Frequencies of Glucose 6-Phosphate Dehydrogenase Pyruvate Kinase and Hexokinase Deficiencies in the Basrah Population of Iraq

Total Page:16

File Type:pdf, Size:1020Kb

Frequencies of Glucose 6-Phosphate Dehydrogenase Pyruvate Kinase and Hexokinase Deficiencies in the Basrah Population of Iraq SCREENING ELSEVIER Screening 4 (1995) 27-34 Frequencies of glucose 6-phosphate dehydrogenase pyruvate kinase and hexokinase deficiencies in the Basrah population of Iraq Menhel M. Al-Naamaaa, Lamia M. Al-Naama*b, Tagreed A. Al-Saadoonb “Chemistry Department, College of Education, Basrah University, Basrah, Iraq bBiochemistry Department, College of Medicine, Basrah University, Basrah, Iraq Received 3 April 1992; revision received 29 July 1993; accepted 9 January 1995 Abstract Introduction: The frequenciesof enzyme deficienciesthat causehemolytic anemiaamong Iraqi peoplein southernIraq have beenstudied. These hereditary red blood cell enzymesin- clude glucose6-phosphate dehydrogenase (G6PD), pyruvate kinase (PK) and hexokinase (HK). The mostcommon enzyme deficiency is G6PD deficiency, an X-linked recessivetrait. PK deficiency is associatedwith chronic hemolytic anemia, but HK deficiency is a rare autosomalrecessive enzymopathy. Methods: A total of 1497clinically normal neonatesand 1629apparently healthy adults from Iraqi Arab original inhabitantsof Basrahwere studied. Blood samplesobtained from the umbilical cord of the newbornsor by venipuncture from adultswere collected in ACD anticoagulantand storedat 4°C. Erythrocyte G6PD activity was measuredqualitatively by the fluorescentspot test or methemoglobinreduction test and con- firmed quantitatively by spectrophotometricanalysis. PK and HK activities were estimated only quantitatively by spectrophotometry.Results: Only sevenpartially deficient infants out of 506 infants and 343 adults were detectedwith PK deficiency. On this basis,the incidence would be 0.82 with an estimatedgene frequency of about 0.004. Partial HK deficiency was found in only one femaleinfant out of 220 infants and 246 adults in both sexes.No caseof completedeficiency of theseenzymes was identified. G6PD deficiencywas identified in 131 out of 1040male infants and adults. All the affected malesseemed to have severedeficiency (hemizygotes).On this basis,we estimatedthe genefrequency to be about 12.6%.In the female population, 3 1 out of 771 femaleinfants and adultshad severeenzyme deficiency, a frequency of 4.0% (possiblehomozygosity) while 67 femalesshowed intermediate or moderateenzyme activity (heterozygosity),a prevalenceof 8.7%.Discussion.. Among the Iraqi Arab populations that are original inhabitantsof Basrah,erythrocytes G6PD deficiency is by far the mostcom- * Correspondingauthor. Elsevier Science Ireland Ltd. SSDI 0925-6164(95)00103-S 28 M. M. AI-Naamaa et al. /Screening 4 (1995) 27-34 mon enzyme deficiency that causes hemolytic anemia. The gene frequencies for male infants and adults were 11.7% and 13.1%, respectively. The observed female incidences, for both infants and adults, were far from those expected. Factors that might be the causes of such discrepancies were discussed. Keywords: Glucose 6-phosphate dehydrogenase (G6PD); Pyruvate kinase; Hexokinase; Screening; Newborn; Cord blood; Adults; Iraq 1. Introduction We have studied the frequency of certain hereditary enzymopathies that cause he- molytic anemia among Iraqi people in southern Iraq. These enzymes deficiencies in red blood cells include those of glucose 6-phosphate dehydrogenase (G6PD), pyru- vate kinase (PK) and hexokinase (HK). G6PD is the first enzyme of the oxidative hexose monophosphate shunt, PK catalyses the conversion of phosphoenolpyruvate to pyruvate in the Embden-Meyerhof pathway, and HK catalyses the phosphoryla- tion of glucose to its metabolically active form, glucose 6-phosphate. Each of these deficiencies has been responsible for hereditary non-spherocytic congenital hemo- lytic anemia [l-5], and each