Haematological Abnormalities in Mitochondrial Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitochondrial Trnaleu(Uur) May Cause an MERRF Syndrome
J7ournal ofNeurology, Neurosurgery, and Psychiatry 1996;61:47-51 47 The A to G transition at nt 3243 of the J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.61.1.47 on 1 July 1996. Downloaded from mitochondrial tRNALeu(uuR) may cause an MERRF syndrome Gian Maria Fabrizi, Elena Cardaioli, Gaetano Salvatore Grieco, Tiziana Cavallaro, Alessandro Malandrini, Letizia Manneschi, Maria Teresa Dotti, Antonio Federico, Giancarlo Guazzi Abstract Two distinct maternally inherited encephalo- Objective-To verify the phenotype to myopathies with ragged red fibres have been genotype correlations of mitochondrial recognised on clinical grounds: MERRF, DNA (mtDNA) related disorders in an which is characterised by myoclonic epilepsy, atypical maternally inherited encephalo- skeletal myopathy, neural deafness, and optic myopathy. atrophy,' and MELAS, which is defined by Methods-Neuroradiological, morpholog- stroke-like episodes in young age, episodic ical, biochemical, and molecular genetic headache and vomiting, seizures, dementia, analyses were performed on the affected lactic acidosis, skeletal myopathy, and short members of a pedigree harbouring the stature.2 Molecular genetic studies later con- heteroplasmic A to G transition at firmed the nosological distinction between the nucleotide 3243 of the mitochondrial two disorders, showing that MERRF is strictly tRNAI-u(UR), which is usually associated associated with two mutations of the mito- with the syndrome of mitochondrial chondrial tRNALYs at nucleotides 83443 and encephalomyopathy, lactic -
The Fetal Center SPRING 2019 JOURNAL in This Issue
The Fetal Center SPRING 2019 JOURNAL In This Issue FEATURES: TAKING THE RESEARCH LONG VIEW TOWARD PREVENTION OF RHESUS DISEASE 06 A New Clinical Trial: Umbilical Cord Blood Mononuclear Cells for Hypoxic Neurologic Injury 01 Leaders in Innovation: Rhesus Disease in Infants with Congenital Diaphragmatic Hernia Diagnosis and Treatment NEWS OF NOTE 04 A Miracle Baby for the Pinedas 08 The Fetal Center Welcomes New Recruits 09 NAFTNet Leadership Contact Us THE FETAL CENTER AT CHILDREN’S MEMORIAL HERMANN HOSPITAL UT Physicians Professional Building 6410 Fannin, Suite 210 Houston, TX 77030 Phone: 832.325.7288 Fax: 713.383.1464 Email: [email protected] Located within the Texas Medical Center, The Fetal Center is affiliated with Children’s ★FETAL Memorial Hermann Hospital, McGovern Medical NR School at UTHealth, and UT Physicians. To view The Fetal Center’s online resources, visit childrens.memorialhermann.org/thefetalcenter. FEATURE Leaders in Innovation: Rhesus Disease Diagnosis and Treatment Rhesus (Rh) disease, also known as Reproductive Sciences and the department of Rh-induced hemolytic disease of the Pediatric Surgery at McGovern Medical School at UTHealth. “The antibodies don’t usually cause fetus and newborn (HDFN), rhesus problems during a first pregnancy, because the baby alloimmunization or erythroblastosis may be born before the level of antibodies is high enough to have an effect. Rh antibodies are more fetalis, is relatively rare, occurring in likely to cause problems in second or later pregnan- about 2.5 out of every 100,000 live cies if the baby is Rh positive. Rh antibodies cross the placenta and attack the baby’s red blood cells, births in countries with well-established causing hemolytic anemia in the baby and leading to healthcare infrastructures. -
Initial Experience in the Treatment of Inherited Mitochondrial Disease with EPI-743
