Coastal Floodplain Management in Eastern Australia: Barriers to Fish and Invertebrate Recruitment in Acid Sulphate Soil Catchments

Total Page:16

File Type:pdf, Size:1020Kb

Coastal Floodplain Management in Eastern Australia: Barriers to Fish and Invertebrate Recruitment in Acid Sulphate Soil Catchments Coastal floodplain management in eastern Australia: barriers to fish and invertebrate recruitment in acid sulphate soil catchments F.J. Kroon, A.M. Bruce, G.P. Housefield & R.G. Creese NSW Department of Primary Industries Port Stephens Fisheries Centre Private Bag 1, Nelson Bay, NSW 2315 Australia FRDC Project No. 98/215 August 2004 NSW Department of Primary Industries - Fisheries Final Report Series No. 67 ISSN 1449-9967 Coastal floodplain management in eastern Australia: barriers to fish and invertebrate recruitment in acid sulphate soil catchments August 2004 Authors: F.J. Kroon, A.M. Bruce, G.P. Housefield & R.G. Creese Published By: NSW Department of Primary Industries (now incorporating NSW Fisheries) Postal Address: Private Bag 1, Nelson Bay, NSW 2315 Internet: www.fisheries.nsw.gov.au NSW Department of Primary Industries and the Fisheries Research & Development Corporation This work is copyright. Except as permitted under the Copyright Act, no part of this reproduction may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. DISCLAIMER The publishers do not warrant that the information in this report is free from errors or omissions. The publishers do not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this report for any consequences arising from its use or any reliance placed on it. The information, opinions and advice contained in this report may not relate to, or be relevant to, a reader’s particular circumstance. ISSN 1449-9967 (Note: Prior to July 2004, this report series was published as the ‘NSW Fisheries Final Report Series’ with ISSN number 1440-3544) Contents i TABLE OF CONTENTS TABLE OF CONTENTS................................................................................................................................. I LIST OF TABLES.........................................................................................................................................III LIST OF FIGURES.........................................................................................................................................V ACKNOWLEDGEMENTS.........................................................................................................................VII NON TECHNICAL SUMMARY.............................................................................................................. VIII 1. GENERAL INTRODUCTION.......................................................................................... 11 1.1. Background.....................................................................................................................11 1.2. Need................................................................................................................................12 1.3. Objectives and the achievement of those objectives.......................................................13 2. METHODS TO ASSESS IMPACT OF FLOODGATES AND FLOODGATE MANAGEMENT ON FISH PASSAGE AND WATER AND HABITAT QUALITY IN COASTAL FLOODPLAINS, NSW ........................................................................................ 16 2.1. Introduction ....................................................................................................................16 2.2. Sampling sites in the Clarence River..............................................................................16 2.2.1. Sampling methods ........................................................................................... 21 2.2.2. Data analyses .................................................................................................. 24 3. IMPACT OF FLOODGATES ON FISH PASSAGE AND WATER AND HABITAT QUALITY IN THE CLARENCE RIVER FLOODPLAIN, NSW.................................................... 32 3.1. Introduction ....................................................................................................................32 3.2. Methods ..........................................................................................................................33 3.2.1. Sampling sites.................................................................................................. 33 3.2.2. Sampling methods ........................................................................................... 33 3.2.3. Data analyses .................................................................................................. 33 3.3. Results ............................................................................................................................34 3.3.1. General............................................................................................................ 34 3.3.2. Species assemblages (abundance data)........................................................... 35 3.3.3. Species assemblages (biomass data)............................................................... 39 3.3.4. Water quality and ANZECC guidelines........................................................... 42 3.4. Discussion.......................................................................................................................44 3.4.1. Life history characteristics.............................................................................. 45 4. THE EFFECTIVENESS OF FLOODGATE MANAGEMENT IN IMPROVING FISH PASSAGE AND WATER AND HABITAT QUALITY IN THE CLARENCE RIVER, NSW ......... 47 4.1. Introduction ....................................................................................................................47 4.2. Methods ..........................................................................................................................47 4.2.1. Opening regimes of gated drainage systems ................................................... 