may also be associated with other effects, both hematological and extra-hematological [2,6,7]. The most common of these three enzyme deficiencies is G6PD deficiency, an X- linked recessive trait which exists in many genetic variants among different popula- tions [8]. Some variants are associated with normal enzyme activity and others with reduced G6PD activity [l]. It has been estimated that more than 200 million people have G6PD deficiency [1,7,8]. PK deficiency, an autosomal recessive disorder, is associated with chronic hemolytic anemia and accounts for over 80% of the cases of hemolytic anemia involving the Embden-Meyerhof pathway [2]. Valentine et al. [2] have documented over 300 patients with hemolytic anemia due to PK deficiency. Although PK deficiency has worldwide distribution, its prevalence in many parts of the world is still unknown. It is mostly found in Caucasians of north European ancestry, but has also been reported from the Mediterranean, Far East and Mexico [2]. HK deficiency is rare but several cases have been reported in different popula- tions [9]. In 14 patients it has been identified as an autosomal recessive enzymopathy causing life-long hemolytic anemia [2]. A high prevalence of G6PD deficiency has been reported in Iraq, particularly in Basrah [ 10,111, but also in other regions and among different ethnic groups [ 121. No observations from Iraq have been published about other enzyme deficiencies such as PK and HK, which play important roles in red blood cell metabolism. With this aim in mind, we conducted a survey to estimate their deficiencies in Iraqi male and female populations from Basrah, in adults and in cord blood samples. 2. Materials and methods A total of 3126 blood samples were collected from apparently healthy unrelated individuals. All were Iraqi Arabs, originally inhabitants of Basrah in southern Iraq M. M. Al-Nuamaa et al. /Screening 4 (1995) 27-34 29 (90% Moslem and 10% Christian). No Kurds or other specific ethnic groups were included. The first group consisted of 1497 clinically normal neonates (871 males and 626 females) delivered at the Basrah maternity and Al-Tahreer hospitals. The second group included 1629 adults (945 males and 684 females) students and employees of the university, blood donors, and people attending the out-patient clinics at the Basrah Teaching Hospital. Their ages ranged from 20 to 45 years. Any subject with a known family history of enzyme deficiency was excluded. Blood samples of 5.0 ml obtained from the umbilical cords of the newborns or by venipuncture from the adults, were collected in ACD anticoagulant and stored at 4°C until assayed within 24 h. Erythrocyte G6PD activity was measured qualitatively by the fluorescent spot test of Beutler and Mitchell [ 131 or methemoglobin reduction test [14] and confirmed quantitatively by spectrophotometric analysis using a SP8- 100 with cell temperature controller (Pye-Unicam, United Kingdom), according to a recommended method [ 151. PK activity was determined by standard methods developed by the International Committee for Standardisation in Haematology [ 161. Red blood cell HK was estimated quantitatively using the method described by Beutler [17]. All enzyme activities were calculated as pmol substrate converted per 10” erythrocytes per min at 37°C. Each sample reading was a mean of triplicate determinations. Normal activity was expressed as the mean of the normal values. 