The Genetics of Metabolic Disorders* D

Total Page:16

File Type:pdf, Size:1020Kb

The Genetics of Metabolic Disorders* D Postgrad Med J: first published as 10.1136/pgmj.48.558.207 on 1 April 1972. Downloaded from Postgraduate Medical Journal (April 1972) 48, 207-2,11. The genetics of metabolic disorders* D. A. HOPKINSON M.A., M.D. MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London THE first work on the genetics of metabolic disorders tion (Harris, 1970) more than sixty such disorders in Man was of course carried out by that great were listed and further examples are regularly being pioneer Sir Archibald Garrod at the turn of the reported. present century (Garrod, 1902). From a study of the It is interesting to note that there is no one hereditary background of a small series of patients particular aspect of metabolism which seems with a rare disorder, alcaptonuria, he discovered the peculiarly susceptible to genetic variation of this first example of recessive Mendelian inheritance in kind. Nor is there any indication that enzymes Man and with remarkable foresight he suggested catalysing particular types of reaction or utilizing that this unusual condition was an example of specialized cofactors are more prone. On the one 'chemical individuality'-an inborn alteration in the hand we have disorders like acatalasia in which metabolism of tyrosine. He also suggested that other there is a deficiency of catalase, the enzyme res- conditions such as albinism and cystinuria could be ponsible for the simple reaction splitting hydrogen manifestations of inborn changes or defects in meta- peroxide to water and oxygen, and on the other hand bolism. He called them 'freaks' or 'sports' of meta- we have the glycogen diseases in which there are bolism. This was as long ago as 1902-almost 70 deficiencies of one or other of the enzymes involved years ago. in the synthesis or degradation of the rather complex A few years later in the Croonian lectures, Garrod molecule glycogen. copyright. (1908) developed the subject further and formulated There is a great variation too in the clinical mani- a theory to account for the metabolic freaks or festations of these metabolic disorders ranging from 'inborn errors of metabolism' as he now called the severe and incapacitating mental retardation them. His idea was that in each of these conditions which may be a feature of phenylketonuria, to the there was a specific congenital enzyme defect at benign and symptomless passage of fructose in the some point in the normal metabolic chain. This urine in benign fructosuria. In other cases, like glu- deficiency could lead either to an accumulation of cose-6-phosphate dehydrogenase deficiency, the intermediary metabolites which might be toxic or metabolic disorder may come to light in the presence http://pmj.bmj.com/ to the failure of adequate synthesis of some essential of specific unusual environmental factors such as par- final product and thus in various ways result in ticular foodstuffs in the diet or perhaps drugs given pathological changes. for therapeutic purposes. Such people may lead com- Arguing from the pedigree data he put forward pletely normal lives and be untroubled and unaware the view that the congenital deficiency of a specific of their metabolic 'abnormality'. And the existence enzyme was due to the presence of an abnormal of this type of metabolic disorder is exactly in Mendelian factor or what we would now call a gene. accord with an earlier prediction of Garrod that on September 27, 2021 by guest. Protected Implicit in his argument was the idea that the normal genetically determined differences in enzyme activity gene directed the synthesis of the enzyme in the may occur without obvious symptoms and be healthy individual. Thus, well before his time, detected only by specialized techniques. Garrod formulated the now well recognized concept that genes exert their effects in an organism by directing the synthesis ofenzymes and other proteins. Genetic heterogeneity with the 'inborn errors of Garrod also predicted that in due course other metabolism' inherited metabolic disorders would be found and A point ofconsiderable interest which is beginning with a similar underlying basis. to emerge from the progressive analysis and detailed Since that