47 4.2.2. Sampling methods ........................................................................................... 47 4.2.3. Data analyses .................................................................................................. 52 4.3. Results ............................................................................................................................53 4.3.1. General............................................................................................................ 53 4.3.2. Opening regimes of gated drainage systems ................................................... 55 4.3.3. Species abundance .......................................................................................... 57 4.3.4. Species biomass............................................................................................... 64 4.3.5. Relationship between floodgate opening and species richness and diversity.. 74 4.3.6. Effect of two different gate structures on fish passage.................................... 74 4.3.7. Water quality and ANZECC guidelines........................................................... 80 4.4. Discussion.......................................................................................................................83 Coastal floodplain management (Kroon, Bruce, Housefield, Creese) FRDC Project No. 98/215 ii Contents 5. TEMPORAL PATTERNS OF RECRUITMENT TO THE CLARENCE RIVER FLOODPLAIN BY COMMERCIALLY SIGNIFICANT FISH AND PRAWN SPECIES .......................................................................................... 85 5.1. Introduction....................................................................................................................85 5.2. Methods.......................................................................................................................... 85 5.3. Results and Discussion................................................................................................... 86 5.3.1. Sandy Sprat......................................................................................................86 5.3.2. Silver Biddy......................................................................................................86 5.3.3. Yellowfin Bream...............................................................................................87 5.3.4. Tarwhine ..........................................................................................................87 5.3.5. Flat-tail Mullet.................................................................................................88 5.3.6. Sea Mullet ........................................................................................................88 5.3.7. School Prawn...................................................................................................88 5.3.8. Eastern King Prawn.........................................................................................89 5.4. Summary of critical recruitment periods........................................................................ 90 6. A FLUVIARIUM WITH CONTROLLED WATER QUALITY FOR PREFERENCE - AVOIDANCE EXPERIMENTS WITH FISH AND INVERTEBRATES ................... 101 6.1. Introduction.................................................................................................................. 101 6.2. Methods........................................................................................................................ 102 6.2.1. Design considerations of fluviarium ..............................................................102 6.2.2. Precise
Recommended publications
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • East Gippsland, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Laboratory Evaluation of the Predation Efficacy of Native Australian Fish on Culex Annulirostris (Diptera: Culicidae)
    Journal of the Americctn Mosquito Control Association, 20(3):2g6_291,2OO4 Copyright A 2OO4by the American Mosquib Control Association, Inc. LABORATORY EVALUATION OF THE PREDATION EFFICACY OF NATIVE AUSTRALIAN FISH ON CULEX ANNULIROSTRIS (DIPTERA: CULICIDAE) TIMOTHY P HURST, MICHAEL D. BRowNI eNo BRIAN H. KAY Australian Centre International for and Tropical Health and Nutrition at the eueensland Institute of Medical pO Research, Royal Brisbane H<tspital, eueensland 4029, Austalia ABSTRACT. The introduction and establishment of fish populations can provide long-term, cost-effective mosquito control in habitats such as constructed wetlands and ornamental lakes. The p.idution efficacy of 7 native Brisbane freshwater fish on I st and 4th instars of the freshwater arbovirus vector culex annulirostris was evaluated in a series of 24-h laboratory trials. The trials were conducted in 30-liter plastic carboys at 25 + l"C urder a light:dark cycle of l4:10 h. The predation eflcacy of native crimson-spotted rainbowfish Melanotaenia (Melanotaeniidae), cluboulayi Australian smelt Retropinna semoni (Retropinnadae), pacific blue-eye pseudomugil (Atherinidae), signfer fly-specked hardyhead Craterocephalus stercusmLtscarum (Atherinidae), hretail gudgeon Hypseleotris gttlii (Eleotridae), empire gudgeon Hypseleotris compressa (Eleotridae), and estuary percilet Am- bassis marianus (Ambassidae) was compared with the exotic eaitern mosquitofish Getmbusia iolbrooki (poe- ciliidae). This environmentally damaging exotic has been disseminated worldwide and has been declared noxrous in Queensland. Melanotaenia duboulayi was found to consume the greatest numbers of both lst and 4th instars of Cx. annuliro.t/ri.t. The predation efficacy of the remaining Australian native species was comparable with that of the exotic G. holbrooki. With the exception of A- marianu^s, the maximum predation rates of these native species were not statistically different whether tested individually or in a school of 6.