Molecular Genetics and Metabolism 105 (2012) 91–102 Contents lists available at SciVerse ScienceDirect Molecular Genetics and Metabolism journal homepage: www.elsevier.com/locate/ymgme Initial experience in the treatment of inherited mitochondrial disease with EPI-743 Gregory M. Enns a,⁎, Stephen L. Kinsman b, Susan L. Perlman c, Kenneth M. Spicer d, Jose E. Abdenur e, Bruce H. Cohen f, Akiko Amagata g, Adam Barnes g, Viktoria Kheifets g, William D. Shrader g, Martin Thoolen g, Francis Blankenberg h, Guy Miller g,i a Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children's Hospital, Stanford University, Stanford, CA 94305-5208, USA b Division of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA c Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA d Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC 29425, USA e Department of Pediatrics, Division of Metabolic Disorders, CHOC Children's Hospital, Orange County, CA 92868, USA f Department of Neurology, NeuroDevelopmental Science Center, Akron Children's Hospital, Akron, OH 44308, USA g Edison Pharmaceuticals, 350 North Bernardo Avenue, Mountain View, CA 94043, USA h Department of Radiology, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford, CA 94305, USA i Department of Anesthesiology, Critical Care Medicine, Stanford University, Stanford, CA 94305, USA article info abstract Article history: Inherited mitochondrial respiratory chain disorders are progressive, life-threatening conditions for which Received 22 September 2011 there are limited supportive treatment options and no approved drugs. Because of this unmet medical Received in revised form 17 October 2011 need, as well as the implication of mitochondrial dysfunction as a contributor to more common age- Accepted 17 October 2011 related and neurodegenerative disorders, mitochondrial diseases represent an important therapeutic target. -
When Should MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic
DOI: 10.1590/0004-282X20150154 VIEW ANDARTICLE REVIEW When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis? Quando o diagnóstico deveria ser MELAS (Miopatia mitocondrial, encefalopatia, acidose lática, e episódios semelhantes a acidente vascular cerebral)? Paulo José Lorenzoni, Lineu Cesar Werneck, Cláudia Suemi Kamoi Kay, Carlos Eduardo Soares Silvado, Rosana Herminia Scola ABSTRACT Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a rare mitochondrial disorder. Diagnostic criteria for MELAS include typical manifestations of the disease: stroke-like episodes, encephalopathy, evidence of mitochondrial dysfunction (laboratorial or histological) and known mitochondrial DNA gene mutations. Clinical features of MELAS are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. It is estimated that point mutations in the tRNALeu(UUR) gene of the DNAmt, mainly A3243G, are responsible for more of 80% of MELAS cases. Morphological changes seen upon muscle biopsy in MELAS include a substantive proportion of ragged red fibers (RRF) and the presence of vessels with a strong reaction for succinate dehydrogenase. In this review, we discuss mainly diagnostic criterion, clinical and laboratory manifestations, brain images, histology and molecular findings as well as some differential diagnoses and current treatments. Keywords: MELAS, mitochondria, myopathy, stroke, encephalopathy, genetics. RESUMO Miopatia mitocondrial, encefalopatia, acidose lática, e episódios semelhantes a acidente vascular cerebral (MELAS) é uma rara doença mitocondrial. Os critérios diagnósticos para MELAS incluem as manifestações típicas da doença: episódios semelhantes a acidente vascular cerebral, encefalopatia, evidência de disfunção mitocondrial (laboratorial ou histológica) e mutação conhecida em genes do DNA mitocondrial. -
Hemolytic Disease of the Newborn
Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly. -
Role of Infection and Immunity in Bovine Perinatal Mortality: Part 2
animals Review Role of Infection and Immunity in Bovine Perinatal Mortality: Part 2. Fetomaternal Response to Infection and Novel Diagnostic Perspectives Paulina Jawor 1,* , John F. Mee 2 and Tadeusz Stefaniak 1 1 Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; [email protected] 2 Animal and Bioscience Research Department, Teagasc, Moorepark Research Centre, P61 P302 Fermoy, County Cork, Ireland; [email protected] * Correspondence: [email protected] Simple Summary: Bovine perinatal mortality (death of the fetus or calf before, during, or within 48 h of calving at full term (≥260 days) may be caused by noninfectious and infectious causes. Although infectious causes of fetal mortality are diagnosed less frequently, infection in utero may also compromise the development of the fetus