time, ample evidence has accumulated characterization of the inborn errors of metabolism to support this view and numerous fresh examples of is the remarkable degree of genetic heterogeneity inborn errors have been described and the specific which appears to exist. Quite often it has been found enzyme deficiencies recognized. In a recent publica- that what appeared to be a single disease entity, with perhaps rather variable clinical manifestations, * Shortened version of a talk given at the Symposium on is in reality a number of distinct conditions, each Medical Gernetics, University of Sllssex, 26-27 March 1971. due to the deficiency of a different enzyme. This is Postgrad Med J: first published as 10.1136/pgmj.48.558.207 on 1 April 1972. Downloaded from 208 D. A. Hopkinson true for example in the group of disorders affecting dozens of different variant forms of glucose-6-phos- glycogen metabolism where there are several different phate dehydrogenase which have now been reported forms of glycogen disease due to deficiencies in one (Motulsky & Yoshida, 1969; Kirkman, 1971). Each or another of the enzymes involved in the synthesis variant may be attributed to a different mutant allele or degradation of the macromolecule glycogen. at the same structural gene locus and appears to be a The point is also illustrated by the series of con- structurally different form of the enzyme protein genital haemolytic anaemias, which are clinically with its own characteristic properties. In some cases fairly homogeneous, but are now known to be due to the variants result in chronic haemolytic anaemia, specific deficiencies of different enzymes normally which may be mild or very severe depending on the concerned with catalysing successive steps in red cell degree of enzyme deficiency. In other cases the glycolysis (Valentine, 1968, Brain, 1971). variant may appear to be quite harmless until the This is perhaps hardly surprising if one looks at affected individual comes into contact with particular the principal pathways of metabolism in red cells drugs or foodstuffs, in which event haemolysis may (Fig. 1). Glucose is the main source of energy for occur. In yet other cases the variants seem to be quite the erythrocytes and this energy is generated by innocuous. glycolysis and also in the hexose monophosphate For various reasons glucose-6-phosphate de- shunt pathway. There are no citric acid cycle enzymes hydrogenase has been studied more extensively than present in the red cell or other alternative means of any other human enzyme and it may be supposed ATP synthesis on the required scale. Similarly there that the many variants which have been described are no other effective ways of generating the reduced are somewhat exceptional. However, this does not coenzymes NADH or NADPH. Thus, a deficiency seem to be true. Many similar variants of other of virtually any one of the enzymes in the glycolytic enzymes have been discovered and glucose-6-phos- sequence or the hexose monophosphate shunt phate dehydrogenase does not appear to be a special pathway might be expected to have the same effects case. If we look again (Fig. 1) at the main metabolic -depletion of ATP and depletion of reduced pathway ofthe red cell for example we can easily find coenzyme concentrations and hence premature lysis several other good examples of multiple variants of copyright. of the red cells. In other words, the clinical signs and particular enzymes. For instance, several different symptoms of haemolytic anaemia would be expected kinds of red cell hexokinase deficiency have been and do indeed occur from deficiencies of red cell encountered in patients with congenital non- hexokinase, phosphohexose isomerase, glucose-6- spherocytic haemolytic anaemia (Necheles, Rai & phosphate dehydrogenase, pyruvate kinase and Cameron, 1970), and similar heterogeneity due to several other enzymes, due to the occurrence of multiple allelism has been encountered in phospho- mutant alleles at the various structural loci which hexose isomerase deficiency (Baughan et al., 1968; determine these particular enzymes. Paglia et al., 1969; Detter et al., 1968) and also in http://pmj.bmj.com/ In addition to this kind of genetic heterogeneity pyruvate kinase deficiency (Valentine, 1968). within the inborn