The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission

Total Page:16

File Type:pdf, Size:1020Kb

The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J. W. Evans, Sidney, Australia; N. W. Fra- zier, University of California, Berkeley; T. Fukushi, University of Sapporo, Sapporo, Japan; M. S. K. Ghauri, British Museum (Natural History), London; R. M. Gilmer, Cornell University, Ithaca, N.Y.; N. E. Grylls, Canberra, Australia; Karl Maramo- rosch, Boyce Thompson Institute, Yonkers, N.Y.; H. N. Pollard, U.S. Department of Agriculture, Port Valley, Ga.; W. R. Rich- ards, Canada Department of Agriculture, Ottawa; C. T. Rivera, Los Banos, Philippines ; R. F. Ruppel, Michigan State University, East Lansing; Y. Tahama, Kumamoto Siriculture Experiment Station, Kumamoto, Japan; R. G. Timian, U.S. Department of Agriculture, Fargo, N. Dak.; and Carlo Vidano, University of Torino, Torino, Italy. I am also indebted to D, A. Young, North Carolina State Uni- versity, Raleigh, for information on the taxonomy of the subfamily Cicadellinae and to W. H. Anderson, U.S. Department of Agri- culture, Beltsville, Md., for permitting me access to the unpublished manuscript of the GÍeneral Catalogue of the Homop- tera, fascicle VI, Cicadelloidea, by Z. P. Metcalf. My sincere appreciation is expressed to P. W. Oman and F. F. Smith, U.S. Department of Agriculture, Beltsville, Md., for many helpful suggestions. THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, QCADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION By M. W. NIELSON Technical Bulletin No. 1382 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued August 1968 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington; D.C. 20402—Price $1.50 CONTENTS Page History of transmission of leafhopper-borne viruses 2 Taxonomic considerations 6 Leaf hopper vectors and phytopathogenic viruses — 9 Virus-vector relationships 11 Geographical distribution 15 Preservation and disposition of vector specimens — 15 Classification and treatment of vector species 16 Subfamily Agalliinae 17 Subfamily Macropsinae 50 Subfamily Coelidiinae 58 Subfamily Aphrodinae 60 Subfamily Gyponinae 67 Subfamily Cicadellinae 72 Subfamily Typhlocybinae 143 Subfamily Deltocephalinae 147 Addenda 318 Literature cited 318 Appendix - Table 1.—Summary of leaf hopper vectors and transmission of phytopathogenic viruses 370 Index to genera and subfamilies 378 Index to trivial names 380 Index to leafhopper-borne viruses and virus-like dis- orders 385 THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION By M. W. NiELSON, Entomology Research Division^ Agricultural Research Service During a span of 70 years significant contributions were made in the field of plant pathogenic viruses and transmission of vi- ruses by cicadellid vectors. Unfortunately progress in taxonomic research did not keep pace with virus-vector research and as a consequence nearly two-thirds of the known vector species re- quired one or more taxonomic changes. Most of the changes were made not as a result of initial vector discoveries but from subse- quent research in leafhopper taxonomy. General acceptance and usage of the change in a new name for a vector species were slow. Often research workers were unaware of name changes, and sometimes the old name was perpetuated from author to author and year to year. Names of a few species that were passé 20 years ago were still in use at the time of this investigation. Among 8 subfamilies, 52 genera, and 114 species treated, 1 genus and 3 species were suppressed, 1 subgenus was given a new generic status, 1 genus and 1 species were reinstated, 2 new com- binations were proposed, 2 lectotype designations were made, and 5 vector species previously misdetermined were corrected. The vectorial and taxonomic status of four species remained uncer- tain. Research workers have recognized the need to clarify the tax- onomic and vectorial status of all leafhopper species incriminated in the transmission of plant viruses. In fulfillment of this need, I have restudied all knov^nn authentic vector species from the tax- onomic vievrpoint and reviewed the literature treating all cases of virus transmission by cicadellid vectors to ascertain the authentic- ity of the species reported as vectors. In scope, this bulletin presents the latest taxonomic status of all authentic vector species in light of the most recent acceptable tax- onomic concepts. Keys to the vector subfamilies, vector genera, and vector species are proposed. Each species has been rede- scribed and illustrated on the basis of the genitalia and general habitus of the adults. A complete resume of distribution, biology, and virus transmission for each species is also presented. Common names have been suggested for all species except those for which common names have already been officially accepted. 