    [Show full text]
  • Original Article Seascape Context Modifies How Fish Respond to Restored Oyster Reef Structures
    ICES Journal of Marine Science (2019), 76(4), 1131–1139. doi:10.1093/icesjms/fsz019 Downloaded from https://academic.oup.com/icesjms/article-abstract/76/4/1131/5333156 by Griffith University user on 02 September 2019 Original Article Seascape context modifies how fish respond to restored oyster reef structures Ben L. Gilby 1,2*, Andrew D. Olds1,2, Christopher J. Henderson1,2, Nicholas L. Ortodossi1, Rod M. Connolly3, and Thomas A. Schlacher1,2 1The Animal Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia 2School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia 3Australian Rivers Institute—Coasts and Estuaries, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia *Corresponding author: tel: +61 7 5430 2891; e-mail: [email protected]. Gilby, B. L., Olds, A. D., Henderson, C. J., Ortodossi, N. L., Connolly, R. M., and Schlacher, T. A. Seascape context modifies how fish re- spond to restored oyster reef structures. – ICES Journal of Marine Science, 76: 1131–1139. Received 14 October 2018; revised 13 January 2019; accepted 24 January 2019; advance access publication 18 February 2019. The seascape context of coastal ecosystems plays a pivotal role in shaping patterns in fish recruitment, abundance, and diversity. It might also be a principal determinant in structuring the recruitment of fish assemblages to restored habitats, but the trajectories of these relationships require further testing. In this study, we surveyed fish assemblages from 14 restored oyster reefs and 14 control sites in the Noosa River, Queensland, Australia, that differed in the presence or absence of seagrass within 500 m, over four periods using baited cameras.
    [Show full text]
  • With an Example from Australian Freshwater Fishes (Hypseleotris)
    This is the author’s version of a work that was accepted for publication: Page, T., Sternberg, D., Adams, M., Balcombe, S., Cook, B., Hammer, M., ... UNMACK, P. (2017). Accurate systematic frameworks are vital to advance ecological and evolutionary studies; with an example from Australian freshwater fishes (Hypseleotris). Marine Freshwater Research, 68, 1199-1207. https://doi.org/10.1071/MF16294 This file was downloaded from: https://researchprofiles.canberra.edu.au/en/publications/accurate-systematic- frameworks-are-vital-to-advance-ecological-an ©2016 Notice: This is the authors’ peer reviewed version of a work that was accepted for publication in the Marine and Freshwater Research, which has been published at https://doi.org/10.1071/MF16294. Changes resulting from the publishing process may not be reflected in this document. Accurate systematic frameworks are vital to advance ecological and evolutionary studies; with an example from Australian freshwater fishes (Hypseleotris) Timothy J. PageA,B,H, David SternbergA, Mark AdamsC,D, Stephen R. BalcombeA, Benjamin D. CookA,E, Michael P. HammerC,F, Jane M. HughesA, Ryan J. WoodsA,B and Peter J. UnmackG AAustralian Rivers Institute, Griffith University, Nathan, Qld, 4111, Australia. BWater Planning Ecology, Dept. of Science, Information Technology and Innovation, Dutton Park, Qld, 4102, Australia. CEvolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia. DSchool of Biological Sciences, The University of Adelaide, SA, 5005, Australia. EFRC Environmental, PO Box 2363, Wellington Point, Qld, 4160, Australia. FMuseum & Art Gallery of the Northern Territory, GPO Box 4646 Darwin, NT, 0801, Australia. GInstitute for Applied Ecology, University of Canberra, ACT, 2601, Australia.
