Biology; of the Seal

Total Page:16

File Type:pdf, Size:1020Kb

Biology; of the Seal 7 PREFACE The first International Symposium on the Biology papers were read by title and are included either in of the Seal was held at the University of Guelph, On­ full or abstract form in this volume. The 139 particip­ tario, Canada from 13 to 17 August 1972. The sym­ ants represented 16 countries, permitting scientific posium developed from discussions originating in Dub­ interchange of a truly international nature. lin in 1969 at the meeting of the Marine Mammals In his opening address, V. B. Scheffer suggested that Committee of the International Council for the Ex­ a dream was becoming a reality with a meeting of ploration of the Sea (ICES). The culmination of such a large group of pinniped biologists. This he felt three years’ organization resulted in the first interna­ was very relevant at a time when the relationship of tional meeting, and this volume. The president of ICES marine mammals and man was being closely examined Professor W. Cieglewicz, offered admirable support as on biological, political and ethical grounds. well as honouring the participants by attending the The scientific session commenced with a seven paper symposium. section on evolution chaired by E. D. Mitchell which The programme committee was composed of experts showed the origins and subsequent development of representing the major international sponsors. W. N. this amphibious group of higher vertebrates. Many of Bonner, Head, Seals Research Division, Institute for the arguments for particular evolutionary trends are Marine Environmental Research (IMER), represented speculative in nature and different interpretations can ICES; A. W. Mansfield, Director, Arctic Biological be attached to the same fossil material. Readers of this Station, Fisheries Research Board of Canada (FRB) volume should be aware of such differences when read­ represented the International Commission for North­ ing the papers in this section. The twelve papers of west Atlantic Fisheries (ICNAF); and K. S. Norris, S. H. Ridgway’s section on functional anatomy illus­ Director, Marine Mammal Council Executive Com­ trated the fundamental structure of the seal, as well mittee, represented the International Biological Pro­ as its associated control mechanisms. R. J. Schusterman gram (IBP). The Food and Agriculture Organization followed this theme by introducing ten papers on be­ of the United Nations (FAO) also offered its support haviour. He established a major focus on social or­ to the programme and ICNAF has contributed to the ganization and communication and their association financing of this volume. with the functional anatomy of the pinnipeds. D. E. Sponsors of national origin were the Fisheries Re­ Sergeant chaired the population dynamics section of search Board of Canada (FRB), the National Re­ seven papers, covering the modelling of populations search Council of Canada (NRCC), the Canadian and method of analysis of seal populations around the National Sportsmen’s Show (CNSS), the World Wild­ world. In the fifth section, J. R. Geraci, by means of life Fund (Canada) (WWF), and the University of papers and a panel discussion dealt with the care and Guelph. management of captive pinnipeds. W. N. Bonner co­ In his preliminary remarks Professor Ronald intro­ ordinated a presentation in the broad area of ecology, duced the representatives of these groups; namely J. R. and was able to bring together studies on environmen­ Weir, Chairman, Fisheries Research Board of Canada; tal factors and their associated behavioural and gene­ S. Bata, International Director and J. S. McCormack, tic control systems. The physiology section was chaired Director, World Wildlife Fund (Canada); and R. T. by H. T. Andersen, his introductory remarks forming D. Birchall, President, Canadian National Sportsmen’s the initial paper of the section. The other six papers Show and a Director of WWF (Canada). of his section emphasized the underwater responses of W. C. Winegard, President of the University of seals. The final and general section, chaired by J. E. Guelph, welcomed participants to the symposium and King, offered a broad coverage of several of the more commented particularly on how pleased he was to interesting areas in various disciplines. welcome representatives from so many countries. Later, A. W. Mansfield acted as rapporteur for the entire at a banquet sponsored by the Department of the En­ programme, and his report stressed the need for con­ vironment, Canada, he offered an invitation to the tinued cooperation by all biologists so that they might group to return in 1975 for a Second International understand seals and their importance to environmen­ Seal Symposium. tal studies. Altogether 62 papers were presented. A further 14 This volume includes with one exception, those pa- 8 K. Ronald pers either presented, read by title, or abstracted, but mammals of the world’ by D. W. Rice and V. B. the continuing discussion on the biology of the seals Scheffer (U.S. Fish and Wildlife Service, Washing­ led to one further paper