3. Results The frequencies of PK and HK deficiencies among neonates and adults are shown in Table 1. Tanaka [18] had reported that severe PK deficiency was defined as Table 1 Frequencies of pyruvate kinase and hexokinase deficiencies for newborn infants and adults in the Basrah population of Iraq Population PK HK Number Partial deficiency Number Partial deficiency tested tested n o/o n ‘%, Infants Male 336 5 I.5 III 0 0 Female 170 2 1.2 109 I 0.91 Total 506 7 1.4 220 I 0.45 Adults Male 198 0 0 131 0 0 Female 145 0 0 115 0 0 Total 343 0 0 246 0 0 All age groups Male 534 5 0.94 242 0 0 Female 315 2 0.63 224 I 0.45 Total 849 7 0.82 466 I 0.21 Mean normal activity at 37°C: infants PK 5.10 f 0.81 and HK 0.61 f 0.16 U/10” RBC; adults PK 3.61 + 0.55 and HK 0.41 f 0.06 U/1O’o RBC. 30 M.M. Al-Naamaa et al. /Screening 4 (1995) 27-34 Table 2 Frequency of glucose 6-phosphate dehydrogenase deficiency in the neonate population of the Basrah area of Iraq Sex Number Normal Intermediate Severe tested n % n % n % Male 424 374 88.3 0 0 50 11.7 Female 341 307 88.6 29 8.3 II 3.1 Mean normal G6PD activity is 3.29 f 1.07 U/lO’o RBC at 37°C. Deficiency is defined with activity ranges: intermediate, 0.33-1.92; severe O-O.33 U/lO’o RBC. 5%-20% of the mean normal enzyme activity while heterozygotes showed moderate enzyme reduction at less than 60% of mean normal activity. Among the 506 neo- nates, 7 (5 males and 2 females) had moderate PK deficiency, a prevalence of 1.4%. Only one neonate (a female) out of 220 infants (0.45%) was deficient in HK. No adults were deficient in either PK or HK. Thus, the overall frequencies of PK and HK deficiencies were 0.82% and 0.2%, respectively (Table 1). No case of complete deficiency of either of these enzymes was identified. Table 2 shows the frequency of G6PD deficiency in newborn infants. Of the 771 neonates tested, 90 showed G6PD deficiency, a prevalence of 11.6% for both sexes. Those with G6PD deficiency were separated according to whether the activity was less than 10% (severe) or lo%-60% (intermediate) of the mean normal activity [19]. Severe deficiency was detected in 50 males (11.7%) and 11 females (3.1%); intermedi- ate deficiency was demonstrated in 29 females (8.3%). For adults, 139 were found to be G6PD deficient, a prevalence of 13.3%. Severe deficiency was detected in 81 males (13.1%) and 20 females (4.7%) while 38 females (8.9”/,) demonstrated interme- diate G6PD activity (Table 3). For all age groups (infants and adults), severe G6PD deficiency was noted in 12.6% of males (hemizygotes) and 4.0% of females (homozygoses), while intermediate enzyme activity was found in 8.7% of females (heterozygoses) (Table 4). The gene frequency for G6PD deficiency was estimated from the data obtained.
Recommended publications
  • The Genetics of Metabolic Disorders* D
    Postgrad Med J: first published as 10.1136/pgmj.48.558.207 on 1 April 1972. Downloaded from Postgraduate Medical Journal (April 1972) 48, 207-2,11. The genetics of metabolic disorders* D. A. HOPKINSON M.A., M.D. MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London THE first work on the genetics of metabolic disorders tion (Harris, 1970) more than sixty such disorders in Man was of course carried out by that great were listed and further examples are regularly being pioneer Sir Archibald Garrod at the turn of the reported. present century (Garrod, 1902). From a study of the It is interesting to note that there is no one hereditary background of a small series of patients particular aspect of metabolism which seems with a rare disorder, alcaptonuria, he discovered the peculiarly susceptible to genetic variation of this first example of recessive Mendelian inheritance in kind. Nor is there any indication that enzymes Man and with remarkable foresight he suggested catalysing particular types of reaction or utilizing that this unusual condition was an example of specialized cofactors are more prone. On the one 'chemical individuality'-an inborn alteration in the hand we have disorders like acatalasia in which metabolism of tyrosine. He also suggested that other there is a deficiency of catalase, the enzyme res- conditions such as albinism and cystinuria could be ponsible for the simple reaction splitting hydrogen manifestations of inborn changes or defects in meta- peroxide to water and oxygen, and on the other hand bolism. He called them 'freaks' or 'sports' of meta- we have the glycogen diseases in which there are bolism.
