Threat Specific Contingency Plan: Pierce's Disease (Xylella Fastidiosa)

Total Page:16

File Type:pdf, Size:1020Kb

Threat Specific Contingency Plan: Pierce's Disease (Xylella Fastidiosa) INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Pierce’s disease (Xylella fastidiosa) Plant Health Australia September 2011 Disclaimer The scientific and technical content of this document is current to the date published and all efforts have been made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Xylella fastidiosa 1 Purpose and background of this contingency plan ................................................................. 6 2 Australian nursery industry ........................................................................................................ 6 2.1 Notification process for the reporting of suspect pests .......................................................... 7 3 Eradication or containment decision matrix ............................................................................. 8 4 Pest information/status ............................................................................................................. 10 4.1 Pest details .......................................................................................................................... 10 4.1.1 Background ................................................................................................................... 10 4.1.2 Life cycle ....................................................................................................................... 11 4.1.3 Dispersal ....................................................................................................................... 12 4.2 Affected hosts ...................................................................................................................... 13 4.2.1 Host range ..................................................................................................................... 13 4.2.2 Current geographic distribution ..................................................................................... 13 4.2.3 Symptoms ..................................................................................................................... 13 4.3 Diagnostic information ......................................................................................................... 18 4.3.1 Morphological methods ................................................................................................. 18 4.3.2 Molecular methods ........................................................................................................ 18 5 Risk assessments for pathways and potential impacts ......................................................... 18 5.1 Entry of the pathogen with a vector ..................................................................................... 19 5.1.1 Entry potential ............................................................................................................... 19 5.1.2 Establishment potential ................................................................................................. 19 5.1.3 Spread potential ............................................................................................................ 20 5.1.4 Economic impact ........................................................................................................... 20 5.1.5 Environmental impact .................................................................................................... 21 5.1.6 Overall risk .................................................................................................................... 21 5.2 Entry of the pathogen in the absence of a vector ................................................................ 21 5.2.1 Entry potential ............................................................................................................... 21 5.2.2 Establishment potential ................................................................................................. 21 5.2.3 Spread potential ............................................................................................................ 21 5.2.4 Economic impact ........................................................................................................... 22 5.2.5 Environmental impact .................................................................................................... 22 5.2.6 Overall risk .................................................................................................................... 22 6 Pest management ....................................................................................................................... 23 6.1 Response checklist .............................................................................................................. 23 6.2 Surveys and epidemiology studies ...................................................................................... 23 6.2.1 Technical information for planning surveys ................................................................... 24 | PAGE 3 PHA & NGIA | Contingency Plan – Xylella fastidiosa 6.2.2 Surveys for early detection of an incursion in a production nursery ............................. 