that is included here. Some ton, 1968) has been used as the standard reference on of the discussion was formal and, where recordable, is nomenclature. included here, but by far the greater part of discussion The work of the chairmen of each of the seven sec­ was informal and hence must remain as extremely tions of this volume is especially recognized. As well, valuable, but merely mental recollections of the par­ the convenor wishes to thank the programme com­ ticipants in the symposium. mittee for their ability to support a somewhat unortho­ The symposium achieved its purpose of bringing dox procedural system, and particularly the sponsors together scientists interested in the Pinnipedia and it ICES, ICNAF, IBP, CNSS, FRB, NRCC, WWF (Ca­ offered leads into the international examination of nada), FAO, and the University of Guelph for their marine mammals. valuable financial assistance. The editors with little apology recognized that they The convenor is most grateful to Mr. H. Tambs- have not reached a completely uniform format in this Lyche, General Secretary of ICES, for his advice and volume since they have allowed use of both English encouragement from the embryonic stages of the sym­ and metric systems of measurement and both English posium to the publication of the proceedings; he also and North American word usage for the sake of har­ recognizes the considerable amount of expert help pro­ mony. The main editorial structure has been the con­ vided by A. W. Mansfield in co-editing this volume. sistency of usage throughout a particular paper. Finally, the effort put into both the symposium and Attempts have also been made to attain a fairly this volume by Mrs. Ginny Bandesen has been beyond uniform taxonomy for the species, but where there has measure, but I hope that she will accept the results of been any doubt caution has not overridden clarity. As the symposium recorded here as tangible proof of her in other mammalian groups, the systematics of the most valuable contribution. To the members of the Pinnipedia are still open to much interpretation. The Dean of the College of Biological Science’s office, the references are cited according to an Annotated Biblio- university support staff and our host Dr. W. C. Wine- praphy on the Pinnipedia*. The ‘List of the marine gard, I express on behalf of the participants and my­ self, our sincerest thanks. * Ronald, K., L. M. Hanly and P. J. Healey, College of Bio­ K. Ronald, logical Science, University of Guelph, Ontario, Canada. Convenor The following have kindly acted as Discussion Care and Management Section Leaders of the different Sections and also assisted in J. R. Geraci the editing of the contributions: Department of Zoology, University of Guelph, Guelph, Ontario, Canada. Evolution Section Ecology Section E. D. Mitchell Arctic Biological Station, Fisheries Research Board W. N. Bonner of Canada, Ste. Anne de Bellevue, Quebec, Canada. Seals Research Division IMER, c/o Fisheries Labora­ tories, Lowestoft, Suffolk, England. Functional Anatomy Section Physiology Section S. H. Ridgway H. T. Andersen School of Anatomy, University of Cambridge, Nutrition Institute, University of Oslo, Blindern, Cambridge, England. Oslo, Norway. Behaviour Section General Session R. J. Schusterman J. E. King Department of Psychology, California State University Department of Zoology, University of New South Hayward, California 94542, U.S.A. Wales, Kensington, N.S.W., Australia. Population Dynamics Section Summary D. E. Sergeant A. W. Mansfield (Rapporteur) Arctic Biological Station, Fisheries Research Board of Arctic Biological Station, Fisheries Research Board Canada, Ste. Anne de Bellevue, Quebec, Canada. of Canada, Ste. Anne de Bellevue, Quebec, Canada. 188 Rapp. P.-v. Réun. Cons. int. Explor. Mer, 169: 189-194. 1975. COMPARATIVE SOCIAL BEHAVIOR OF EARED SEALS R. L. G e n t r y Division of Natural Science, University of California, Santa Cruz, California 95060, U.S.A.* INTRODUCTION Finally, this paper will suggest a standard research The eared seals studied to date seem fairly similar format for future studies on the behavior of eared in general social organization and social behaviour. seals. Using this or a similar format, comparable data They seem so like each other that by extrapolation we can be obtained on each species being studied. would expect more variations on existing themes than startlingly new concepts from the as-yet unstudied species. This realization dictates that we orient our METHODS future studies away from simple description, however The Steller sea lion was observed for approximately detailed, and move toword comparative studies. 3000 hour at Ano Nuevo Island, California during the The comparative approach, in which the same con­ reproducive seasons of 1967 through 1969. The South ceptual framework and the same study methods are Australian fur seal was observed at South Neptune applied to several species, allows us to emphasize the Islands, South Australia during the reproductive season differences that exist among living species. From these of 1970-71 for approximately 840 hours.