    [Show full text]
  • Download Download
    Acta Biomed 2021; Vol. 92, N. 1: e2021169 DOI: 10.23750/abm.v92i1.11345 © Mattioli 1885 Update of adolescent medicine (Editor: Vincenzo De Sanctis) Rare anemias in adolescents Joan-Lluis Vives Corrons, Elena Krishnevskaya Red Blood Cell Pathology and Hematopoietic Disorders (Rare Anaemias Unit) Institute for Leukaemia Research Josep Car- reras (IJC). Badalona (Barcelona) Abstract. Anemia can be the consequence of a single disease or an expression of external factors mainly nutritional deficiencies. Genetic issues are important in the primary care of adolescents because a genetic diagnosis may not be made until adolescence, when the teenager presents with the first signs or symptoms of the condition. This situation is relatively frequent for rare anemias (RA) an important, and relatively heteroge- neous group of rare diseases (RD) where anaemia is the first and most relevant clinical manifestation. RA are characterised by their low prevalence (< 5 cases per 10,000 individuals), and, in some cases, by their complex mechanism. For these reasons, RA are little known, even among health professionals, and patients tend to re- main undiagnosed or misdiagnosed for long periods of time, making impossible to know the prognosis of the disease, or to carry out genetic counselling for future pregnancies. Since this situation is an important cause of anxiety for both adolescent patients and their families, the physician’s knowledge of the natural history of a genetic disease will be the key factor for the anticipatory guidance for diagnosis and clinical follow-up. RA can be due to three primary causes: 1. Bone marrow erythropoietic defects, 2. Excessive destruction of mature red blood cells (hemolysis), and 3.
    [Show full text]
  • Haematological Abnormalities in Mitochondrial Disorders
    Singapore Med J 2015; 56(7): 412-419 Original Article doi: 10.11622/smedj.2015112 Haematological abnormalities in mitochondrial disorders Josef Finsterer1, MD, PhD, Marlies Frank2, MD INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes.
    [Show full text]
  • Chapter 03- Diseases of the Blood and Certain Disorders Involving The
    Chapter 3 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D50- D89) Excludes2: autoimmune disease (systemic) NOS (M35.9) certain conditions originating in the perinatal period (P00-P96) complications of pregnancy, childbirth and the puerperium (O00-O9A) congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) endocrine, nutritional and metabolic diseases (E00-E88) human immunodeficiency virus [HIV] disease (B20) injury, poisoning and certain other consequences of external causes (S00-T88) neoplasms (C00-D49) symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (R00-R94) This chapter contains the following blocks: D50-D53 Nutritional anemias D55-D59 Hemolytic anemias D60-D64 Aplastic and other anemias and other bone marrow failure syndromes D65-D69 Coagulation defects, purpura and other hemorrhagic conditions D70-D77 Other disorders of blood and blood-forming organs D78 Intraoperative and postprocedural complications of the spleen D80-D89 Certain disorders involving the immune mechanism Nutritional anemias (D50-D53) D50 Iron deficiency anemia Includes: asiderotic anemia hypochromic anemia D50.0 Iron deficiency anemia secondary to blood loss (chronic) Posthemorrhagic anemia (chronic) Excludes1: acute posthemorrhagic anemia (D62) congenital anemia from fetal blood loss (P61.3) D50.1 Sideropenic dysphagia Kelly-Paterson syndrome Plummer-Vinson syndrome D50.8 Other iron deficiency anemias Iron deficiency anemia due to inadequate dietary
    [Show full text]
  • Clinical Consequences of Enzyme Deficiencies in the Erythrocyte
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 5 Copyright © 1980, Institute for Clinical Science, Inc. Clinical Consequences of Enzyme Deficiencies in the Erythrocyte MICHAEL L. NETZLOFF, M.D. Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, East Lansing, Ml 48824 ABSTRACT The anueleate mature erythrocyte also lacks ribosomes and mitochondria and thus cannot synthesize enzymes or derive energy from the Krebs citric acid cycle. Nevertheless, the red blood cell is metabolically active and contains numerous residual enzymes and their products which are essential for its survival and normal functioning. Enzyme deficiencies in the Embden-Myerhoff glycolytic pathway can result in nonspherocytic hemoly­ tic anemia (NSHA), and some are also associated with neuromuscular or neurologic disorders. Glucose-6-phosphate dehydrogenase deficiency in the hexose monophosphate shunt also results in hemolytic anemia, espe­ cially following exposure to various drugs. Defects in glutathione synthesis and pyrimidine 5'-nucleotidase deficiency also cause NSHA, as does in­ creased adenosine deaminase activity. Glutathione synthetase deficiency which is not limited to the red cell also presents as oxoprolinuria with neurologic signs. All red cell enzyme defects appear as single gene errors, in most cases recessive in inheritance, either autosomal or X-linked. Clinical Consequences of Enzyme tains over 40 different enzymes, many of Deficiencies in the Erythrocyte which are essential for its survival or nor­ mal functioning. The purpose of this re­ Prior to maturity, the nucleated red port is to review some inherited enzyme blood cell (rbc) can perform a variety of deficiencies of the erythrocyte which metabolic functions, including active en­ compromise its viability in the circulation zyme synthesis.
