Analytical Techniques in Uranium Exploration and Ore Processing

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Techniques in Uranium Exploration and Ore Processing TECHNICAL REPORTS SERIES No 341 vv*« * ^ % /3>i Analytical Techniques in Uranium Exploration and Ore Processing (#}9 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1992 ANALYTICAL TECHNIQUES IN URANIUM EXPLORATION AND ORE PROCESSING The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PANAMA ALBANIA HUNGARY PARAGUAY ALGERIA ICELAND PERU ARGENTINA INDIA PHILIPPINES AUSTRALIA INDONESIA POLAND AUSTRIA IRAN, ISLAMIC REPUBLIC OF PORTUGAL BANGLADESH IRAQ QATAR BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BOLIVIA ITALY SAUDI ARABIA BRAZIL JAMAICA. SENEGAL BULGARIA JAPAN SIERRA LEONE CAMBODIA JORDAN SINGAPORE CAMEROON KENYA SLOVENIA CANADA KOREA, REPUBLIC OF SOUTH AFRICA CHILE KUWAIT SPAIN CHINA LEBANON SRI LANKA COLOMBIA LIBERIA SUDAN COSTA RICA LIBYAN ARAB JAMAHIRIYA SWEDEN COTE D'lVOIRE LIECHTENSTEIN SWITZERLAND CUBA LUXEMBOURG SYRIAN ARAB REPUBLIC CYPRUS MADAGASCAR THAILAND CZECHOSLOVAKIA MALAYSIA TUNISIA DEMOCRATIC PEOPLE'S MALI TURKEY REPUBLIC OF KOREA MAURITIUS UGANDA DENMARK MEXICO UKRAINE DOMINICAN REPUBLIC MONACO UNITED ARAB EMIRATES ECUADOR MONGOLIA UNITED KINGDOM OF GREAT EGYPT MOROCCO BRITAIN AND NORTHERN EL SALVADOR MYANMAR IRELAND ESTONIA NAMIBIA UNITED REPUBLIC OF ETHIOPIA NETHERLANDS TANZANIA FINLAND NEW ZEALAND UNITED STATES OF AMERICA FRANCE NICARAGUA URUGUAY GABON NIGER VENEZUELA GERMANY NIGERIA VIET NAM GHANA NORWAY YUGOSLAVIA GREECE PAKISTAN ZAIRE GUATEMALA ZAMBIA HAITI ZIMBABWE The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Head­ quarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1992 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria December 1992 TECHNICAL REPORTS SERIES No. 341 ANALYTICAL TECHNIQUES IN URANIUM EXPLORATION AND ORE PROCESSING INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1992 VIC Library Cataloguing in Publication Data Analytical techniques in uranium exploration and ore processing. — Vienna : International Atomic Energy Agency, 1992. p. ; 24 cm. — (Technical reports series, ISSN 0074-1914 ; 341) STI/DOC/10/341 ISBN 92-0-103792-9 Includes bibliographical references. 1. Uranium ores—Analysis. 2. Chemistry, Analytic—Technique. I. International Atomic Energy Agency. II. Series: Technical reports series (International Atomic Energy Agency) ; 341. VICL 92-00048 FOREWORD The Manual was prepared as part of a programme of the International Atomic Energy Agency to publish instruction manuals on a wide range of practical topics. Its purpose is to assist in the establishment of an analytical laboratory able to perform all the basic chemical and instrumental analyses commonly used in conjunction with uranium exploration and mining and ore processing activities, including the develop­ ment of hydrometallurgical processes. It is intended for chemists with a general background in analytical chemistry, but with limited experience in the analytical chemistry of uranium and of related elements. The Manual is divided in two parts. The first deals with the general aspects of laboratory design and operation and the second contains descriptions of 17 selected analytical methods that have generally been accepted in the international uranium industry. Other methods which may produce comparable results using more sophisticated, modern or efficient techniques have not been included, but are referred to in the general references. Also not included are those analytical methods which are widely used in the chemical industry and which may be found in readily available analytical chemistry manuals. The Manual is based, in part, on techniques developed throughout the analyti­ cal community worldwide and, in particular, in the Grand Junction Laboratory of the United States Department of Energy (Grand Junction, Colorado) and at the Canada Centre for Mineral and Energy Technology (Ottawa, Ontario). The Agency wishes to thank the Consultants who took part in the preparation of the Manual. They included R. Chessmore, United States Department of Energy, Grand Junction, Colorado, USA; J.L. Dalton, Canada Centre for Mineral and Energy Technology (CANMET), Energy Mines and Resources Canada, Ottawa, Ontario, Canada; and O. Suschny (retired), former head of the Analytical Chemistry Section of the IAEA Laboratory at Seibersdorf, Austria. Their valuable contribu­ tions, and those of their colleagues and associates, form the substance of the