Recommended publications
  • 56. Otariidae and Phocidae
    FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig.
    [Show full text]
  • Brucella Antibody Seroprevalence in Antarctic Seals (Arctocephalus Gazella, Leptonychotes Weddellii and Mirounga Leonina)
    Vol. 105: 175–181, 2013 DISEASES OF AQUATIC ORGANISMS Published September 3 doi: 10.3354/dao02633 Dis Aquat Org Brucella antibody seroprevalence in Antarctic seals (Arctocephalus gazella, Leptonychotes weddellii and Mirounga leonina) Silje-Kristin Jensen1,2,*, Ingebjørg Helena Nymo1, Jaume Forcada3, Ailsa Hall2, Jacques Godfroid1 1Section for Arctic Veterinary Medicine, Norwegian School of Veterinary Science, Stakkevollveien 23, 9010 Tromsø, Norway; member of the Fram Centre - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Brucellosis is a worldwide infectious zoonotic disease caused by Gram-negative bac- teria of the genus Brucella, and Brucella infections in marine mammals were first reported in 1994. A serosurvey investigating the presence of anti-Brucella antibodies in 3 Antarctic pinniped spe- cies was undertaken with a protein A/G indirect enzyme-linked immunosorbent assay (iELISA) and the Rose Bengal test (RBT). Serum samples from 33 Weddell seals Leptonychotes weddelli were analysed, and antibodies were detected in 8 individuals (24.2%) with the iELISA and in 21 (65.6%) with the RBT. We tested 48 southern elephant seal Mirounga leonina sera and detected antibodies in 2 animals (4.7%) with both the iELISA and the RBT. None of the 21 Antarctic fur seals Arctocephalus gazella was found positive. This is the first report of anti-Brucella antibodies in southern elephant seals. The potential impact of Brucella infection in pinnipeds in Antarctica is not known, but Brucella spp.
    [Show full text]
  • The Evolution of Infanticide by Females in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/405688; this version posted September 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The evolution of infanticide by females in mammals Dieter Lukas1,2* & Elise Huchard1,3 1) Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, U. K. 2) Department of Human Behaviour, Ecology, and Culture, MPI for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany 3) Institut des Sciences de L'Evolution de Montpellier, UMR 5554, CNRS, Université de Montpellier, Montpellier, France *) Author for correspondence: [email protected] ORCID: Dieter Lukas: 0000-0002-7141-3545; Elise Huchard: 0000-0002-6944-449X Keywords: social competition; sexual selection; phylogenetic comparison; sociality; kinship Abstract In most mammalian species, females regularly interact with kin, and it may thus be difficult to understand the evolution of some aggressive and harmful competitive behaviour among females, such as infanticide. Here, we investigate the evolutionary determinants of infanticide by females by combining a quantitative analysis of the taxonomic distribution of infanticide with a qualitative synthesis of the circumstances of infanticidal attacks in published reports. Our results show that female infanticide is widespread across mammals and varies in relation to social organization and life-history, being more frequent where females breed in group and invest much energy into reproduction. Specifically, female infanticide occurs where the proximity of conspecific offspring directly threatens the killer’s reproductive success by limiting access to critical resources for her dependent progeny, including food, shelters, care or a social position.