2 TECHNICAL BULLETIN 1382, U.S. DEPT. OF AGRICULTURE HISTORY OF TRANSMISSION OF LEAFHOPPER-BORNE VIRUSES Except for a few early accounts, a complete history of leafhop- per vectors of plant viruses up to the present has not been re- ported. The remarkable progress made in this field from 1895 to 1965 is graphically illustrated in figure 1, which shows the number of leafhopper vectors discovered per year and the accumulative total for this period. In all, 114 vectors transmitting 65 viruses and virus strains were implicated during this period. The earliest record of authentic transmission of plant patho- genic viruses by leafhoppers has been accredited to Takata / n NUMBER PER YEAR 1 ACCUMULATIVE NUMBER PER YEAR f «7 u 50 S 3-1 ... .Mr Ill 1930 YEAR FIGURE 1.—Number of leafhopper vectors discovered per year and accumu- lative total per year from 1895 to 1965. THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES ó (781)'^ in 1895, when he demonstrated transmission of rice dwarf virus in Japan by Recilia dorsalis (Motschulsky). Shortly after his discovery the Shiga Agricultural Experiment Station (718) in Japan provided evidence that the real vector was Nephotettix cincticeps (Uhler). From 1899 to 1916 a controversy developed to the extent that Takata's work was suppressed and cincticeps be- came generally accepted among Japanese workers as the only vec- tor of the virus. These developments were unknown to the west- ern world until 1936, when Katsura U09) reviewed the early history of transmission of plant viruses in Japan. A year later Fukushi (295) published his account of transmission of rice dwarf virus by dorsalis, and thus reestablished this species as the first authentic vector of a plant virus. During the first 25 years after Takata's discovery very little progress was made on leafhopper-bome viruses. Prior to 1920 only three leafhopper vector species and two viruses were known. The earliest work done in the United States was in 1909, when Ball (27) showed a relationship between the beet leafhopper (Cir- culifer tenellus (Baker)) and curly top disease of sugarbeets. However, it was not until 1910 that Shaw (716) offered substan- tial proof of the viral nature of the disease and transmission of the virus by tenellus. For many years this record was considered as the first published evidence of a leafhopper-borne virus until Takata's work was revealed by Katsura (i09). During the period 1920-30 four additional leafhopper vector species were discovered. In 1924 Kunkel (i22) presented his clas- sical experiments on transmission of the eastern strain of North American aster yellows virus by Macrosteles fascifrons (Stâl). In the same year in Africa Storey (766) transmitted maize streak virus by means of Cicadulina mbila (Naude), and the following year he (767) demonstrated transmission of Uba cane virus by the same leafhopper species. Fawcett (25Í) was credited for his work in 1927 on transmission of Argentine curly top virus of sugar- beets by Agalliana ensigera Oman. Transmission of the western strain of North American aster yellows virus by fascifrons was attributed to Severin (687) in 1929. In the same year Dobroscky (213) incriminated Scleroracus vaccinii (Van Duzee) as the vec- tor of cranberry false blossom virus. The number of new vectors discovered between 1930 and 1940 increased 125 percent over the previous decade. Ten vectors transmitting eight viruses were found. Perhaps the most significant work was done by Storey (770, 773, 77k) in 1931, 1936, and 1937 on transmission of maize streak and maize mottle viruses by two additional species of Cicadulina and by Kunkel (U28) in 1933 on transmission of peach yellows virus by Macrop- sis trimaculata (Fitch).