    [Show full text]
  • Hemolytic Anemia with Impaired Hexokinase Activity
    Hemolytic anemia with impaired hexokinase activity Alan S. Keitt J Clin Invest. 1969;48(11):1997-2007. https://doi.org/10.1172/JCI106165. Research Article Analyses of key glycolytic intermediates in freshly drawn red cells from six related individuals suggest that decreased hexokinase activity underlies the hemolytic process in the two members with overt hemolysis. Low red cell glucose 6- phosphate (G6P) was observed not only in the anemic patients but in the presumptive heterozygotes as well and served as a useful marker for the presence of the trait. Hexokinase activity was labile in distilled water hemolysates but was only slightly low when protected by glucose, mercaptoethanol, and ethylenediaminetetraacetate (EDTA). Normal red cell hexokinase was demonstrated to be dependent on glucose for maintenance of activity after heating to 45°C. The cells of the proposita are unable to utilize glucose efficiently at glucose concentrations lower than 0.2 mmole/liter whereas normal cells maintain linear glucose consumption to at least 0.05 mM glucose. These qualitative abnormalities could result from the presence of a mutant hexokinase with an abnormally reactive sulfhydryl group and altered substrate affinity in the red cells of this kindred. Find the latest version: https://jci.me/106165/pdf Hemolytic Anemia with Impaired Hexokinase Activity ALAN S. KErrr From the Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32601 A B S T R A C T Analyses of key glycolytic intermediates cells of a young girl with moderately severe chronic in freshly drawn red cells from six related individuals anemia. Although hexokinase activity was only slightly suggest that decreased hexokinase activity underlies the below the range of normal, a comparison between the hemolytic process in the two members with overt he- activity of red cell hexokinase in the affected proposita molysis.
    [Show full text]
  • Productivity Productivity
    Productivity Productivity A Selection of Publications from Our Current and Previous Fellows 1. Maxwell RR, Egan-Sherry D, Gill JB, Roth ME. Management of chemotherapy-induced febrile neutropenia in pediatric oncology patients: A North American survey of pediatric hematology/oncology and pediatric infectious disease physicians. Pediatr Blood Cancer. 2017 Dec; 64(12) 2. Maxwell RR, Cole PD . Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep. 2017 Jun;12(3):176-186 3. Green NS, Manwani D, Qureshi M, Ireland K, Sinha A, Smaldone AM. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatr Blood Cancer. 2016 Dec;63(12):2146-2153. 4. Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016 Feb 26;3:5 5. Knapp E, Cohen H, Kutlar A, Ghalie R, Manwani D. Intrapatient variability in fetal hemoglobin measurements over time in sickle cell patients not on fetal hemoglobin inducing agents. Am J Hematol. 2016 Mar;91(3) 6. Figueiredo L, Morrone K, Wei C, Ireland K, Cohen HW, Driscoll C, Manwani D. An age dependent response to hydroxyurea in pediatric sickle cell anemia patients with alpha thalassemia trait. Blood Cells Mol Dis. 2017 Jul;66:19-23 7. Khazal S, Polishchuk V, Manwani D, Gallagher PG, Prinzing S, Mahadeo KM, 2016, Allogeneic bone marrow transplantation for treatment of severe hemolytic anemia attributable to hexokinase deficiency.