without causing death. This review presents fetomaternal responses to infection and the changes which can be observed in such cases. Response to infection, especially the concentration of immunoglobulins and some acute-phase proteins, may be used for diagnostic purposes. Some changes in internal organs may also be used as an indicator of infection in utero. However, in all cases (except pathogen-specific antibody response) non-pathogen-specific responses do not aid in pathogen-specific diagnosis of the cause of calf death. But, nonspecific markers of in utero infection may allow us to assign the cause of fetal mortality to infection and thus Citation: Jawor, P.; Mee, J.F.; increase our overall diagnosis rate, particularly in cases of the “unexplained stillbirth”. Stefaniak, T. Role of Infection and Immunity in Bovine Perinatal Abstract: Bovine perinatal mortality due to infection may result either from the direct effects of Mortality: Part 2. -
Pallidal High-Frequency Deep Brain Stimulation for Camptocormia: an Experience of Three Cases
Acta Neurochir Suppl (2006) 99: 25–28 # Springer-Verlag 2006 Printed in Austria Pallidal high-frequency deep brain stimulation for camptocormia: an experience of three cases C. Fukaya1;2, T. Otaka1;2, T. Obuchi1;2, T. Kano1;2, T. Nagaoka1;2, K. Kobayashi1;2, H. Oshima1;2, T. Yamamoto1;2, and Y. Katayama1;2 1 Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan 2 Division of Applied System Neuroscience, Nihon University Graduate School of Medical Science, Itabashi-ku, Japan Summary arms. Recently, camptocormia has been reported to oc- Introduction. The term ‘‘camptocormia’’ describes a forward- cur in association with various other neurological con- flexed posture. It is a condition characterized by severe frontal flex- ditions, including primary dystonia. The cause of this ion of the trunk. Recently, camptocormia has been regarded as a pathological condition remains unknown, and appropri- form of abdominal segmental dystonia. Deep brain stimulation ate treatment has not been established. (DBS) is a promising therapeutic approach to various types of move- ment disorders. The authors report the neurological effects of DBS Deep brain stimulation (DBS) has been regarded as to the bilateral globus pallidum (GPi) in three cases of disabling a promising therapeutic approach for various types of camptocormia. movement disorders. The authors report the neurolog- Methods. Of the 36 patients with dystonia, three had symptoms similar to that of camptocormia, and all of these patients underwent ical effects of deep brain stimulation to the bilateral GPi-DBS. The site of DBS electrode placement was verified by mag- globus pallidum (GPi-DBS) in three cases of disabling netic resonance imaging (MRI). -
My Beloved Neutrophil Dr Boxer 2014 Neutropenia Family Conference
The Beloved Neutrophil: Its Function in Health and Disease Stem Cell Multipotent Progenitor Myeloid Lymphoid CMP IL-3, SCF, GM-CSF CLP Committed Progenitor MEP GMP GM-CSF, IL-3, SCF EPO TPO G-CSF M-CSF IL-5 IL-3 SCF RBC Platelet Neutrophil Monocyte/ Basophil B-cells Macrophage Eosinophil T-Cells Mast cell NK cells Mature Cell Dendritic cells PRODUCTION AND KINETICS OF NEUTROPHILS CELLS % CELLS TIME Bone Marrow: Myeloblast 1 7 - 9 Mitotic Promyelocyte 4 Days Myelocyte 16 Maturation/ Metamyelocyte 22 3 – 7 Storage Band 30 Days Seg 21 Vascular: Peripheral Blood Seg 2 6 – 12 hours 3 Marginating Pool Apoptosis and ? Tissue clearance by 0 – 3 macrophages days PHAGOCYTOSIS 1. Mobilization 2. Chemotaxis 3. Recognition (Opsonization) 4. Ingestion 5. Degranulation 6. Peroxidation 7. Killing and Digestion 8. Net formation Adhesion: β 2 Integrins ▪ Heterodimer of a and b chain ▪ Tight adhesion, migration, ingestion, co- stimulation of other PMN responses LFA-1 Mac-1 (CR3) p150,95 a2b2 a CD11a CD11b CD11c CD11d b CD18 CD18 CD18 CD18 Cells All PMN, Dendritic Mac, mono, leukocytes mono/mac, PMN, T cell LGL Ligands ICAMs ICAM-1 C3bi, ICAM-3, C3bi other other Fibrinogen other GRANULOCYTE CHEMOATTRACTANTS Chemoattractants Source Activators Lipids PAF Neutrophils C5a, LPS, FMLP Endothelium LTB4 Neutrophils FMLP, C5a, LPS Chemokines (a) IL-8 