24 6.2.3 Delimiting surveys in the event of an incursion ............................................................. 25 6.2.4 Collection and treatment of samples ............................................................................. 26 6.2.5 Epidemiological study ................................................................................................... 27 6.2.6 Models of spread potential ............................................................................................ 28 6.2.7 Pest Free Area guidelines ............................................................................................. 28 6.3 Availability of control methods ............................................................................................. 30 6.3.1 General procedures for control ..................................................................................... 30 6.3.2 Phytosanitary measures ................................................................................................ 30 6.3.3 Chemical control............................................................................................................ 31 6.3.4 Cultural Control ............................................................................................................. 31 7 Course of action ......................................................................................................................... 31 7.1 Destruction strategy ............................................................................................................. 31 7.1.1 Destruction protocols .................................................................................................... 31 7.1.2 Decontamination protocols ............................................................................................ 31 7.1.3 Priorities ........................................................................................................................ 32 7.1.4 Plants, by-products and waste processing ................................................................... 32 7.1.5 Disposal issues ............................................................................................................. 33 7.2 Containment strategies ........................................................................................................ 33 7.3 Quarantine and movement controls .................................................................................... 33 7.3.1 Quarantine priorities ...................................................................................................... 33 7.3.2 Movement controls ........................................................................................................ 33 7.4 Zoning .................................................................................................................................. 34 7.4.1 Destruction Zone ........................................................................................................... 35 7.4.2 Quarantine Zone ........................................................................................................... 36 7.4.3 Buffer Zone .................................................................................................................... 36 7.4.4 Restricted
Recommended publications
  • Diseases of Herbaceous Ornamental Plants
    122 Ageratum VI. DISEASES OF HERBACEOUS ORNAMENTAL PLANTS AGERATUM Yellows (Callistephus virus 1) caused mod. damage to flowers in Assiniboine Park, Winnipeg, Man, (W L. Gordon). ALTHAEA - Hollyhock Rust (Puccinia malvacearum). Heavy infections occurred at Fort Garry, Man. (W.L.G.). Several gardens at Dorval, Que. had tr. -25% rust (D. W. Creelman). It was sev, on specimens received from East Angus and Coaticook, and mod. in several gardens in St, Jean, Que. (R. Crete). Infections were mod- sev, in gardens in Charlottetown, P, E.I. (R.R. Hurst, J.E. Campbell). ANEMONE Rust (Tranzchelia pruni-spinosae) occurred on A. coronaria in a garden at Sidney, B.C. Nearby prune trees were heavily infected. (W. Newton), ANTIRRHINUM - Snapdragon Stem Rot (Botrytis cinerea). A tr, of stem rot was seen at Hamilton, Ont. and some wilting was evident, Botrytis was sporulating on the stem cankers and was isolated from diseased tissue (W.G.K.). Powdery Mildew (Oidium sp, was tr, on the lower leaves of a few plants at Hamilton, Ont. (W.G.K.). ARALIA Wilt (Verticillium albo-atrum), One infected plant was seen at Victoria, B.C. (W.R. Foster). ASTER Rust (Coleosporium asterum =C$solidaginis). Infection was sev, in a 1/4 acre planting at Bowmanville, Oz, (H.S, Thompson). BEGONIA Powdery Mildew (Erysiphe cfchoracearurn) was noted at Saskatoon, Sask. (T. C Vanterpool). Mildew infection varied from sl. - sev. on 25/150 tuberous begonias observed at Hamilton, Ont. (W.G.K.). Specimens were received from Charlesbourg, Que ~ (D. Leblond). Ring Spot (virus). Numerous chlorotic rings were observed on the foliage of a single potted tuberous begonia at Grantham, Ont, Juice extract from the leaves when rubbed on cucumber produced chlorotic rings on the true leaves, The virus has not been identified, Similar symptoms were seen on 2/150 plants in a commercial greenhouse at Hamilton, Ont.
