infected with Sweet Potato Leaf Curl Virus Revista Mexicana De Fitopatología, Vol
    Revista Mexicana de Fitopatología ISSN: 0185-3309 [email protected] Sociedad Mexicana de Fitopatología, A.C. México Valverde, Rodrigo A.; Clark, Christopher A.; Fauquet, Claude M. Properties of a Begomovirus Isolated from Sweet Potato [Ipomoea batatas (L.) Lam.] Infected with Sweet potato leaf curl virus Revista Mexicana de Fitopatología, vol. 21, núm. 2, julio-diciembre, 2003, pp. 128-136 Sociedad Mexicana de Fitopatología, A.C. Texcoco, México Available in: http://www.redalyc.org/articulo.oa?id=61221206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 128 / Volumen 21, Número 2, 2003 Properties of a Begomovirus Isolated from Sweet Potato [Ipomoea batatas (L.) Lam.] Infected with Sweet potato leaf curl virus Pongtharin Lotrakul, Rodrigo A. Valverde, Christopher A. Clark, Department of Plant Pathology and Crop Physiology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, USA; and Claude M. Fauquet, ILTAB/Donald Danford Plant Science Center, UMSL, CME R308, 8001 Natural Bridge Road, St. Louis, MO 63121, USA. GenBank Accession numbers for nucleotide sequence: AF326775. Correspondence to: [email protected] (Received: November 6, 2002 Accepted: February 12, 2003) Lotrakul, P., Valverde, R.A., Clark, C.A., and Fauquet, C.M. potato leaf curl virus (SPLCV). Por medio de la reacción en 2003. Properties of a Begomovirus isolated from sweet potato cadena de la polimerasa (PCR), utilizando oligonucleótidos [Ipomoea batatas (L.) Lam.] infected with Sweet potato leaf específicos para SPLCV, se confirmó la presencia de SPLCV.
    [Show full text]
  • (Begomovirus) in Chile Pepper
    HORTSCIENCE 54(12):2146–2149. 2019. https://doi.org/10.21273/HORTSCI14484-19 emergence of begomoviruses as major chile pepper pathogens has been relatively recent. Pernezny et al. (2003) reported five begomovi- A Novel Source of Resistance to Pepper ruses causing disease in chile pepper in the Americas and only one in Asia. Since then, the yellow leaf curl Thailand virus number of chile pepper–infecting begomovi- ruses detected in Asia has greatly increased, (PepYLCThV) (Begomovirus) with at least 29 species and a large diversity of strains reported (Kenyon et al., 2018). Although Pepper yellow leaf curl virus (PepYLCV) was in Chile Pepper first identified in Thailand in 1995 Derek W. Barchenger (Samretwanich et al., 2000), PepYLCThV World Vegetable Center, Shanhua, Tainan, Taiwan was not identified in Thailand until 2012 (Chiemsombat et al., 2018), and the sequences Sopana Yule of both DNA-A and DNA-B components were World Vegetable Center East and Southeast Asia Research and Training submitted to National Center for Biotechnology Information in 2016. Across Thailand, PYLC is Station, Kamphaeng Saen, Nakhon Pathom, Thailand caused by at least three bipartite Begomovirus Nakarin Jeeatid species, with a common PepYLCThV DNA-B component, and sometimes as mixed infections Horticulture Section, Department of Plant Science and Agricultural (Chiemsombat et al., 2018). In some of the Resources, Plant Breeding Research Center for Sustainable Agriculture hotspots for the disease, losses of 95% have Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand been reported, and farmers have been forced to grow alternative crops. Shih-wen Lin, Yen-wei Wang, Tsung-han Lin, Yuan-li Chan, Management of begomoviruses has been and Lawrence Kenyon based primarily on insecticides against the World Vegetable Center, Shanhua, Tainan, Taiwan whitefly vector.