errors of metabolism, that is variation at separate gene loci leading to the same or similar clinical syndromes, another type of hetero- Practical considerations geneity exists. This is allelic variation at the same The occurrence of several different mutant alleles genetic locus and this kind of heterogeneity may at a given locus, each resulting in marked deficiency well prove to be the rule rather than exception for the of the specific enzyme coded, means that certain genetically determined metabolic disorders. It ideas about the inborn errors of metabolism have to on September 27, 2021 by guest. Protected seems that very often different cases of a particular be altered. For example in the past it was generally metabolic disorder may be attributable to different assumed that individuals with such disorders show- abnormal alleles at the same gene locus, each allele ing the well known familial pattern of autosomal causing the enzyme defect in its own characteristic recessive inheritance were invariably homozygous manner. Sometimes the different patients may for a
Recommended publications
  • Download Download
    Acta Biomed 2021; Vol. 92, N. 1: e2021169 DOI: 10.23750/abm.v92i1.11345 © Mattioli 1885 Update of adolescent medicine (Editor: Vincenzo De Sanctis) Rare anemias in adolescents Joan-Lluis Vives Corrons, Elena Krishnevskaya Red Blood Cell Pathology and Hematopoietic Disorders (Rare Anaemias Unit) Institute for Leukaemia Research Josep Car- reras (IJC). Badalona (Barcelona) Abstract. Anemia can be the consequence of a single disease or an expression of external factors mainly nutritional deficiencies. Genetic issues are important in the primary care of adolescents because a genetic diagnosis may not be made until adolescence, when the teenager presents with the first signs or symptoms of the condition. This situation is relatively frequent for rare anemias (RA) an important, and relatively heteroge- neous group of rare diseases (RD) where anaemia is the first and most relevant clinical manifestation. RA are characterised by their low prevalence (< 5 cases per 10,000 individuals), and, in some cases, by their complex mechanism. For these reasons, RA are little known, even among health professionals, and patients tend to re- main undiagnosed or misdiagnosed for long periods of time, making impossible to know the prognosis of the disease, or to carry out genetic counselling for future pregnancies. Since this situation is an important cause of anxiety for both adolescent patients and their families, the physician’s knowledge of the natural history of a genetic disease will be the key factor for the anticipatory guidance for diagnosis and clinical follow-up. RA can be due to three primary causes: 1. Bone marrow erythropoietic defects, 2. Excessive destruction of mature red blood cells (hemolysis), and 3.
    [Show full text]
  • Haematological Abnormalities in Mitochondrial Disorders
    Singapore Med J 2015; 56(7): 412-419 Original Article doi: 10.11622/smedj.2015112 Haematological abnormalities in mitochondrial disorders Josef Finsterer1, MD, PhD, Marlies Frank2, MD INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes.
    [Show full text]
  • Chapter 03- Diseases of the Blood and Certain Disorders Involving The
    Chapter 3 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D50- D89) Excludes2: autoimmune disease (systemic) NOS (M35.9) certain conditions originating in the perinatal period (P00-P96) complications of pregnancy, childbirth and the puerperium (O00-O9A) congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) endocrine, nutritional and metabolic diseases (E00-E88) human immunodeficiency virus [HIV] disease (B20) injury, poisoning and certain other consequences of external causes (S00-T88) neoplasms (C00-D49) symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (R00-R94) This chapter contains the following blocks: D50-D53 Nutritional anemias D55-D59 Hemolytic anemias D60-D64 Aplastic and other anemias and other bone marrow failure syndromes D65-D69 Coagulation defects, purpura and other hemorrhagic conditions D70-D77 Other disorders of blood and blood-forming organs D78 Intraoperative and postprocedural complications of the spleen D80-D89 Certain disorders involving the immune mechanism Nutritional anemias (D50-D53) D50 Iron deficiency anemia Includes: asiderotic anemia hypochromic anemia D50.0 Iron deficiency anemia secondary to blood loss (chronic) Posthemorrhagic anemia (chronic) Excludes1: acute posthemorrhagic anemia (D62) congenital anemia from fetal blood loss (P61.3) D50.1 Sideropenic dysphagia Kelly-Paterson syndrome Plummer-Vinson syndrome D50.8 Other iron deficiency anemias Iron deficiency anemia due to inadequate dietary