Manual. The Agency staff members responsible for the project were S. Ajuria and A. Y. Smith of the Division of Nuclear Fuel Cycle and Waste Management. EDITORIAL NOTE The Manual has been edited by the editorial staff of the IAEA to the extent considered necessary for the reader's assistance. The views expressed remain, however, the responsibility of the named contributors. In addition, the views are not necessarily those of the governments of the nominating Member States or of the nominating organizations. The use of particular designations of countries or territories does not imply any judge­ ment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The contributors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS INTRODUCTION 1 PART I. GENERAL ASPECTS OF LABORATORY OPERATION CHAPTER 1. URANIUM EXPLORATION 5 1-1. Introduction 5 1-1.1. Area selection 5 1-1.2. Reconnaissance phase 6 1-1.3. Follow-up phase 6 1-1.4. Detailed phase 7 1-1.5. Deposit development 7 1-2. Analytical requirements for uranium exploration 8 CHAPTER 2. ANALYTICAL REQUIREMENTS IN URANIUM ORE PROCESSING AND PROCESS DEVELOPMENT 10 2-1. Introduction 10 2-2. Uranium extraction technology 10 2-3. Uranium extraction development projects 12 2-3.1. Order of magnitude studies 12 2-3.2. Preliminary feasibility studies 13 2-3.3. Licensing 13 2-3.4. Preliminary project evaluation 13 2-3.5. Final feasibility studies 13 2-3.6. Final evaluation and decision to invest 14 2-3.7. Detailed engineering 14 2-3.8. Startup and commissioning 14 2-4. Analytical requirements for process development and plant operation 14 2-4.1. Ores 16 2-4.2. Process water 16 2-4.3. Reagents 16 2-4.4. Process solutions 17 2-4.5. Process solids 17 2-4.6. Uranium concentrates 17 2-4.7. By-products or co-products 18 2-4.8. Tailings 18 CHAPTER 3. ANALYTICAL CHEMISTRY OF URANIUM 19 3-1. Properties of uranium compounds 19 3-2. Analytical methods for uranium 20 3-2.1. Radiometry 20 3-2.2. Neutron activation analysis 21 2-2.3. Delayed neutron counting 21 3-2.4. X ray fluorescence analysis 22 3-2.5. Fluorometry 23 3-2.6. Spectrophotometry 23 3-2.7. Gravimetry and volumetry 24 3-2.8. Other methods 25 3-3. Selection of a suitable method 26 CHAPTER 4. THE URANIUM ANALYTICAL LABORATORY 27 4-1. Introduction , 27 4-2. Laboratory organization 27 4-2.1. Laboratory responsibilities 27 4-2.2. Laboratory organization 28 4-2.3. Personnel 29 4-2.4. Operational procedures 31 4-2.5. MIS 33 4-2.6. Laboratory design and layout 33 4-2.7. Main equipment 35 CHAPTER 5. SAMPLE PREPARATION 37 5-1. Introduction 37 5-2. Sample flow 37 5-3. Laboratory facilities ; 39 5-4. Sample preparation 39 5-4.1. Rock sample preparation 39 5-4.2. Stream sediment and soil sample preparation 40 5-4.3. Vegetation sample preparation 40 5-4.4. Liquid samples 41 5-4.5. Cleaning of equipment 41 5-5. Equipment and use 41 CHAPTER 6. CALIBRATION METHODS AND QUALITY CONTROL IN THE URANIUM ANALYTICAL LABORATORY 43 CHAPTER 7. STATISTICAL TECHNIQUES FOR CHEMICAL ANALYSIS AND PROCESS CONTROL 50 7-1. Introduction 50 7-2. Frequency distribution 51 7-3. Accuracy 51 7-3.1. Precision 52 7-3.2. Trueness 53 7-4. Source of errors 53 7-4.1. Sampling . 53 7-4.2. Sample preparation 54 7-4.3. Measurement error 54 7-4.4. Overall measurement error 54 7-5. Statistical inference 55 7-6. Control charts 56 7-6.1. Mean chart 57 7-7. Range chart 57 7-7.1. Construction and update of control charts 58 7-7.2. Practical interpretation of control charts 59 REFERENCES 61 PART n. ANALYTICAL METHODS METHOD 1. ANALYTICAL PROCEDURES FOR FLUOROMETRIC DETERMINATION OF LABILE URANIUM 65 1-1. Introduction 65 1-2. Preparation of equipment and reagents 65 1-3. Weighing 66 1-4. Leaching 67 1-5. Fusion and fluorometric measurement 67 1-6. Determination of uranium in water samples , 68 1-7. Preparation of the standard graph 69 1-8. Notes 69 1-9. Equipment and reagents required for the establishment of a geochemical laboratory for fluorometric uranium analysis 70 1-9.1. Equipment 70 1-9.2. Special equipment 71 1-9.3. Reagents (sufficient for 1 year of operation) 71 Reference , 72 METHOD 2. DETERMINATION OF URANIUM IN WATER USING A SCINTREX UA-3 URANIUM ANALYSER 73 2-1. Introduction 73 2-2. Interferences 73 2-3. Precision and reporting limit 73 2-4. Reagents 74 2-5. Methods 74 2-5.1. Instrument conditions 74 2-5.2. Standards 74 2-5.3. Calibration method 74 2-5.4. Measurement method 75 2-6. Calculations 75 2-7. Notes 76 References 76 METHOD 3. DETERMINATION OF URANIUM IN GEOLOGICAL MATERIALS BY FLUOROMETRY 77 3-1.