Recommended publications
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • Diseases of Herbaceous Ornamental Plants
    122 Ageratum VI. DISEASES OF HERBACEOUS ORNAMENTAL PLANTS AGERATUM Yellows (Callistephus virus 1) caused mod. damage to flowers in Assiniboine Park, Winnipeg, Man, (W L. Gordon). ALTHAEA - Hollyhock Rust (Puccinia malvacearum). Heavy infections occurred at Fort Garry, Man. (W.L.G.). Several gardens at Dorval, Que. had tr. -25% rust (D. W. Creelman). It was sev, on specimens received from East Angus and Coaticook, and mod. in several gardens in St, Jean, Que. (R. Crete). Infections were mod- sev, in gardens in Charlottetown, P, E.I. (R.R. Hurst, J.E. Campbell). ANEMONE Rust (Tranzchelia pruni-spinosae) occurred on A. coronaria in a garden at Sidney, B.C. Nearby prune trees were heavily infected. (W. Newton), ANTIRRHINUM - Snapdragon Stem Rot (Botrytis cinerea). A tr, of stem rot was seen at Hamilton, Ont. and some wilting was evident, Botrytis was sporulating on the stem cankers and was isolated from diseased tissue (W.G.K.). Powdery Mildew (Oidium sp, was tr, on the lower leaves of a few plants at Hamilton, Ont. (W.G.K.). ARALIA Wilt (Verticillium albo-atrum), One infected plant was seen at Victoria, B.C. (W.R. Foster). ASTER Rust (Coleosporium asterum =C$solidaginis). Infection was sev, in a 1/4 acre planting at Bowmanville, Oz, (H.S, Thompson). BEGONIA Powdery Mildew (Erysiphe cfchoracearurn) was noted at Saskatoon, Sask. (T. C Vanterpool). Mildew infection varied from sl. - sev. on 25/150 tuberous begonias observed at Hamilton, Ont. (W.G.K.). Specimens were received from Charlesbourg, Que ~ (D. Leblond). Ring Spot (virus). Numerous chlorotic rings were observed on the foliage of a single potted tuberous begonia at Grantham, Ont, Juice extract from the leaves when rubbed on cucumber produced chlorotic rings on the true leaves, The virus has not been identified, Similar symptoms were seen on 2/150 plants in a commercial greenhouse at Hamilton, Ont.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Notes on Neotropical Proconiini (Hemiptera: Cicadellidae: Cicadellinae), IV: Lectotype Designations of Aulacizes Amyot &
    Arthropod Systematics & Phylogeny 105 64 (1) 105–111 © Museum für Tierkunde Dresden, ISSN 1863-7221, 30.10.2006 Notes on Neotropical Proconiini (Hemiptera: Cicadellidae: Cicadellinae), IV: lectotype designations of Aulacizes Amyot & Audinet-Serville species described by Germar and revalidation of A. erythrocephala (Germar, 1821) GABRIEL MEJDALANI 1, DANIELA M. TAKIYA 2 & RACHEL A. CARVALHO 1 1 Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil [[email protected]] 2 Center for Biodiversity, Illinois Natural History Survey, 1816 S. Oak Street, Champaign, IL 61820, USA [[email protected]] Received 17.iii.2005, accepted 22.viii.2006. Available online at www.arthropod-systematics.de > Abstract Lectotypes are designated for the sharpshooter species Aulacizes erythrocephala (Germar, 1821) and A. quadripunctata (Germar, 1821) based on recently located specimens from the Germar collection. The former species is reinstated from synonymy of the latter one and is redescribed and illustrated based on specimens from Southeastern Brazil. The male and female genitalia are described for the fi rst time. The two species are similar morphologically, but they can be easily distinguished from each other, as well as from the other species of the genus, by their color patterns. > Key words Membracoidea, Aulacizes quadripunctata, leafhopper, sharpshooter, taxonomy, morphology, Brazil. 1. Introduction This is the fourth paper of a series on the taxonomy redescribed and illustrated. One sharpshooter type of the leafhopper tribe Proconiini in the Neotropical located in the Germar collection (Homalodisca vitri- region. The fi rst three papers included descriptions of pennis (Germar, Year 1821)) was previously designated two new species and notes on other species in the tribe by TAKIYA et al.