    [Show full text]
  • Clinical Consequences of Enzyme Deficiencies in the Erythrocyte
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 5 Copyright © 1980, Institute for Clinical Science, Inc. Clinical Consequences of Enzyme Deficiencies in the Erythrocyte MICHAEL L. NETZLOFF, M.D. Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, East Lansing, Ml 48824 ABSTRACT The anueleate mature erythrocyte also lacks ribosomes and mitochondria and thus cannot synthesize enzymes or derive energy from the Krebs citric acid cycle. Nevertheless, the red blood cell is metabolically active and contains numerous residual enzymes and their products which are essential for its survival and normal functioning. Enzyme deficiencies in the Embden-Myerhoff glycolytic pathway can result in nonspherocytic hemoly­ tic anemia (NSHA), and some are also associated with neuromuscular or neurologic disorders. Glucose-6-phosphate dehydrogenase deficiency in the hexose monophosphate shunt also results in hemolytic anemia, espe­ cially following exposure to various drugs. Defects in glutathione synthesis and pyrimidine 5'-nucleotidase deficiency also cause NSHA, as does in­ creased adenosine deaminase activity. Glutathione synthetase deficiency which is not limited to the red cell also presents as oxoprolinuria with neurologic signs. All red cell enzyme defects appear as single gene errors, in most cases recessive in inheritance, either autosomal or X-linked. Clinical Consequences of Enzyme tains over 40 different enzymes, many of Deficiencies in the Erythrocyte which are essential for its survival or nor­ mal functioning. The purpose of this re­ Prior to maturity, the nucleated red port is to review some inherited enzyme blood cell (rbc) can perform a variety of deficiencies of the erythrocyte which metabolic functions, including active en­ compromise its viability in the circulation zyme synthesis.
    [Show full text]
  • Hemolytic Anemia with Impaired Hexokinase Activity
    Hemolytic anemia with impaired hexokinase activity Alan S. Keitt J Clin Invest. 1969;48(11):1997-2007. https://doi.org/10.1172/JCI106165. Research Article Analyses of key glycolytic intermediates in freshly drawn red cells from six related individuals suggest that decreased hexokinase activity underlies the hemolytic process in the two members with overt hemolysis. Low red cell glucose 6- phosphate (G6P) was observed not only in the anemic patients but in the presumptive heterozygotes as well and served as a useful marker for the presence of the trait. Hexokinase activity was labile in distilled water hemolysates but was only slightly low when protected by glucose, mercaptoethanol, and ethylenediaminetetraacetate (EDTA). Normal red cell hexokinase was demonstrated to be dependent on glucose for maintenance of activity after heating to 45°C. The cells of the proposita are unable to utilize glucose efficiently at glucose concentrations lower than 0.2 mmole/liter whereas normal cells maintain linear glucose consumption to at least 0.05 mM glucose. These qualitative abnormalities could result from the presence of a mutant hexokinase with an abnormally reactive sulfhydryl group and altered substrate affinity in the red cells of this kindred. Find the latest version: https://jci.me/106165/pdf Hemolytic Anemia with Impaired Hexokinase Activity ALAN S. KErrr From the Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32601 A B S T R A C T Analyses of key glycolytic intermediates cells of a young girl with moderately severe chronic in freshly drawn red cells from six related individuals anemia. Although hexokinase activity was only slightly suggest that decreased hexokinase activity underlies the below the range of normal, a comparison between the hemolytic process in the two members with overt he- activity of red cell hexokinase in the affected proposita molysis.