    [Show full text]
  • Non-Commercial Use Only
    Thalassemia Reports 2013; volume 3(s1):e33 Diagnosis and epidemiology of red blood cell enzyme disorders Richard Van Wijk Associate professor, Laboratory For Red Blood Cell Research, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands The red blood cell possess an active metabolic machinery that pro- tion of fava beans. Patients with uncommon, functionally very severe, vides the cell with energy to pump ions against electrochemical gradi- genetic variants of G6PD experience chronic hemolysis, a disorder ents, to maintain its shape, to keep hemoglobin iron in the reduced designated hereditary nonspherocytic hemolytic anemia (HNSHA).(3) (ferrous) form, and to maintain enzyme and hemoglobin sulfhydryl Hereditary nonspherocytic hemolytic anemia also occurs as a conse- groups. The main source of metabolic energy comes from glucose. quence of other enzyme deficiencies, the most common of which is Glucose is metabolized through the glycolytic pathway and through the pyruvate kinase (PK) deficiency.(4-6) Deficiencies of glucosephos- hexose monophosphate shunt. Glycolysis catabolizes glucose to pyru- phate isomerase(6), triosephosphate isomerase(7), and pyrimidine 52 vate and lactate, which represent the end products of glucose metabo- -nucleotidase deficiency(8) are included among the relatively rare lism in the erythrocyte. Adenosine diphosphate (ADP) is phosphorylat- causes of HNSHA. In the case of some deficiencies, notably those of ed to adenosine triphosphate (ATP), and nicotinamide adenine dinu- glutathione synthetase(9), triosephosphate isomerase(7), and phos- cleotide (NAD)+ is reduced to NADH in glycolysis. 2,3- phoglycerate kinase(10), the defect is expressed throughout the body, Bisphosphoglycerate, an important regulator of the oxygen affinity of and neurologic and other defects may be a prominent part of the clin- hemoglobin, is generated during glycolysis by the Rapoport-Luebering ical syndrome.
    [Show full text]
  • 2 . . Dyserythropoiesis, Refractory
    f . .- RE? osmw DOE-FORRESTAL MARKEY FILES COLLECTI~ Box No. e;*..,+- .._?.,:'2.. Dyserythropoiesis, Refractory 'Anenlia, and "Preleuliernia :" L. .: . ..,I. .',.., ~:*.!.:, Metabolic Features of the Erythrocytes ,,...... ';r ';r t . ' By William N. Valentine, Patricia-. N. Konrad, and Donald E. Paglia j-?- * Twenty-one enzymatic activities and red relatively or absolutely low and somelimes cell glutathione contentr..ar.c ,compared .in , , drarnaticalJy,so. El\ryme ratios were grossly cord blood, dyserythropoietic disorders, aberrant. Capricious. very high individual normal subjects. and subjects with hemo- aclivities occurred in some instances. The lytic syndromes and reticulocytosis ap- heterogeneous nalure of case material, proximating that of the, newborn. The including both hereditary and acquired syn- dysery!hropoietic states are heterogeneous dromes, renders it difficult to interpret and include several hereditary disorders, similarities often seen from case lo case "prgewse-Eic- a@ overt .!e~kemL?: refrac- and somelimes to cord blood patterns on tory anemia with and without marrow the basis of the reversion to fetal erylhro- ringed sideroblasts. and folate deficiency. poiesis as a common denominator. Ralher. Many activities exceeded those of cord the cyto- and karyokirletic abnormalities erythrocytes and "high reticulocyte" con- characterizing dyserythropoiesis of diverse trols by one or even several ;standard etiologies may result in exaggerations and deviations. 'The low phosphoglycerate ki- distortions of a normal asynchronism in ..:-'... nase and glulalhione peroxidase and rela; loss of functional genetic material govern- ..' tively low ribosophosphate pyrophospho- ing enzyme synthesis as the nucleus de- ' .: kinase and adenine-phosphoribodyl trans- generates and cytoplasmic organelles are : ferase of cord erythrocytes were mimicked lost. Uncommonly. Pyruvate kinase was often ,.
    [Show full text]
  • BLOOD RESEARCH June 2017 ARTICLE
    VOLUME 52ㆍNUMBER 2 REVIEW BLOOD RESEARCH June 2017 ARTICLE Diagnostic approaches for inherited hemolytic anemia in the genetic era Yonggoo Kim, Joonhong Park, Myungshin Kim Department of Laboratory Medicine, Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea p-ISSN 2287-979X / e-ISSN 2288-0011 Abstract https://doi.org/10.5045/br.2017.52.2.84 Inherited hemolytic anemias (IHAs) are genetic diseases that present with anemia Blood Res 2017;52:84-94. due to the increased destruction of circulating abnormal RBCs. The RBC abnor- malities are classified into the three major disorders of membranopathies, hemo- Received on March 8, 2017 globinopathies, and enzymopathies. Traditional diagnosis of IHA has been per- Revised on May 24, 2017 formed via a step-wise process combining clinical and laboratory findings. Accepted on May 25, 2017 Nowadays, the etiology of IHA accounts for germline mutations of the respon- sible genes coding for the structural components of RBCs. Recent advances in molecular technologies, including next-generation sequencing, inspire us to ap- Correspondence to ply these technologies as a first-line approach for the identification of potential Myungshin Kim, M.D., Ph.D. mutations and to determine the novel causative genes in patients with IHAs. We Department of Laboratory Medicine, Seoul herein review the concept and strategy for the genetic diagnosis of IHAs and pro- St. Mary’s Hospital, College of Medicine, vide an overview of the preparations for clinical applications of the new molecular The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, technologies.