    [Show full text]
  • Planthopper and Leafhopper Fauna (Hemiptera: Fulgoromorpha Et Cicadomorpha) at Selected Post-Mining Dumping Grounds in Southern Poland
    Title: Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland Author: Marcin Walczak, Mariola Chruściel, Joanna Trela, Klaudia Sojka, Aleksander Herczek Citation style: Walczak Marcin, Chruściel Mariola, Trela Joanna, Sojka Klaudia, Herczek Aleksander. (2019). Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland. “Annals of the Upper Silesian Museum in Bytom, Entomology” Vol. 28 (2019), s. 1-28, doi 10.5281/zenodo.3564181 ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 28 (online 006): 1–28 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 05.12.2019 MARCIN WALCZAK1 , Mariola ChruśCiel2 , Joanna Trela3 , KLAUDIA SOJKA4 , aleksander herCzek5 Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post- mining dumping grounds in Southern Poland http://doi.org/10.5281/zenodo.3564181 Faculty of Natural Sciences, University of Silesia, Bankowa Str. 9, 40-007 Katowice, Poland 1 e-mail: [email protected]; 2 [email protected]; 3 [email protected] (corresponding author); 4 [email protected]; 5 [email protected] Abstract: The paper presents the results of the study on species diversity and characteristics of planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) inhabiting selected post-mining dumping grounds in Mysłowice in Southern Poland. The research was conducted in 2014 on several sites located on waste heaps with various levels of insolation and humidity. During the study 79 species were collected. The paper presents the results of ecological analyses complemented by a qualitative analysis performed based on the indices of species diversity.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Bulletin No. 205-The Beet Leafhopper in Utah: a Study of Its Distribution and the Occurrence of Curly-Top
    Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 205 - The Beet Leafhopper in Utah: A Study of Its Distribution and the Occurrence of Curly-top George F. Knowlton Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Knowlton, George F., "Bulletin No. 205 - The Beet Leafhopper in Utah: A Study of Its Distribution and the Occurrence of Curly-top" (1928). UAES Bulletins. Paper 176. https://digitalcommons.usu.edu/uaes_bulletins/176 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. B LLETIN 205 JUNE, 192 The Beet Leafhopper In Utah A Study of Its Distribution and the Occurrence of Curly-top By EORGE F. KNOWLTON The d:uk form of the beet leafhopper , " I Eu,tettix t en ell'LIS ( Baker) (x30) U TAH AGRICULTURAL EXPERIMENT STATION L OGAN, UTAH UTAH AGRICULTURAL EXPERIMENT STATION BOARD OF TRUSTE ES ANTHONY W . IVINS, President ................................... , ................ Salt Lake City C. G. ADNEY, Vice·President ........................................... ~ ........................... Corin ne ROY BULLEN ........................................................................................ Salt Lake City LORE NZO N . STOHL __ __ __ __________ __ ____ __ __ ____ ____ __ __ __ __ ______ __ __ __ __ ________________ Salt Lake City MRS. L EE CHAR LES MILLER ____ ____ __ __ ______ __ __ __ __ ____ __ ______ ________________ Salt Lake City WESTON VE R NON, Sr.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Leafhoppers, Thrips
    Small Fruits & Vegetables IPM Advisory Weekly Pest and Production Update, Utah State University Extension, June 25, 2010 Insect/Disease Information VEGETABLES curly top on bean Beet Leafhopper and Curly Top Virus curly top on tomato Howard Schwartz, CSU, bugwood.org CSU, Schwartz, Howard per migrates to irrigated gardens and rangeland. A leafhopper can spread the virus from one plant to the next in 4 hours. A leafhopper can vector the virus for the duration of its life, but it does not pass on the virus to its progeny. curly top on squash Symptoms vary according to the host plant, but in general, newly infected plants show inward or downward rolling of margins on the youngest leaves that is often associated with chlorosis, and plant drooping. Later, leaf curling and distor- tion increases, veins swell, and wart-like bumps appear on the undersides of leaves. Leaves are dark, thick, and brittle. The plant is stunted and eventually may die. This disease is most often seen on tomatoes in Utah. Infected tomatoes will have chlorotic leaves with purple veins, and the plant will appear silvery in color. The leaves thicken and Oregon State University Extension State University Oregon become leathery and brittle, and the blossoms may drop, pre- venting fruit set. Fruits that are already formed turn yellowish The beet leafhopper carries the virus, curly top, which can af- red, and ripen prematurely to a poor quality, stunted fruit. fect many vegetables, including beets, beans, tomatoes, spinach, and melons. The leafhopper is an important pest only due to Distribution of the disease from season to season varies, and the fact that it vectors the virus; feeding alone does not cause depends on when leafhoppers leave overwintering sites in severe damage.
    [Show full text]
  • Terrestrial Insects: a Hidden Biodiversity Crisis? 1
    Chapter 7—Terrestrial Insects: A Hidden Biodiversity Crisis? 1 Chapter 7 Terrestrial Insects: A Hidden Biodiversity Crisis? C.H. Dietrich Illinois Natural History Survey OBJECTIVES Like most other elements of the biota, the terrestrial insect fauna of Illinois has undergone drastic change since European colonization of the state. Although data are sparse or entirely lacking for most species, it is clear that many formerly abundant native species are now exceedingly rare while a few previously uncommon or undocumented species, both native and exotic, are now abundant. Much of this change may be attributable to fragmentation and loss of native habitats (e.g., deforestation, draining of wetlands, agricultural conversion and intensification, urbanization), although other factors such as invasion by exotic species (including plants, insects and pathogens), misuse of pesticides, and improper management of native ecosystems have probably also been involved. Data from Illinois and elsewhere in the north temperate zone provide evidence that at least some groups of terrestrial insects have undergone dramatic declines over the past several decades, suggesting that insects are no less vulnerable to anthropogenic environmental change than other groups of organisms Yet, insects continue to be under-represented on official lists of threatened or endangered species and conservation programs focus primarily on vertebrates and plants. This chapter summarizes available information on long-term changes in the terrestrial insect fauna of Illinois, reviews possible causes for these changes, highlights some urgent research needs, and provides recommendations for conservation and management of terrestrial insect communities. INTRODUCTION Insects are among the most important “little things that run the world” (1).