    [Show full text]
  • Productivity Productivity
    Productivity Productivity A Selection of Publications from Our Current and Previous Fellows 1. Maxwell RR, Egan-Sherry D, Gill JB, Roth ME. Management of chemotherapy-induced febrile neutropenia in pediatric oncology patients: A North American survey of pediatric hematology/oncology and pediatric infectious disease physicians. Pediatr Blood Cancer. 2017 Dec; 64(12) 2. Maxwell RR, Cole PD . Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep. 2017 Jun;12(3):176-186 3. Green NS, Manwani D, Qureshi M, Ireland K, Sinha A, Smaldone AM. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatr Blood Cancer. 2016 Dec;63(12):2146-2153. 4. Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016 Feb 26;3:5 5. Knapp E, Cohen H, Kutlar A, Ghalie R, Manwani D. Intrapatient variability in fetal hemoglobin measurements over time in sickle cell patients not on fetal hemoglobin inducing agents. Am J Hematol. 2016 Mar;91(3) 6. Figueiredo L, Morrone K, Wei C, Ireland K, Cohen HW, Driscoll C, Manwani D. An age dependent response to hydroxyurea in pediatric sickle cell anemia patients with alpha thalassemia trait. Blood Cells Mol Dis. 2017 Jul;66:19-23 7. Khazal S, Polishchuk V, Manwani D, Gallagher PG, Prinzing S, Mahadeo KM, 2016, Allogeneic bone marrow transplantation for treatment of severe hemolytic anemia attributable to hexokinase deficiency.
    [Show full text]
  • Non-Commercial Use Only
    Thalassemia Reports 2013; volume 3(s1):e33 Diagnosis and epidemiology of red blood cell enzyme disorders Richard Van Wijk Associate professor, Laboratory For Red Blood Cell Research, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands The red blood cell possess an active metabolic machinery that pro- tion of fava beans. Patients with uncommon, functionally very severe, vides the cell with energy to pump ions against electrochemical gradi- genetic variants of G6PD experience chronic hemolysis, a disorder ents, to maintain its shape, to keep hemoglobin iron in the reduced designated hereditary nonspherocytic hemolytic anemia (HNSHA).(3) (ferrous) form, and to maintain enzyme and hemoglobin sulfhydryl Hereditary nonspherocytic hemolytic anemia also occurs as a conse- groups. The main source of metabolic energy comes from glucose. quence of other enzyme deficiencies, the most common of which is Glucose is metabolized through the glycolytic pathway and through the pyruvate kinase (PK) deficiency.(4-6) Deficiencies of glucosephos- hexose monophosphate shunt. Glycolysis catabolizes glucose to pyru- phate isomerase(6), triosephosphate isomerase(7), and pyrimidine 52 vate and lactate, which represent the end products of glucose metabo- -nucleotidase deficiency(8) are included among the relatively rare lism in the erythrocyte. Adenosine diphosphate (ADP) is phosphorylat- causes of HNSHA. In the case of some deficiencies, notably those of ed to adenosine triphosphate (ATP), and nicotinamide adenine dinu- glutathione synthetase(9), triosephosphate isomerase(7), and phos- cleotide (NAD)+ is reduced to NADH in glycolysis. 2,3- phoglycerate kinase(10), the defect is expressed throughout the body, Bisphosphoglycerate, an important regulator of the oxygen affinity of and neurologic and other defects may be a prominent part of the clin- hemoglobin, is generated during glycolysis by the Rapoport-Luebering ical syndrome.
    [Show full text]
  • 2 . . Dyserythropoiesis, Refractory
    f . .- RE? osmw DOE-FORRESTAL MARKEY FILES COLLECTI~ Box No. e;*..,+- .._?.,:'2.. Dyserythropoiesis, Refractory 'Anenlia, and "Preleuliernia :" L. .: . ..,I. .',.., ~:*.!.:, Metabolic Features of the Erythrocytes ,,...... ';r ';r t . ' By William N. Valentine, Patricia-. N. Konrad, and Donald E. Paglia j-?- * Twenty-one enzymatic activities and red relatively or absolutely low and somelimes cell glutathione contentr..ar.c ,compared .in , , drarnaticalJy,so. El\ryme ratios were grossly cord blood, dyserythropoietic disorders, aberrant. Capricious. very high individual normal subjects. and subjects with hemo- aclivities occurred in some instances. The lytic syndromes and reticulocytosis ap- heterogeneous nalure of case material, proximating that of the, newborn. The including both hereditary and acquired syn- dysery!hropoietic states are heterogeneous dromes, renders it difficult to interpret and include several hereditary disorders, similarities often seen from case lo case "prgewse-Eic- a@ overt .!e~kemL?: refrac- and somelimes to cord blood patterns on tory anemia with and without marrow the basis of the reversion to fetal erylhro- ringed sideroblasts. and folate deficiency. poiesis as a common denominator. Ralher. Many activities exceeded those of cord the cyto- and karyokirletic abnormalities erythrocytes and "high reticulocyte" con- characterizing dyserythropoiesis of diverse trols by one or even several ;standard etiologies may result in exaggerations and deviations. 'The low phosphoglycerate ki- distortions of a normal asynchronism in ..:-'... nase and glulalhione peroxidase and rela; loss of functional genetic material govern- ..' tively low ribosophosphate pyrophospho- ing enzyme synthesis as the nucleus de- ' .: kinase and adenine-phosphoribodyl trans- generates and cytoplasmic organelles are : ferase of cord erythrocytes were mimicked lost. Uncommonly. Pyruvate kinase was often ,.