Recommended publications
  • Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project
    ASX Announcement 5 July 2021 Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project Highlights: • Pre Feasibility Study completed and scope defined for Definitive Feasibility Study • PFS supports declaration of a maiden ore reserve of 473mt based on a 12.8Mtpa plant throughput, backed by PFS level or AACE Class 4 capital cost estimates and/or third-party service proposals1 • Optimisation of the processing plant configuration with a nominal 15.5Mtpa feed plant utilising three grinding stages, three stage magnetic separation and flotation to generate a premium grade magnetite concentrate with 67.5 - 68.5% Fe content • Non-process infrastructure and transport studies confirm preferred scope for operating inputs and initial route selection to load annual production of between 2 and 3 Mtpa of high grade concentrate on to Cape size vessels • Initial capital investment of US$429-$506M (A$572-$675M) resulting in optimised case results of NPV of A$669M and 20% IRR for selected go-forward case at long run average prices (post tax, ungeared) • Preparation for a prompt commencement of Definitive Feasibility Study is well advanced with further drilling, testwork, metallurgical investigation and engineering workplans in progress Magnetite Mines Limited (Magnetite Mines or the Company) today announced the results of the Pre Feasibility Study (PFS) for development of its 100% owned Razorback High Grade Iron Ore Concentrate Project (the Project or Razorback) and is now proceeding with the Definitive Feasibility Study (DFS). The PFS has confirmed the opportunity for a high return, long life, initial development of the large scale Razorback resource which leverages the advantages of resource scale, low stripping ratio, available infrastructure, low cost sustainable power and leading product quality.
    [Show full text]
  • Geology of U Rani Urn Deposits in Triassic Rocks of the Colorado Plateau Region
    Geology of U rani urn Deposits in Triassic Rocks of the Colorado Plateau Region By W. I. FINCH CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1074-D This report concerns work done on behalf ~1 the U. S. Atomic Energy Commission -Jnd is published with the permission of ~he Commission NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printin~ Office Washin~ton 25, D. C. CONTENTS Page Abstract---------------------------------------------------------- 125 Introduction__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 125 History of mining and production ____ ------------------------------- 127 Geologic setting___________________________________________________ 128 StratigraphY-------------------------------------------------- 129 ~oenkopiformation_______________________________________ ~29 Middle Triassic unconformity_______________________________ 131 Chinle formation__________________________________________ 131 Shinarump Inernber____________________________________ 133 ~udstone member------------------------------------- 136 ~oss Back member____________________________________ 136 Upper part of the Chinle formation______________________ 138 Wingate sandstone_________________________________________ 138 lgneousrocks_________________________________________________ 139 Structure_____________________________________________________
    [Show full text]
  • Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
    E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands.