    [Show full text]
  • Illinois Exotic Species List
    Exotic Species in Illinois Descriptions for these exotic species in Illinois will be added to the Web page as time allows for their development. A name followed by an asterisk (*) indicates that a description for that species can currently be found on the Web site. This list does not currently name all of the exotic species in the state, but it does show many of them. It will be updated regularly with additional information. Microbes viral hemorrhagic septicemia Novirhabdovirus sp. West Nile virus Flavivirus sp. Zika virus Flavivirus sp. Fungi oak wilt Ceratocystis fagacearum chestnut blight Cryphonectria parasitica Dutch elm disease Ophiostoma novo-ulmi and Ophiostoma ulmi late blight Phytophthora infestans white-nose syndrome Pseudogymnoascus destructans butternut canker Sirococcus clavigignenti-juglandacearum Plants okra Abelmoschus esculentus velvet-leaf Abutilon theophrastii Amur maple* Acer ginnala Norway maple Acer platanoides sycamore maple Acer pseudoplatanus common yarrow* Achillea millefolium Japanese chaff flower Achyranthes japonica Russian knapweed Acroptilon repens climbing fumitory Adlumia fungosa jointed goat grass Aegilops cylindrica goutweed Aegopodium podagraria horse chestnut Aesculus hippocastanum fool’s parsley Aethusa cynapium crested wheat grass Agropyron cristatum wheat grass Agropyron desertorum corn cockle Agrostemma githago Rhode Island bent grass Agrostis capillaris tree-of-heaven* Ailanthus altissima slender hairgrass Aira caryophyllaea Geneva bugleweed Ajuga genevensis carpet bugleweed* Ajuga reptans mimosa
    [Show full text]
  • 2016 Nwbio Farmer's Market Tables
    Table 1: SUPERMARKET BOTANY NAME: DATE: LOCATION(S) VISITED: Examine edible plants from the produce aisle or at the Farmers Market and use your knowledge of plant anatomy to determine plant organ(s). ** How do you know? Answer this question using diagnostic features and relationship to other plant parts. Complete common & scientific names when not given in the table. Anatomy of Edible **How Do You Know? Name of Vegetable Scientific Name Part Carrot Family Apiaceae Daucus carota Carrot Apium graveolens Celery Sunflower Family Asteraceae Artichoke Cynara scolymus Belgian endive Cichorium intybus Lettuce Lactuca sativa Mustard Family Brassicaceae Brussels Sprout Brassica oleracea Cauliflower Brassica oleracea Cabbage Brassica oleracea Kale Brassica oleracea Kohlrabi Brassica oleracea Radish Raphanus sativus Turnip Brassica rapa Spinach Family Chenopodiaceae Swiss Chard Beta vulgaris Beet Beta vulgaris Spinach Spinacea oleracea Farmer’s Market Tables.doc Table 1: SUPERMARKET BOTANY continued Anatomy of Edible **How Do You Know? Name of Vegetable Scientific Name Part Lamiaceae Mint Family Lavender Buckwheat Family Polygonaceae Rhubarb Rheum rhaponticum Lily Family Relatives Asparagus Asparagus officinalis Garlic Tomato Family Potatoe Eggplant Petunia Squash Family Family: Cinnamon Family: Vanilla Modified from Lab Manual for Applied Botany. Levetin, MacMahon, and Reinsvold (2002) Table 2: Lane County Farmer’s Market Seasonal Crop Calendar (a chart will be included in the hard copy but can be seen at the following URL) http://www.farmfresh.org/learn/harvestcalendar.php http://www.lanecountyfarmersmarket.com/ Farmer’s Market Tables.doc Table 3: Plant Family Foods After each food item in the MENU below, write in the standard plant family name to which the food belongs.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Astereae, Asteraceae) Using Molecular Phylogeny of ITS
    Turkish Journal of Botany Turk J Bot (2015) 39: 808-824 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1410-12 Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS 1, 2,3 4 Elena KOROLYUK *, Alexey MAKUNIN , Tatiana MATVEEVA 1 Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 2 Institute of Molecular and Cell Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 3 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia 4 Department of Genetics & Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia Received: 12.10.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: The subtribe Asterinae (Astereae, Asteraceae) includes highly variable, often polyploid species. Recent findings based on molecular methods led to revision of its volume. However, most of these studies lacked species from Eurasia, where a lot of previous taxonomic treatments of the subtribe exist. In this study we used molecular phylogenetics methods with internal transcribed spacer (ITS) as a marker to resolve evolutionary relations between representatives of the subtribe Asterinae from Siberia, Kazakhstan, and the European part of Russia. Our reconstruction revealed that a clade including all Asterinae species is paraphyletic. Inside this clade, there are species with unresolved basal positions, for example Erigeron flaccidus and its relatives. Moreover, several well-supported groups exist: group of the genera Galatella, Crinitaria, Linosyris, and Tripolium; group of species of North American origin; and three related groups of Eurasian species: typical Eurasian asters, Heteropappus group (genera Heteropappus, Kalimeris), and Asterothamnus group (genera Asterothamnus, Rhinactinidia).