    [Show full text]
  • Biodiversity Summary: Port Phillip and Westernport, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Abstract Poteat, Monica Deshay
    ABSTRACT POTEAT, MONICA DESHAY. Comparative Trace Metal Physiology in Aquatic Insects. (Under the direction of Dr. David B. Buchwalter). Despite their dominance in freshwater systems and use in biomonitoring and bioassessment programs worldwide, little is known about the ion/metal physiology of aquatic insects. Even less is known about the variability of trace metal physiologies across aquatic insect species. Here, we measured dissolved metal bioaccumulation dynamics using radiotracers in order to 1) gain an understanding of the uptake and interactions of Ca, Cd and Zn at the apical surface of aquatic insects and 2) comparatively analyze metal bioaccumulation dynamics in closely-related aquatic insect species. Dissolved metal uptake and efflux rate constants were calculated for 19 species. We utilized species from families Hydropsychidae (order Trichoptera) and Ephemerellidae (order Ephemeroptera) because they are particularly species-rich and because they are differentially sensitive to metals in the field – Hydropsychidae are relatively tolerant and Ephemerellidae are relatively sensitive. In uptake experiments with Hydropsyche sparna (Hydropsychidae), we found evidence of two shared transport systems for Cd and Zn – a low capacity-high affinity transporter below 0.8 µM, and a second high capacity-low affinity transporter operating at higher concentrations. Cd outcompeted Zn at concentrations above 0.6 µM, suggesting a higher affinity of Cd for a shared transporter at those concentrations. While Cd and Zn uptake strongly co-varied across 12 species (r = 0.96, p < 0.0001), neither Cd nor Zn uptake significantly co-varied with Ca uptake in these species. Further, Ca only modestly inhibited Cd and Zn uptake, while neither Cd nor Zn inhibited Ca uptake at concentrations up to concentrations of 89 nM Cd and 1.53 µM Zn.
    [Show full text]
  • Deficiencies in Our Understanding of the Hydro-Ecology of Several Native Australian Fish: a Rapid Evidence Synthesis
    Marine and Freshwater Research, 2018, 69, 1208–1221 © CSIRO 2018 https://doi.org/10.1071/MF17241 Supplementary material Deficiencies in our understanding of the hydro-ecology of several native Australian fish: a rapid evidence synthesis Kimberly A. MillerA,D, Roser Casas-MuletB,A, Siobhan C. de LittleA, Michael J. StewardsonA, Wayne M. KosterC and J. Angus WebbA,E ADepartment of Infrastructure Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia. BWater Research Institute, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK. CArthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic. 3084, Australia. DPresent address: Healesville Sanctuary, Badger Creek Road, Healesville, Vic. 3777, Australia. ECorresponding author. Email address: [email protected] Page 1 of 30 Marine and Freshwater Research © CSIRO 2018 https://doi.org/10.1071/MF17241 Table S1. All papers located by standardised searches and following citation trails for the two rapid evidence assessments All papers are marked as Relevant or Irrelevant based on a reading of the title and abstract. Those deemed relevant on the first screen are marked as Relevant or Irrelevant based on a full assessment of the reference.The table contains incomplete citation details for a number of irrelevant papers. The information provided is as returned from the different evidence databases. Given that these references were not relevant to our review, we have not sought out the full citation details. Source Reference Relevance Relevance (based on title (after reading and abstract) full text) Pygmy perch & carp gudgeons Search hit Anon (1998) Soy protein-based formulas: recommendations for use in infant feeding.
    [Show full text]
  • Life History Characteristics of Glassfish, Ambassis Jacksoniensis, Adjacent
    Life history characteristics of glassfish, Ambassis jacksoniensis, adjacent to saltmarsh within a large and permanently-open estuary Jack J. McPhee Doctor of Philosophy (Environmental and Life Sciences) Supervisors: Dr Maria Schreider (Environmental and Life Sciences) Dr Margaret Platell (Environmental and Life Sciences) “Ambassis jacksoniensis” - Illustrated by Corrine Edwards a ACKNOWLEDGEMENTS I would like to express my sincerest gratitude to a series of people, without whom this PhD would not have been possible. First and foremost, I would like to give a warm thank you to my two supervisors, Dr Maria Schreider and Dr Margaret Platell. Maria, your encouragement to push on, not for self-benefit, but for the greater scientific good is a trait that I have valued since your teaching during my undergraduate years. Your motive to work hard in order to seek the truth (Без муки нет науки) is a characteristic that often reminds me why I was inspired to pursue a scientific career to begin with – спасибо! Margaret, your genuinely friendly and inquisitive attitude towards the project, and science in general, is a characteristic that has also shaped me over the years. Your genuine care for the organisms and environments that we study is a continual reminder that such scientific pursuits are not only for the benefit of the scientific community, but are of equal importance to the organisms that we are studying. While Maria’s traditional, clinical, to the point (i.e. “eschew obfuscation”) scientific perspective helped me “cut the fat” during my studies, Margaret has brought the “seasoning,” the fun, the flavour. Margaret, to me you are truly perspicacious in the field of estuarine ecology and I thank you for eliciting me into this world.