    [Show full text]
  • Treatment and Microscopy of Gold
    TREATMENT AND MICROSCOPY OF GOLD AND BASE METAL ORES. (Script with Sketches & Tables) Short Course by R. W. Lehne April 2006 www.isogyre.com Geneva University, Department of Mineralogy CONTENTS (Script) page 1. Gold ores and their metallurgical treatment 2 1.1 Gravity processes 2 1.2 Amalgamation 2 1.3 Flotation and subsequent processes 2 1.4 Leaching processes 3 1.5 Gold extraction processes 4 1.6 Cyanide leaching vs. thio-compound leaching 5 2. Microscopy of gold ores and treatment products 5 2.1 Tasks and problems of microscopical investigations 5 2.2 Microscopy of selected gold ores and products 6 (practical exercises) 3. Base metal ores and their beneficiation 7 3.1 Flotation 7 3.2 Development of the flotation process 7 3.3 Principles and mechanisms of flotation 7 3.4 Column flotation 9 3.5 Hydrometallurgy 10 4. Microscopy of base metal ores and milling products 10 4.1 Specific tasks of microscopical investigations 11 4.2 Microscopy of selected base metal ores and milling products 13 (practical exercises) 5. Selected bibliography 14 (Sketches & Tables) Different ways of gold concentration 15 Gravity concentration of gold (Agricola) 16 Gravity concentration of gold (“Long Tom”) 17 Shaking table 18 Humphreys spiral concentrator 19 Amalgamating mills (Mexican “arrastra”, Chilean “trapiche”) 20 Pressure oxidation flowsheet 21 Chemical reactions of gold leaching and cementation 22 Cyanide solubilities of selected minerals 23 Heap leaching flowsheet 24 Carbon in pulp process 25 Complexing of gold by thio-compounds 26 Relation gold content / amount of particles in polished section 27 www.isogyre.com Economically important copper minerals 28 Common zinc minerals 29 Selection of flotation reagents 30 Design and function of a flotation cell 31 Column cell flotation 32 Flowsheet of a simple flotation process 33 Flowsheet of a selective Pb-Zn flotation 34 Locking textures 35 2 1.
    [Show full text]
  • Uranium Fact Sheet
    Fact Sheet Adopted: December 2018 Health Physics Society Specialists in Radiation Safety 1 Uranium What is uranium? Uranium is a naturally occurring metallic element that has been present in the Earth’s crust since formation of the planet. Like many other minerals, uranium was deposited on land by volcanic action, dissolved by rainfall, and in some places, carried into underground formations. In some cases, geochemical conditions resulted in its concentration into “ore bodies.” Uranium is a common element in Earth’s crust (soil, rock) and in seawater and groundwater. Uranium has 92 protons in its nucleus. The isotope2 238U has 146 neutrons, for a total atomic weight of approximately 238, making it the highest atomic weight of any naturally occurring element. It is not the most dense of elements, but its density is almost twice that of lead. Uranium is radioactive and in nature has three primary isotopes with different numbers of neutrons. Natural uranium, 238U, constitutes over 99% of the total mass or weight, with 0.72% 235U, and a very small amount of 234U. An unstable nucleus that emits some form of radiation is defined as radioactive. The emitted radiation is called radioactivity, which in this case is ionizing radiation—meaning it can interact with other atoms to create charged atoms known as ions. Uranium emits alpha particles, which are ejected from the nucleus of the unstable uranium atom. When an atom emits radiation such as alpha or beta particles or photons such as x rays or gamma rays, the material is said to be undergoing radioactive decay (also called radioactive transformation).
    [Show full text]
  • A Prospector's Guide to URANIUM Deposits in Newfoundland and Labrador
    A Prospector's guide to URANIUM deposits In Newfoundland and labrador Matty mitchell prospectors resource room Information circular number 4 First Floor • Natural Resources Building Geological Survey of Newfoundland and Labrador 50 Elizabeth Avenue • PO Box 8700 • A1B 4J6 St. John’s • Newfoundland • Canada pros pec tor s Telephone: 709-729-2120, 709-729-6193 • e-mail: [email protected] resource room Website: http://www.nr.gov.nl.ca/mines&en/geosurvey/matty_mitchell/ September, 2007 INTRODUCTION Why Uranium? • Uranium is an abundant source of concentrated energy. • One pellet of uranium fuel (following enrichment of the U235 component), weighing approximately 7 grams (g), is capable of generating as much energy as 3.5 barrels of oil, 17,000 cubic feet of natural gas or 807 kilograms (kg) of coal. • One kilogram of uranium235 contains 2 to 3 million times the energy equivalent of the same amount of oil or coal. • A one thousand megawatt nuclear power station requiring 27 tonnes of fuel per year, needs an average of about 74 kg per day. An equivalent sized coal-fired station needs 8600 tonnes of coal to be delivered every day. Why PROSPECT FOR IT? • At the time of writing (September, 2007), the price of uranium is US$90 a pound - a “hot” commodity, in more ways than one! Junior exploration companies and major producers are keen to find more of this valuable resource. As is the case with other commodities, the prospector’s role in the search for uranium is always of key importance. What is Uranium? • Uranium is a metal; its chemical symbol is U.