    [Show full text]
  • Poisonous Plants -John Philip Baumgardt TURIST Are Those of the Authors and Are Not Necessarily Tho Se of the Society
    American · ulturist How you spray does make a differenee. Now, more than ever, it's im ­ portant to use just the right amount of spray to rid your garden of harmful insects and disease . This is the kind of precise 12. Right &1pressure: A few 4. Right pattern: Just turn control you get with a Hudson strokes of the pump lets you spray nozzle to get a fine or sprayer. Here's why you get spray at pressure you select coarse spray . Or for close-up best results, help protect the -high for a fine mist (good or long-range spraying. environment: for flowers) or low for a wet 5. Most important, right place: With a Hudson sprayer, 1 L( 1 spra~ (:~Stfor weeds) you place spray right where the trouble is. With its long extension and adjustable noz­ zle, you easily reach all parts I. R;ghl m;" W;lh a Hudson of plant. Especially under the ~ leaves where many insects sprayer, you mix spray exact- . Iy 'as recommended And 3. Right amount: Squeeze hide and most disease starts. that's the way it goes o~ your handle, spray's on. Release, For a more beautiful garden plants-not too strong or too it's off. Spray just to the point -a better environment­ weak. of runoff. C?at the plant, keep you r sprayi ng right on .,.J... IJ:~:1i.~ ,don't drench It. target-with a Hudson spray­ er. Get yours now. How you spray does make a difference! SIGN OF THE BEST BUV SPRAYERS AND DUSTERS .,..~<tlt\O ' P * "'Al Cf O('f"(I,1: ~Good Housekeeping; ""'1,; GU, U N1(( S ~.'" Allow 2 to 4 weeks delivery, Offer expires December 31 , 1972.
    [Show full text]
  • Your Beautiful Flower Garden
    Chapter Three Your Beautiful Flower Garden Introduction Whether it’s one planter next to your door, or a show-stopping floral garden, flowers are a bonus of color and texture we can all appreciate. If you’re an experienced green thumb, or have read up on basic gardening in Chapter Two, you’ll know that, rather than insects and diseases, most plant problems are cultural—meaning that if you give plants what they need (proper soil, location and care), they’ll be healthy most of the time. Keep an eye on your garden. Noticing problems and identifying them early are essential steps toward a satisfying result. What follows are common cultural, disease, and insect problems, and their solutions. That’s a lot to cover. We’ll start with general concerns, then focus on specifics for annuals, tender perennials, biennials, and perennials. (Don’t worry if you see a plant in both the Perennial and Annual charts. Some, like verbena and geranium, can be perennial in warmer climates.) Later we’ll discuss hostas, roses, bulbs and peonies. Photo: Pixabay. Perennial, biennial, or annual? Perennials tend to come back In this chapter: over repeated years and expand each season. They may live three or four years, thirty or a hundred. Biennials need two years to Common Cultural (Abiotic) Problems complete their life cycle but because of re-seeding, some may of Annuals, Perennials, Bulbs, and seem to be perennial when they re-appear in the same spot for Groundcovers years. Annuals can, but rarely, make it through more than one IPM Solutions for Cultural (Abiotic) season depending on the climate, or come back from seed.