    [Show full text]
  • SEAL FISHERY " "Seal" Means Any Eared Seal Or Hair (Or True) Seal Other Than a Leopard Seal, Including a Fur Seal
    SEAL FISHERY " "Seal" means any Eared Seal or Hair (or True) Seal other than a Leopard Seal, including a Fur Seal, a Sea Lion, an Elephant Seal other animal of the seal kind that may visit the Colony or the Depend and shall be deemed to include a Sea Order. " "Seal reserve" means any portion of land or water within the limits of the Colony set apart by the Governor in Council for the breeding l'ou er to (2) In tlie c.nsc of tl:tl 1)rc~ncliby the holder of a licence revokc . ~iccllccx2, of ;~I:J: of t11e 13rol-!C.l(-~nsof t lii~Ordinance or of thc. rcgula- tion.; rna tlc t lic'~.~'.c~i~:!c.~.,01- of ;111~- of tlie conili tions nndcr \\.l~icl~51ic-11 llcis:~c.t I?I;~\-. :\.L\A.i)~ll,n ;:rnntecl, .tli0 (;tj[.(>~llo!. i11;1\.,l)!. no ic:cb ;!l \\.l-i t I:I~.,-II:!~II!:LI.~~\. rt.1-oke ::ucli licc:ncc, :LII(I t lic~~.~~~p,)]I :L! ri l,1.\.,. (, )-i'r~-i-#~!.A tllc~rcl)y or (>r~jc~;c>cltl~~sc- under sllall ((.;.S(. as from tllc ch:c mcntio:ied in sicil notice. ~<cguljt~onz. 6. (1) Thc (;ox-ernor in Council may malie rc.guln!ions for carr~in~zout tli~~)so\-i.-.ion~ nf this Ordinancc and tl-tc intent and ol2ject i i~~rc'of. (2) An! I;c~'c,~guiity of ;m off-fence against any pro- \-ision of tl:c r..gi~!ation.; r-nn:i(.
    [Show full text]
  • Marine Mammal Taxonomy
    Marine Mammal Taxonomy Kingdom: Animalia (Animals) Phylum: Chordata (Animals with notochords) Subphylum: Vertebrata (Vertebrates) Class: Mammalia (Mammals) Order: Cetacea (Cetaceans) Suborder: Mysticeti (Baleen Whales) Family: Balaenidae (Right Whales) Balaena mysticetus Bowhead whale Eubalaena australis Southern right whale Eubalaena glacialis North Atlantic right whale Eubalaena japonica North Pacific right whale Family: Neobalaenidae (Pygmy Right Whale) Caperea marginata Pygmy right whale Family: Eschrichtiidae (Grey Whale) Eschrichtius robustus Grey whale Family: Balaenopteridae (Rorquals) Balaenoptera acutorostrata Minke whale Balaenoptera bonaerensis Arctic Minke whale Balaenoptera borealis Sei whale Balaenoptera edeni Byrde’s whale Balaenoptera musculus Blue whale Balaenoptera physalus Fin whale Megaptera novaeangliae Humpback whale Order: Cetacea (Cetaceans) Suborder: Odontoceti (Toothed Whales) Family: Physeteridae (Sperm Whale) Physeter macrocephalus Sperm whale Family: Kogiidae (Pygmy and Dwarf Sperm Whales) Kogia breviceps Pygmy sperm whale Kogia sima Dwarf sperm whale DOLPHIN R ESEARCH C ENTER , 58901 Overseas Hwy, Grassy Key, FL 33050 (305) 289 -1121 www.dolphins.org Family: Platanistidae (South Asian River Dolphin) Platanista gangetica gangetica South Asian river dolphin (also known as Ganges and Indus river dolphins) Family: Iniidae (Amazon River Dolphin) Inia geoffrensis Amazon river dolphin (boto) Family: Lipotidae (Chinese River Dolphin) Lipotes vexillifer Chinese river dolphin (baiji) Family: Pontoporiidae (Franciscana)
    [Show full text]
  • Zoo Keeper Information
    ZOO KEEPER INFORMATION Auckland Zoo and its role in Conservation and Captive Breeding Programmes Revised by Kirsty Chalmers Registrar 2006 CONTENTS Introduction 3 Auckland Zoo vision, mission and strategic intent 4 The role of modern zoos 5 Issues with captive breeding programmes 6 Overcoming captive breeding problems 7 Assessing degrees of risk 8 IUCN threatened species categories 10 Trade in endangered species 12 CITES 12 The World Zoo and Aquarium Conservation Strategy 13 International Species Information System (ISIS) 15 Animal Records Keeping System (ARKS) 15 Auckland Zoo’s records 17 Identification of animals 17 What should go on daily reports? 18 Zoological Information Management System (ZIMS) 19 Studbooks and SPARKS 20 Species co-ordinators and taxon advisory groups 20 ARAZPA 21 Australasian Species Management Program (ASMP) 21 Animal transfers 22 Some useful acronyms 24 Some useful references 25 Appendices 26 Zoo Keeper Information 2006 2 INTRODUCTION The intention of this manual is to give a basic overview of the general operating environment of zoos, and some of Auckland Zoo’s internal procedures and external relationships, in particular those that have an impact on species management and husbandry. The manual is designed to be of benefit to all keepers, to offer a better understanding of the importance of captive animal husbandry and species management on a national and international level. Zoo Keeper Information 2006 3 AUCKLAND ZOO VISION Auckland Zoo will be globally acknowledged as an outstanding, progressive zoological park. AUCKLAND ZOO MISSION To focus the Zoo’s resources to benefit conservation and provide exciting visitor experiences which inspire and empower people to take positive action for wildlife and the environment.