    [Show full text]
  • Leafhoppers1
    Insects/Mites that Feed on Hemp – Fluid Feeders Leafhoppers1 Leafhoppers are small insects (1/8-1/6 inch) that have an elongate body. The adults, which are winged, readily jump and fly from plants when disturbed. Immature stages (nymphs) are wingless but can quite actively crawl on plants. The leafhoppers associated with hemp are poorly studied at present but adults of about a half dozen species have been collected in sweep net samples. Most regularly found is Ceratagallia uhleri, which is one of the few leafhoppers found on hemp that can also reproduce on the plant (Fig 1,2). No visible plant injury has ever been observed by this leafhopper. Another leafhopper, a small light green species tentatively identified in the genus Empoasca, also reproduces on the crop. (Fig. 3, 4). Other leafhoppers are less frequently collected (Fig. 5-7). Sampling of hemp has resulted in recovery of only adult stages of Figures 1, 2. Adult (top) and nymph (bottom) of most of these. Most leafhoppers observed Ceratagallia uhleri, the most common leafhopper on hemp leaves appear to be transient found in hemp in eastern Colorado and a species species on the crop, which develop on that can reproduce on the crop. No plant injury has other off-field plants. These transients been observed by this insect. may feed briefly on the plants, or may not feed at all on hemp. Leafhoppers feed on leaves and stems with piercing sucking mouthparts that extract a bit of fluid from the plant. Most feed on fluids moving through the phloem of plants, resulting in insignificant effects on plant growth and no visible symptoms.
    [Show full text]
  • Glassy-Winged Sharpshooter & Pierce's Disease Research
    Glassy-winged Sharpshooter & Pierce’s Disease Research Summaries FY 00-01/01-02 Glassy-winged Sharpshooter and Pierce’s Disease Research Summaries FY 2000-2001 and FY 2001-2002 Funding Agencies: Almond Board of California (Almond) American Vineyard Foundation (AVF) California Citrus Nursery Advisory Board (CA Citrus Nu rsery) California Competitive Grant Program for Research in Viticulture/Enology (CCGPRVE) California Department of Food and Agriculture (CDFA) California Department of Food and Agriculture – Assembly Bill 1232 (CDFA AB 1232) California Department of Transportation (Cal Trans) California Raisin Marketing Board (Raisin) California Table Grape Commission (Table) Citrus Research Board (Citrus Board) City of Temecula (Temecula) County of Riverside (Riverside) Kern/Tulare GWSS Task Force (Kersn/Tulare) UC Pierce’s Disease Grant Program (UC - PD) UC Pierce’s Disease Integrated Pest Management Program (UC - IPM) USDA - Agricultural Research Service (USDA-ARS) USDA - Animal Plant Health Inspection Service (USDA-APHIS) USDA – Community Credit Corporation (USDA-CCC) USDA – Cooperative State Research Education & Extension Service (USDA-CSREES) Viticulture Consortium (VC) Published by: California Department of Food and Agriculture December 2001 Summaries compiled by Patrick Gleeson Cover Design: Jay Van Rein To order additional copies of this publication, contact: M. Athar Tariq California Department of Food and Agriculture Pierce’s Disease Control Program 2014 Capitol Avenue, Suite 109 Sacramento, CA 95814 Telephone: (916) 322-2804 Fax: (916) 322-3924 http://www.cdfa.ca.gov/phpps/pdcp E-mail: [email protected] Printing: Copeland Printing Sacramento, CA Note: The summaries in this publication have not been subject to independent scientific review. The California Department of Food and Agriculture makes no warranty, expressed or implied, and assumes no legal liability for the information in this publication.
    [Show full text]