    [Show full text]
  • Frequencies of Glucose 6-Phosphate Dehydrogenase Pyruvate Kinase and Hexokinase Deficiencies in the Basrah Population of Iraq
    SCREENING ELSEVIER Screening 4 (1995) 27-34 Frequencies of glucose 6-phosphate dehydrogenase pyruvate kinase and hexokinase deficiencies in the Basrah population of Iraq Menhel M. Al-Naamaaa, Lamia M. Al-Naama*b, Tagreed A. Al-Saadoonb “Chemistry Department, College of Education, Basrah University, Basrah, Iraq bBiochemistry Department, College of Medicine, Basrah University, Basrah, Iraq Received 3 April 1992; revision received 29 July 1993; accepted 9 January 1995 Abstract Introduction: The frequenciesof enzyme deficienciesthat causehemolytic anemiaamong Iraqi peoplein southernIraq have beenstudied. These hereditary red blood cell enzymesin- clude glucose6-phosphate dehydrogenase (G6PD), pyruvate kinase (PK) and hexokinase (HK). The mostcommon enzyme deficiency is G6PD deficiency, an X-linked recessivetrait. PK deficiency is associatedwith chronic hemolytic anemia, but HK deficiency is a rare autosomalrecessive enzymopathy. Methods: A total of 1497clinically normal neonatesand 1629apparently healthy adults from Iraqi Arab original inhabitantsof Basrahwere studied. Blood samplesobtained from the umbilical cord of the newbornsor by venipuncture from adultswere collected in ACD anticoagulantand storedat 4°C. Erythrocyte G6PD activity was measuredqualitatively by the fluorescentspot test or methemoglobinreduction test and con- firmed quantitatively by spectrophotometricanalysis. PK and HK activities were estimated only quantitatively by spectrophotometry.Results: Only sevenpartially deficient infants out of 506 infants and 343 adults were
    [Show full text]
  • BLOOD RESEARCH June 2017 ARTICLE
    VOLUME 52ㆍNUMBER 2 REVIEW BLOOD RESEARCH June 2017 ARTICLE Diagnostic approaches for inherited hemolytic anemia in the genetic era Yonggoo Kim, Joonhong Park, Myungshin Kim Department of Laboratory Medicine, Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea p-ISSN 2287-979X / e-ISSN 2288-0011 Abstract https://doi.org/10.5045/br.2017.52.2.84 Inherited hemolytic anemias (IHAs) are genetic diseases that present with anemia Blood Res 2017;52:84-94. due to the increased destruction of circulating abnormal RBCs. The RBC abnor- malities are classified into the three major disorders of membranopathies, hemo- Received on March 8, 2017 globinopathies, and enzymopathies. Traditional diagnosis of IHA has been per- Revised on May 24, 2017 formed via a step-wise process combining clinical and laboratory findings. Accepted on May 25, 2017 Nowadays, the etiology of IHA accounts for germline mutations of the respon- sible genes coding for the structural components of RBCs. Recent advances in molecular technologies, including next-generation sequencing, inspire us to ap- Correspondence to ply these technologies as a first-line approach for the identification of potential Myungshin Kim, M.D., Ph.D. mutations and to determine the novel causative genes in patients with IHAs. We Department of Laboratory Medicine, Seoul herein review the concept and strategy for the genetic diagnosis of IHAs and pro- St. Mary’s Hospital, College of Medicine, vide an overview of the preparations for clinical applications of the new molecular The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, technologies.