    [Show full text]
  • A New Metabolic Muscle Disease Due to Abnormal Hexokinase Activity
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.2.250 on 1 February 1988. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1988;51:250-255 A new metabolic muscle disease due to abnormal hexokinase activity K R POULTON, S NIGHTINGALE From the Midland Centrefor Neurosurgery and Neurology, Smethwick, West Midlands, UK SUMMARY A 34 year old man presented with an 8 year history of mild muscle pain and stiffness on exertion especially in the cold. Clinical examination was normal. Apart from a mild persistent leucocytosis, his routine investigations were normal including creatine kinase activity, electro- myography and nerve conduction studies. An ischaemic exercise test produced a slow and incom- plete rise in lactate. Histological examination showed non-specific myopathic changes in some quadriceps femoris muscle fibres. Investigation of muscle metabolism by spectrofluorometric analysis of muscle enzyme activity and by muscle fibre incubation studies revealed a severe defect in glucose phosphorylation, associated with an electrophoretically abnormal hexokinase. Further metabolic studies suggest that the block in glucose metabolism is by-passed via an enhanced phosphorylation of fructose by the abnormal hexokinase. Protected by copyright. Hexokinase (HK) (ATP: D-hexose-6-phospho- regarded as negligible. However, enzyme mea- transferase: EC 2.7.1.1) has an important role in glu- surements in muscle from patients with the X-linked cose metabolism in skeletal muscle, catalysing the muscular dystrophies (Duchenne
    [Show full text]
  • Carbohydrate Metabolism Synopsis of Glycolytic Enzyme Deficiencies
    Carbohydrate Metabolism Synopsis of Glycolytic Enzyme Deficiencies The video that accompanies the texts in this segment begins on page 44. However, a quick review of the rest of the materials is highly recommended prior to watching the video. 37. Northwestern Medical Review, Bare Minimum Review Series, 2012 Glycolytic Pathway Glycogen Glucose 1-phophate Glucose Glucose 6-phosphate Fructose 6-phosphate Fructose 1,6 bisphosphate Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate 1, 3-Diphosphoglycerate 3-Phosphoglycerate 2-Phosphoglycerate Phosphoenolpyruvate Lactate Pyruvate Cytoplasm LACTATE Acetyl-CoA Mitochondria *Stars indicate key controlling enzymes and steps of glycolysis. The light-color star connecting pyruvate to acetyl CoA is not a glycolytic step. It marks the pyruvate dehydrogenase enzyme (PDH) that is required for aerobic respiration of glucose. Glucose 6-Phosphate Inhibited by the product (G-6-P); hence, it works Glycogen phosphorylase catalyzes conversion of better if products are utilized quickly (e.g. fasting glycogen to glucose 1-phosphate. conditions). Hexokinase and/or glucokinase catalyze conversion of glucose to glucose 6-phosphate. The two glucose phosphates—glucose 1- Glycogen Glucose phosphate and glucose 6-phosphate, are readily Hexokinase Phosphorylase interchangeable—using phosphoglucomutase as G-6-Phosphatase their catalyst. Phosphoglucomutase Hexokinase (HK) Glucose 1-P Glucose 6-P Most tissues have hexokinase Broad Specificity (acts on most sugars). Glucose must first be converted to glucose 6-P before descending Affinity for glucose is high (low K ); it works Glycolytic Pathway m down the glycolytic pathway. maximally during fasting glucose conditions. Helps to provide G6P to tissues during low blood glucose levels. Low Vmax (cannot phosphorylate high glucose quantities).
    [Show full text]