Monocytes, endothelium LPS, IL-1, TNF, IL-3 other cells Gro a, b, g Monocytes, endothelium IL-1, TNF other cells NAP-2 Activated platelets Platelet activation Others FMLP Bacteria C5a Activation of complement Other Important Receptors on PMNs ñ Pattern recognition receptors – Detect microbes - Toll receptor family - Mannose receptor - bGlucan receptor – fungal cell walls ñ Cytokine receptors – enhance PMN function - G-CSF, GM-CSF - TNF Receptor ñ Opsonin receptors – trigger phagocytosis - FcgRI, II, III - Complement receptors – ñ Mac1/CR3 (CD11b/CD18) – C3bi ñ CR-1 – C3b, C4b, C3bi, C1q, Mannose binding protein From JG Hirsch, J Exp Med 116:827, 1962, with permission. -
Genes in Eyecare Geneseyedoc 3 W.M
Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease. -
Congenital Disorders of Glycosylation from a Neurological Perspective
brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations -
The Rhesus Factor and Disease Prevention
THE RHESUS FACTOR AND DISEASE PREVENTION The transcript of a Witness Seminar held by the Wellcome Trust Centre for the History of Medicine at UCL, London, on 3 June 2003 Edited by D T Zallen, D A Christie and E M Tansey Volume 22 2004 ©The Trustee of the Wellcome Trust, London, 2004 First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2004 The Wellcome Trust Centre for the History of Medicine at University College London is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 0 85484 099 1 Histmed logo images courtesy Wellcome Library, London. Design and production: Julie Wood at Shift Key Design 020 7241 3704 All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/ Please cite as : Zallen D T, Christie D A, Tansey E M. (eds) (2004) The Rhesus Factor and Disease Prevention. Wellcome Witnesses to Twentieth Century Medicine, vol. 22. London: Wellcome Trust Centre for the History of Medicine at UCL. CONTENTS Illustrations and credits v Witness Seminars: Meetings and publications;Acknowledgements vii E M Tansey and D A Christie Introduction Doris T Zallen xix Transcript Edited by D T Zallen, D A Christie and E M Tansey 1 References 61 Biographical notes 75 Glossary 85 Index 89 Key to cover photographs ILLUSTRATIONS AND CREDITS Figure 1 John Walker-Smith performs an exchange transfusion on a newborn with haemolytic disease. Photograph provided by Professor John Walker-Smith. Reproduced with permission of Memoir Club. 13 Figure 2 Radiograph taken on day after amniocentesis for bilirubin assessment and followed by contrast (1975). -
The Genetics of Metabolic Disorders* D
Postgrad Med J: first published as 10.1136/pgmj.48.558.207 on 1 April 1972. Downloaded from Postgraduate Medical Journal (April 1972) 48, 207-2,11. The genetics of metabolic disorders* D. A. HOPKINSON M.A., M.D. MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London THE first work on the genetics of metabolic disorders tion (Harris, 1970) more than sixty such disorders in Man was of course carried out by that great were listed and further examples are regularly being pioneer Sir Archibald Garrod at the turn of the reported. present century (Garrod, 1902). From a study of the It is interesting to note that there is no one hereditary background of a small series of patients particular aspect of metabolism which seems with a rare disorder, alcaptonuria, he discovered the peculiarly susceptible to genetic variation of this first example of recessive Mendelian inheritance in kind. Nor is there any indication that enzymes Man and with remarkable foresight he suggested catalysing particular types of reaction or utilizing that this unusual condition was an example of specialized cofactors are more prone. On the one 'chemical individuality'-an inborn alteration in the hand we have disorders like acatalasia in which metabolism of tyrosine. He also suggested that other there is a deficiency of catalase, the enzyme res- conditions such as albinism and cystinuria could be ponsible for the simple reaction splitting hydrogen manifestations of inborn changes or defects in meta- peroxide to water and oxygen, and on the other hand bolism. He called them 'freaks' or 'sports' of meta- we have the glycogen diseases in which there are bolism.