    [Show full text]
  • Aquatic Live Animal Radiotracing Studies for Ecotoxicological
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Salford Institutional Repository Aquatic live animal radiotracing studies for ecotoxicological applications : addressing fundamental methodological deficiencies Cresswell, T, Metian, M, Golding, LA and Wood, M http://dx.doi.org/10.1016/j.jenvrad.2017.05.017 Title Aquatic live animal radiotracing studies for ecotoxicological applications : addressing fundamental methodological deficiencies Authors Cresswell, T, Metian, M, Golding, LA and Wood, M Type Article URL This version is available at: http://usir.salford.ac.uk/42870/ Published Date 2017 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. Journal of Environmental Radioactivity xxx (2017) 1e8 Contents lists available at ScienceDirect Journal of Environmental Radioactivity journal homepage: www.elsevier.com/locate/jenvrad Aquatic live animal radiotracing studies for ecotoxicological applications: Addressing fundamental methodological deficiencies * Tom Cresswell a, , Marc Metian b, Lisa A. Golding c, Mike D. Wood d a Australian Nuclear Science and Technology Organisation
    [Show full text]
  • Edge Habitat
    frc environmental Edge Habitat In edge habitat, PET richness was low (<4) at each site and no PET taxa were caught at site ST5 (Figure 6.6). PET taxa are sensitive to pollutants and changes in water quality and / or environmental degradation. It must be noted that stonefly larvae are unlikely to occur in the region as their preferred habitat is alpine and semi-alpine streams (Gooderham & Tsyrlin 2002). The absence of stoneflies negatively affects PET richness calculations at all sites. 5 – dry site 4.5 4 3.5 3 2.5 2 Mean PET Richness 1.5 1 0.5 – – – – – – – 0 ST1 ST3 NT13a NT14 W12 ST2 ST6 ST7 W11 ST4 ST5 NT9 NT13 C1 C2 Within Site Boundary Within Development Downstream of Site Comparative Footprint Boundary Sites Figure 6.6 Mean PET richness in edge habitat at each site. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 83 frc environmental 6.5 Mean SIGNAL 2 Scores Bed Habitat In bed habitat, mean SIGNAL 2 scores varied between sites (Figure 6.7). Mean SIGNAL 2 scores were low (<4) at all sites, except comparative site C1, and indicative of pollution (DSEWPC 2005); although the low scores may also reflect the harsh physical conditions of ephemeral waterbodies. However, the low scores at the perennial wetlands were likely to be related to the high cover of finer substrates (i.e. sand and silt and / or clay) at these sites. 4.5 – dry site x habitat not present 4 3.5 3 2.5 2 1.5 Mean SIGNAL 2 Scores Mean SIGNAL 1 0.5 – – – – – – x – x 0 C1 C2 ST1 ST3 ST2 ST6 ST7 ST5 ST4 NT9 W11 W11 W12 NT13 NT14 NT13a Within Site Boundary Within Development Downstream of Site Comparative Footprint Boundary Sites Figure 6.7 Mean SIGNAL 2 scores in bed habitat at each site.
    [Show full text]
  • Frontispiece
    FRONTISPIECE ODE TO A FERAL FISH O fish, little fish of beautiful hue, Did you come here by chance, Did you come from afar? Are there others like you from similar climes, Beyond the horizon or round the next bend? Are you looking for refuge, are you friend, are you foe, Where did you come from, where will you go? Tell me, O fish, little fish of beautiful hue, Are you here for a while, Or just passing through? a.c. webb, Aug 2002 i THE ECOLOGY OF INVASIONS OF NON-INDIGENOUS FRESHWATER FISHES IN NORTHERN QUEENSLAND Thesis submitted by ALAN CHARLES WEBB in December 2003 For the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of tropical Biology James Cook University ii STATEMENT OF ACCESS I, the undersigned, the author of the thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance that I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. --------------------------------------------- ---------------------- iii DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any other university or other institution of tertiary education.
    [Show full text]