    [Show full text]
  • Behaviour of Lactating Steller Sea Lions (Eumetopias Jubatus) During the Breeding Season
    Behaviour of Lactating Steller Sea Lions (Eumetopias jubatus) During the Breeding Season: A Comparison between a Declining and Stable Population in Alaska by Linda Leontine Milette B.Sc. (Biology), Simon Fraser University, B.C. A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in The Faculty of Graduate Studies DEPARTMENT OF ZOOLOGY July 1999 We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA © Linda Leontine Milette, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) Milette: Behaviour of Lactating Steller Sea Lions ABSTRACT Female attendance patterns and activity budgets of Alaskan Steller sea lions (Eumetopias jubatus) were compared at two sites using scan sampling over two summer breeding seasons in 1994 and 1995 at Sugarloaf Island (a declining population) and Lowrie Island (a stable population). The goal was to document female behaviour and to determine whether there were behavioural differences between the two sites that were consistent with the hypothesis that Steller sea lions in the area of population decline were food- limited.
    [Show full text]
  • April 1St- 3Rd, 2016 Savannah State University
    April 1st- 3rd, 2016 Savannah State University Schedule Saturday, April 2nd 8:00 Registration 8:30 Poster Set-up 9:00 Opening remarks 9:15 Panel Discussion: Life After SEAMAMMS Kelli Edwards, Damon Gannon, Robin Perrtree, Steve Thornton 10:15 Break Session 1 Chair: Damon Gannon 10:45 Christina Toms et al. A report on the potential influence of a record-breaking flood event on bottlenose dolphin (Tursiops truncatus) populations in Pensacola Bay, Florida. 11:00 Madison Miketa et al. Climate change and responses to seagrass die-off in a top predator, the bottlenose dolphin. 11:15 Bette Rubin Blue Whale Vocalizations off the Scotian Shelf using PAM: Analysis and Management Implications. 11:30 Hannah Nylander-Asplin et al. Acoustic Monitoring of Bottlenose Dolphins (Tursiops truncatus) in the May River, South Carolina. 11:45 Rachael Randall et al. Prey availability assessment of the common bottlenose dolphin Tursiops truncatus in two locations near Savannah, Georgia. 12:00 Lunch Session 2 Chair: Brian Balmer 13:30 Carissa King and Quincy Gibson. Identification of bottlenose dolphin (Tursiops truncatus) critical habitat areas in the St. Johns River, Florida. 13:45 Seth Klepal et al. Why there needs to be a universal definition of residency for common bottlenose dolphins (Tursiops truncatus) that can be used across different study areas. 14:00 Jessica Thompson et al. Estimation of site fidelity for common bottlenose dolphins Tursiops truncatus in a complex estuarine system using the Robust Design and multistate analysis. 14:15 Daniela Silva et al. Who, Where, and When? Bottlenose Dolphin (Tursiops truncatus) Stock Structure off Northern South Carolina.