    [Show full text]
  • Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form
    The Platform for Cooperation on Tax DISCUSSION DRAFT: Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form Feedback Period 24 January 2017 – 21 February 2017 Organisation for Economic Co-operation and Development (OECD) World Bank Group (WBG) International Monetary Fund (IMF) United Nations (UN) 1 This discussion draft has been prepared in the framework of the Platform for Collaboration on Tax by the OECD, under the responsibility of the Secretariats and Staff of the four mandated organisations. The draft reflects a broad consensus among these staff, but should not be regarded as the officially endorsed views of those organisations or of their member countries. 1 Table of Contents Introduction................................................................................................................................................................ 6 Domestic Resource Mobilisation from Mining......................................................................................... 6 Report Structure ................................................................................................................................................... 9 Building An Understanding of the Mining Sector – A Methodology ................................................ 10 Introduction ........................................................................................................................................................ 10 Steps in the Methodology ...........................................................................................................................
    [Show full text]
  • An Issue Dedicated to Solutions for the Modern Mining Industry
    Metso’s customer magazine » ISSUE 1/2017 Mining minds An issue dedicated to solutions for the modern mining industry More efficiency Six-fold reduction Longer wear life and with less energy in moisture content fewer liner changes 06 and water 18 at Olenegorsky GOK 28 reduce costs “Metso has gone beyond combining and re-releasing technology based on prior designs. Its solution is more efficient, lasts longer and reduces operating costs.” mining Results mining is PUBLISHED BY EDITOR-IN-CHIEF © Copyright 2017 PRINTING Metso’s customer magazine Metso Corporation Inka Törmä, Metso Corporation. Hämeen Kirjapaino Oy, showcasing our work and [email protected] All rights reserved. February 2017 Töölönlahdenkatu 2, the success of our customers. P.O. Box 1220, DESIGN AND LAYOUT Reproduction permitted ISSN SUBSCRIPTIONS FI-00101 Helsinki, Brandkind, brandkind.fi quoting “Results mining” 2343-3590 To receive your personal Finland as source. ENGLISH LANGUAGE ADDRESSES 4041 0209 copy, please contact your Printed matter tel. +358 20 484 100 Kathleen Kuosmanen All product names used Metso customer data nearest Metso office or HÄMEEN KIRJAPAINO OY www.metso.com are trademarks of their the e-mail provided. respective owners. This magazine, including all claims regarding operational performance, is intended for sharing information on successful customer cases. Metso makes no warranty or representation whatsoever, either express or implied, that similar or any performance levels or improvements are achievable for all sites or for any particular site. Metso assumes no legal liability for any use of information contained in this presentation. If requested, Metso can execute a site specific survey to provide an estimate of performance or performance improvement for a specific site and operation.
    [Show full text]
  • Regional Geology and Ore-Deposit Styles of the Trans-Border Region, Southwestern North America
    Arizona Geological Society Digest 22 2008 Regional geology and ore-deposit styles of the trans-border region, southwestern North America Spencer R. Titley and Lukas Zürcher Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA ABSTRACT Nearly a century of independent geological work in Arizona and adjoining Mexico resulted in a seam in the recognized geological architecture and in the mineralization style and distribution at the border. However, through the latter part of the 20th century, workers, driven in great part by economic-resource considerations, have enhanced the understanding of the geological framework in both directions with synergistic results. The ore deposits of Arizona represent a sampling of resource potential that serves as a basis for defining expectations for enhanced discovery rates in contiguous Mexico. The assessment presented here is premised on the habits of occurrence of the Arizona ores. For the most part, these deposits occur in terranes that reveal distinctive forma- tional ages, metal compositions, and lithologies, which identify and otherwise constrain the components for search of comparable ores in adjacent crustal blocks. Three basic geological and metallogenic properties are integrated here to iden- tify the diagnostic features of ore genesis across the region. These properties comprise: (a) the type and age of basement as identified by tectono-stratigraphic and geochemi- cal studies; (b) consideration of a major structural discontinuity, the Mojave-Sonora megashear, which adds a regional structural component to the study and search for ore deposits; and (c) integration of points (a) and (b) with the tectono-magmatic events over time that are superimposed across terranes and that have added an age component to differing cycles of rock and ore formation.