    [Show full text]
  • National Diagnostic Protocol for Pierce's Disease, Xylella Fastidiosa
    National Diagnostic Protocol for Pierce’s Disease, Xylella fastidiosa PEST STATUS Not present in Australia PROTOCOL NUMBER NDP 6 VERSION NUMBER V1.2 PROTOCOL STATUS Endorsed ISSUE DATE 18 February 2010 REVIEW DATE December 2012 (Under Review) ISSUED BY SPHDS This version of the National Diagnostic Protocol (NDP) for Xylella fastidiosa is current as at the date contained in the version control box on the front of this document. NDPs are updated every 3 years or before this time if required (i.e. when new techniques become available). The most current version of this document is available from the SPHDS website http://plantbiosecuritydiagnostics.net.au/resource-hub/priority-pest-diagnostic-resources/ Contents. NATIONAL DIAGNOSTIC PROTOCOL FOR PIERCE’S DISEASE, 1 XYLELLA FASTIDIOSA 1 1 INTRODUCTION 1 1.1 Host range 1 1.1.1 Primary host range 1 1.1.2 Secondary host range 2 1.2 Effect on hosts 2 1.3 Vectors 2 2 TAXONOMIC INFORMATION 2 3 DETECTION 4 3.1 Leaf symptoms 4 3.2 Cane, vine and fruit symptoms 7 3.3 Impact of climatic conditions and seasonality 10 3.4 Diagnostic flow chart 11 3.5 Sampling procedures critical for the detection methods and diagnostic procedures 12 3.5.1 Grapevine sample collection for detection of X. fastidiosa 12 3.5.2 Tissue Sampling for DNA Extractions and Bacterial Isolations 12 4 IDENTIFICATION 12 4.1 Morphological methods 12 4.2 Molecular methods 13 4.2.1 DNA extraction from grapevine 13 4.2.2 PCR detection using grapevine DNA extract 16 4.2.3 Examples of PCR for X.
    [Show full text]
  • Callistephus Chinensis1
    Fact Sheet FPS-94 October, 1999 Callistephus chinensis1 Edward F. Gilman, Teresa Howe2 Introduction China Aster blooms for about six weeks in late summer (Fig. 1). The flowers are red, pink, white, lavender, purple, and blue. Upright types may be used for edging or bedding but may have branches too short for cutting. Branching cultivars are taller and will be large plants if spaced at least one and one half feet apart. Most are 12 to 24 inches tall and are spaced 8 to 15 inches apart. They may be grown in full sun or light shade and in a fertile and well-drained soil. Mulching keeps these shallow rooted plants from drying out. Tall varieties must be given some support. High nitrogen fertilizers may promote disease development. General Information Scientific name: Callistephus chinensis Pronunciation: kal-LISS-steff-us chin-NEN-sis Common name(s): China Aster, Annual Aster Family: Compositae Plant type: herbaceous; annual USDA hardiness zones: all zones (Fig. 2) Figure 1. China Aster. Planting month for zone 7: Jun Planting month for zone 8: May Planting month for zone 9: Apr; Oct; Nov; Dec Description Planting month for zone 10 and 11: Feb; Mar; Oct; Nov; Dec Height: 1 to 3 feet Origin: not native to North America Spread: 1 to 2 feet Uses: container or above-ground planter; cut flowers Plant habit: upright Availablity: grown in small quantities by a small number of Plant density: open nurseries Growth rate: moderate Texture: medium 1.This document is Fact Sheet FPS-94, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • China Aster Production
    China Aster Production 955 Benton Ave., Winslow, ME 04901 • Phone: 1-877-564-6697 • Fax: 1-800-738-6314 Email: [email protected] • Web Site: Johnnyseeds.com CHINA ASTER (Callistephus chinensis) Also known as summer aster, China asters are a popular and beautiful cut flower. Plants typically grow 12-36” in height and produce a dozen or more blooms per plant, depending on the cultivar. China asters can be grown in the greenhouse or the field. It is possible to grow them year-round in a heated greenhouse or in moderate climates. This annual should not be confused with the perennial asters (September aster, New England aster, and New York aster). China aster is relatively easy to grow except for its susceptibility to aster yellows, which is a disease transmitted by leaf hoppers. SITE REQUIREMENTS Choose a sunny plot with fertile, well-drained soil having a pH of 5.5–7.5. CULTURE Transplanting is recommended. Sow plants 1/8” deep in flats indoors 6–8 weeks before danger of last frost. Keep the soil consistently moist during germination; water gently with a fine nozzle or mister. For best germination, maintain a consistent soil temperature of 70–72°F/21–22°C. Seeds should germinate in 10–14 days. Once germinated, the ideal temperature range is 70°F/21°C during the day and 60–62°F/16–17°C during the night. After the first true leaves appear, transplant into cell packs or 3–4” pots. Do not allow the plants to become root bound. Plants exposed to long days (14 hours of daylight or more) during the first 4–5 weeks of growth will produce flowers more quickly, and on longer stems, than those that are not exposed to long days.