    [Show full text]
  • Tracing Early Stages of Species Differentiation: Ecological
    BMC Evolutionary Biology BioMed Central Research article Open Access Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations Jochen BW Wolf*1,2,6, Chris Harrod2,3, Sylvia Brunner4, Sandie Salazar5, Fritz Trillmich6 and Diethard Tautz1,2 Address: 1Institute for Genetics, Evolutionary Genetics, University of Köln, 50674 Köln, Germany, 2Max-Planck Institute for Evolutionary Biology, Evolutionary Genetics, 24306 Plön, Germany, 3Ecology and Evolutionary Biology, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK, 4Museum of the North, University Alaska, 907 Yukon Drive, Fairbanks, AK 99775, USA, 5Estación Científica Charles Darwin, Puerto Ayora, Galápagos, Ecuador and 6Department of Animal Behaviour, University of Bielefeld, PO Box 10 01 31, 33501 Bielefeld, Germany Email: Jochen BW Wolf* - [email protected]; Chris Harrod - [email protected]; Sylvia Brunner - [email protected]; Sandie Salazar - [email protected]; Fritz Trillmich - [email protected]; Diethard Tautz - [email protected] * Corresponding author Published: 16 May 2008 Received: 22 November 2007 Accepted: 16 May 2008 BMC Evolutionary Biology 2008, 8:150 doi:10.1186/1471-2148-8-150 This article is available from: http://www.biomedcentral.com/1471-2148/8/150 © 2008 Wolf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence.
    [Show full text]
  • Behaviour of Lactating Steller Sea Lions (Eumetopias Jubatus) During the Breeding Season: a Comparison Between a Declining and Stable Population in Alaska
    Behaviour of Lactating Steller Sea Lions (Eumetopias jubatus) During the Breeding Season: A Comparison between a Declining and Stable Population in Alaska Linda Leontine Milette B.Sc. (Biology), Simon Fraser University, B.C. A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in The Faculty of Graduate Studies DEPARTMENT OF ZOOLOGY July 1999 We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA © Linda Leontine Milette, 1999 Milette: Behaviour of Lactating Steller Sea Lions ABSTRACT Female attendance patterns and activity budgets of Alaskan Steller sea lions (Eumetopias jubatus) were compared at two sites using scan sampling over two summer breeding seasons in 1994 and 1995 at Sugarloaf Island (a declining population) and Lowrie Island (a stable population). The goal was to document female behaviour and to determine whether there were behavioural differences between the two sites that were consistent with the hypothesis that Steller sea lions in the area of population decline were food- limited. The perinatal period (time from birth of pup to the mother’s first feeding trip) averaged 10.1 days in the area of population decline compared to 8.0 days in the stable area, counter to initial predictions. The first shore visit following the perinatal period was significantly longer in the area of population decline compared to the stable population. Females from both populations exhibited a diel haul out pattern where the majority of returns and departures to and from the rookery occurred between 1800 - 0600 hours. Similarly, the mean length of female foraging trips at both populations increased as their pups grew older, whereas shore visits became shorter.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Seals and Sea Lions of California Marin and Sonoma Images By
    Seals and Sea Lions of California Marin and Sonoma Images by Jamie Hall and Suki Waters Six Species Represent two of the three families of pinnipeds (Latin fin or feather, foot) Eared seals True seals Walrus 50,000 years ago Six species out of the total of 34 Three of the species vanished since 1900 and then reappeared Eared Seals-- Otariids Fur seals Sea lions Walk on land Large foreflipper Small external ears True Seals -- Phocids Hump along on land Hindflippers wave in water Ear holes True Seals Ear holes are hard to see, especially on harbor seals Eared Seal Family Fur Seals Fur Seals Two species in California Now relatively rare Were once common in California Became extirpated Populations growing after decades of absence Guadalupe Fur Seal Bull and Female Guadualupe Guadalupe Fur Seal Pup Guadalupe Fur Seal Male Female – 6 to 8 ft – 4 to 5 ft – 375 pounds – 110 pounds – 13 Years – 23 Years Newborn 2 ft 9 lb Guadalupe Notes Now possible to find a Guadalupe ashore Look for that very pointed nose Juveniles may be hard to tell from California sea lions 3 rescued patients at MMC in January IUCN Near Threatened Northern Fur Seal Northern Fur Seal Family Northern Fur Seal Pup Northern Fur Seal Males Females – 5 to 7 ft – 4.5 to 5 ft – 400 to 600 lb – 90 to 110 lb – 18 to 20 years – 18 to 20 years Newborn – 2 ft – 60 lb Northern Fur Seals Return To Central/Northern California Farallon fur seals lost by 1840 Were seen at sea Then first birth in 1996 on the Farallones In 2011, at least 180 pups born Common Pinnipeds
    [Show full text]