    [Show full text]
  • Charge Calculations in Pyrometallurgical Processes
    Charge Calculations in Pyrometallurgical Processes Smelting It is a unit process similar to roasting, to heat a mixture of ore concentrate above the melting point The objective is to separate the gangue mineral from liquid metal or matte The state of the gangue mineral in case of smelting is liquid which is the main difference between roasting and smelting Inputs – Ore, flux, fuel, air Output – Metal or Matte, slag, off-gas When metal is separated as sulphide from smelting of ore, it is called Matte smelting e.g. Cu2S and FeS When metal is separated as liquid, it is called reduction smelting e.g. Ironmaking Density of liquid metal or matte is around 5-5.5 g/cm3 Density of slag is around 2.8-3 g/cm3 The additives and fluxes serve to convert the waste or gangue materials in the charge into a low melting point slag which also dissolves the coke ash and removes sulphur Matte Smelting Advantages of matte smelting • Low melting point of matte so that less amount of thermal energy is required by converting the metal of the ore in the form of sulphide and then extracting the metal e.g. melting point of Cu2S and FeS is around 1000 degrees Celsius • Cu2S which is contained in the matte, does not require any reducing agent It is converted to oxide by blowing oxygen • Matte smelting is beneficial for extraction of metal from sulphide ore, particularly when sulphide ore is associated with iron sulphide which forms eutectic point with Cu and Ni The grade of the matte is defined as the copper grade of matte A matte of 40 percent means, it has 40% copper, so matte is always given in terms of copper, because it is used to produce copper not iron Slag in matte smelting is mixture of oxides e.g.
    [Show full text]
  • 1 Introduction
    1 Introduction WHO commissions reviews and undertakes health risk assessments associated with exposure to potentially hazardous physical, chemical and biological agents in the home, work place and environment. This monograph on the chemical and radiological hazards associated with exposure to depleted uranium is one such assessment. The purpose of this monograph is to provide generic information on any risks to health from depleted uranium from all avenues of exposure to the body and from any activity where human exposure could likely occur. Such activities include those involved with fabrication and use of DU products in industrial, commercial and military settings. While this monograph is primarily on DU, reference is also made to the health effects and behaviour of uranium, since uranium acts on body organs and tissues in the same way as DU and the results and conclusions from uranium studies are considered to be broadly applicable to DU. However, in the case of effects due to ionizing radiation, DU is less radioactive than uranium. This review is structured as broadly indicated in Figure 1.1, with individual chapters focussing on the identification of environmental and man-made sources of uranium and DU, exposure pathways and scenarios, likely chemical and radiological hazards and where data is available commenting on exposure-response relationships. HAZARD IDENTIFICATION PROPERTIES PHYSICAL CHEMICAL BIOLOGICAL DOSE RESPONSE RISK EVALUATION CHARACTERISATION BACKGROUND EXPOSURE LEVELS EXPOSURE ASSESSMENT Figure 1.1 Schematic diagram, depicting areas covered by this monograph. It is expected that the monograph could be used as a reference for health risk assessments in any application where DU is used and human exposure or contact could result.
    [Show full text]
  • Uranium Mining in Virginia
    Nontechnical Summary Uranium Mining in Virginia In recent years, there has been renewed interest in mining uranium in the Common- wealth of Virginia. However, before any mining can begin, Virginia’s General Assembly would have to rescind a statewide moratorium on uranium mining that has been in effect since 1982. The National Research Council was commissioned to provide an independent review of the scientific, environmental, human health and safety, and regulatory aspects of uranium mining, processing, and reclamation in Virginia to help inform the public discussion about uranium mining and to assist Virginia’s lawmakers in their deliberations. eneath Virginia’s convene an independent rolling hills, there committee of experts to Bare occurrences of write a report that described uranium—a naturally occur- the scientific, environmental, ring radioactive element that human health and safety, and can be used to make fuel for regulatory aspects of mining nuclear power plants. In the and processing Virginia’s 1970s and early 1980s, work to uranium resources. Addi- explore these resources led to tional letters supporting this the discovery of a request were received from large uranium deposit at Coles U.S. Senators Mark Warner Hill, which is located in and Jim Webb and from Pittsylvania County in southern Governor Kaine. The Virginia. However, in 1982 the National Research Council Commonwealth of Virginia study was funded under a enacted a moratorium on contract with the Virginia uranium mining, and interest in Center for Coal and Energy further exploring the Coles Hill Research at Virginia deposit waned. Polytechnic Institute and In 2007, two families living in the vicinity of State University (Virginia Tech).
    [Show full text]