    [Show full text]
  • A New Metabolic Muscle Disease Due to Abnormal Hexokinase Activity
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.2.250 on 1 February 1988. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1988;51:250-255 A new metabolic muscle disease due to abnormal hexokinase activity K R POULTON, S NIGHTINGALE From the Midland Centrefor Neurosurgery and Neurology, Smethwick, West Midlands, UK SUMMARY A 34 year old man presented with an 8 year history of mild muscle pain and stiffness on exertion especially in the cold. Clinical examination was normal. Apart from a mild persistent leucocytosis, his routine investigations were normal including creatine kinase activity, electro- myography and nerve conduction studies. An ischaemic exercise test produced a slow and incom- plete rise in lactate. Histological examination showed non-specific myopathic changes in some quadriceps femoris muscle fibres. Investigation of muscle metabolism by spectrofluorometric analysis of muscle enzyme activity and by muscle fibre incubation studies revealed a severe defect in glucose phosphorylation, associated with an electrophoretically abnormal hexokinase. Further metabolic studies suggest that the block in glucose metabolism is by-passed via an enhanced phosphorylation of fructose by the abnormal hexokinase. Protected by copyright. Hexokinase (HK) (ATP: D-hexose-6-phospho- regarded as negligible. However, enzyme mea- transferase: EC 2.7.1.1) has an important role in glu- surements in muscle from patients with the X-linked cose metabolism in skeletal muscle, catalysing the muscular dystrophies (Duchenne
    [Show full text]
  • Carbohydrate Metabolism Synopsis of Glycolytic Enzyme Deficiencies
    Carbohydrate Metabolism Synopsis of Glycolytic Enzyme Deficiencies The video that accompanies the texts in this segment begins on page 44. However, a quick review of the rest of the materials is highly recommended prior to watching the video. 37. Northwestern Medical Review, Bare Minimum Review Series, 2012 Glycolytic Pathway Glycogen Glucose 1-phophate Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6 bisphosphate Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate 1, 3-Diphosphoglycerate 3-Phosphoglycerate 2-Phosphoglycerate Phosphoenolpyruvate Lactate Pyruvate Cytoplasm LACTATE Acetyl-CoA Mitochondria *Stars indicate key controlling enzymes and steps of glycolysis. The light-color star connecting pyruvate to acetyl CoA is not a glycolytic step. It marks the pyruvate dehydrogenase enzyme (PDH) that is required for aerobic respiration of glucose. Glucose 6-Phosphate Inhibited by the product (G-6-P); hence, it works Glycogen phosphorylase catalyzes conversion of better if products are utilized quickly (e.g. fasting glycogen to glucose 1-phosphate. conditions). Hexokinase and/or glucokinase catalyze conversion of glucose to glucose 6-phosphate. The two glucose phosphates—glucose 1- Glycogen Glucose phosphate and glucose 6-phosphate, are readily Hexokinase Phosphorylase interchangeable—using phosphoglucomutase as G-6-Phosphatase their catalyst. Phosphoglucomutase Hexokinase (HK) Glucose 1-P Glucose 6-P Most tissues have hexokinase Broad Specificity (acts on most sugars). Glucose must first be converted to glucose 6-P before descending Affinity for glucose is high (low K ); it works Glycolytic Pathway m down the glycolytic pathway. maximally during fasting glucose conditions. Helps to provide G6P to tissues during low blood glucose levels. Low Vmax (cannot phosphorylate high glucose quantities).
    [Show full text]