    [Show full text]
  • ENCYCLOPEDIA of FOODS Part II
    ENCYCLOPEDIA OF FOODS Part II art I of this book reviewed the relationship of diet to health and provided recommenda- Ptions for choosing foods and planning diets that contribute to health. The healthiest diets are based on a variety of plant foods—whole grains, vegetables, fruits, legumes, and nuts. Animal products and added fats and oils, sugars, and other sweeteners are best consumed in small quantities. The Food Guide Pyramid reviewed earlier in this book graphically emphasizes the proportions of these foods in the daily diet. Accordingly, we have arranged this section with priority given to grains, fruits, and vegetables—those items that should predominate at every meal and that most people need to consume in greater quantities. Animal products—meat and other high-protein foods and dairy foods—are also discussed. However, these are the foods that should make up relatively smaller parts of our diets. Part II introduces you to many foods from which you can choose and provides you with knowledge about the nutrients these foods have to offer. In addition, we provide informa- tion about the sources of the foods you purchase and eat—the individual plants and animals, how they are processed to the products that appear on store shelves, and some of the history of these foods in our diet. Before we introduce the foods themselves, we want to explain the arrangement and presentation of food items in these sections. Because this book is written for a North American audience, we have included food products that are available to most North Americans. Within the sections on Fruits and Vegetables, we have listed items by their common names in alphabetical order; when a food has more than one common name, the index should help in locating the item.
    [Show full text]
  • (Callistephus Chinensis L. Nees.) Phyllody Phytoplasma
    Int.J.Curr.Microbiol.App.Sci (2019) 8(8): 3070-3076 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 08 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.808.355 Molecular Detection and Characterization of China Aster (Callistephus chinensis L. Nees.) Phyllody Phytoplasma Mahalingappa Bandakkanavara1*, H.A. Prameela1, Santosh Mali2, Manjunath, S. Hurakadli1, S. Basavaraj1, Kedarnath1, 1 1 Raghavendra Achari and K.T. Rangaswamy 1Department of Plant Pathology, 2Department of Agricultural Entomology, College of Agriculture, UAS, GKVK, Bengaluru-560065, India *Corresponding author ABSTRACT China aster (Callistephus chinensis L. Nees.) is one of the important flower crop in India. It belongs to the family Asteraceae is native to China. Phyllody disease in China aster was first reported during 1986 from Bengaluru, India and known to be transmitted by Orosius K e yw or ds albicinctus. The disease was characterized by chlorosis, upright growth, small leaf, short internode, stunting, profuse vegetative growth and phyllody (transformation of floral Phytoplasma, organs into leaf-like structures). Molecular detection was carried out through PCR assay Phyllody, China by extracting the total DNA from phyllody infected aster leaf by using nested PCR aster, Molecular and phytoplasma specific universal primers R16F2n/R16FR2and results revealed that the detection amplification of phytoplasmal specific PCR product of 1.2 kb fragment corresponding to the 16S rDNA. A 16S rDNA sequence comparison of aster phyllody phytoplasma with the Article Info 16S rDNA gene sequences of other phytoplasmas obtained from NCBI database. The Acce pted: BLAST analysis revealed that aster phyllody phytoplasma had 99 per cent sequence 25 July 2019 similarity with Tomato big bud TBB1 (KX358564.1), Alfalfa phytoplasma (Sudan) AP2 Available Online: (KY449416.1), Pisumsativum phyllody (KX358571.1) phytoplasma.
    [Show full text]