    [Show full text]
  • Project 2: Chili Leaf Curl Disease in Asia: Diversity and Resistance
    Research Proposal: Chili Leaf Curl Disease in Asia: Diversity and Resistance Proposal ID 19-014 1 Proposal Summary Project title Chili Leaf Curl Disease in Asia: Diversity and resistance Main WorldVeg Mandy Lin ([email protected]) contact person Main WorldVeg Dr. Lawrence Kenyon ([email protected]) scientists Dr. Derek Barchenger ([email protected]) Project duration 3 years (1 March 2020 – 28 February 2023) Estimate budget contribution per 10,000 to 22,500 company (US$)* *The range of budget contribution per company is calculated based on a number of companies showing interest to jointly fund the project, however, the final amount of the required contribution per company may be or may not be the same as indicated above as some companies may drop off. The final amount of the required contribution will be announced once APSA confirms the companies’ intention to sign the agreement. Objective In this project, we propose a multimodal approach as the most efficient and impactful strategy to tackle Chili Leaf Curl Disease in Asia, with the overall objective of expanding the boundaries of our understanding of the genetics of resistance in the host and the phylogeny and genetic recombination rates in the pathogen. The specific objectives include 1) confirmation of WorldVeg resistance sources to new ChiLCD isolates, 2) identification of novel sources of resistance to ChiLCD in a biodiverse germplasm set, and 3) collection and phylogenetic characterization of the Begomovirus species infecting chili and other hosts across Asia. Background Consumer demand for chili (Capsicum annuum) has substantially increased over the past 30 years, especially for hot chili pepper.
    [Show full text]
  • Ecofriendly Management of Chilli Leaf Curl Disease Complex Through Plant Products
    Journal of Pharmacognosy and Phytochemistry 2019; 8(1): 1045-1049 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(1): 1045-1049 Ecofriendly management of chilli leaf curl disease Received: 04-11-2018 Accepted: 06-12-2018 complex through plant products Zeeshan N Department of Plant Pathology, Zeeshan N and Kudada N Faculty of Agriculture, Birsa Agricultural University, Ranchi, Abstract Jharkhand, India A field trial was conducted during Rabi, 2015-16 cropping seasons. An attempt was made to find out the cost effective management schedule to minimize the crop loss. Seven plant products viz., Neem Kudada N Department of Plant Pathology, (Azadirachta indica L.) oil 0.03% 5ml/lit. Neem (Azadirachta indica L.) Seed Kernel Extract (NSKE) 5 Faculty of Agriculture, Birsa % @ 5ml/lit. Karanj (Pongamia pinnata L.) oil @ 5ml/ lit. Nimbicidine 0.03% @ 3ml/lit., Achook Agricultural University, Ranchi, 0.03% @ 3ml/lit., Neem gold 0.15 % @ 2ml/lit. and Nimactin 0.15% @ 2ml/lit. were evaluated against Jharkhand, India vector activity to reduce the leaf curl disease incidence. The minimum disease incidence was recorded to the extent of (23.45%) coupled with highest fruit yield of 64.45 q/ha in the treatment T2 having two sprayings of NSKE 5% @ 5ml /lit. at an interval of ten days during Rabi, 2015-16 cropping season. Maximum disease incidence (35.45%) in control with lowest yield (48.00/ha). Infection by chili leaf curl disease complex adversely affected yield attributing characters during Rabi season. Highest cost-benefit ratio of 1:17.13 was obtained by two sprayings of NSKE 5% @ 5ml/lit.
    [Show full text]
  • Overview of Biotic Stresses in Pepper (Capsicum Spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics
    International Journal of Molecular Sciences Review Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics Mario Parisi 1 , Daniela Alioto 2 and Pasquale Tripodi 1,* 1 CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy; [email protected] 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-089-386-217 Received: 18 March 2020; Accepted: 5 April 2020; Published: 8 April 2020 Abstract: Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers’ demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects.
    [Show full text]