Clinical Consequences of Enzyme Deficiencies in the Erythrocyte

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Consequences of Enzyme Deficiencies in the Erythrocyte ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 5 Copyright © 1980, Institute for Clinical Science, Inc. Clinical Consequences of Enzyme Deficiencies in the Erythrocyte MICHAEL L. NETZLOFF, M.D. Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, East Lansing, Ml 48824 ABSTRACT The anueleate mature erythrocyte also lacks ribosomes and mitochondria and thus cannot synthesize enzymes or derive energy from the Krebs citric acid cycle. Nevertheless, the red blood cell is metabolically active and contains numerous residual enzymes and their products which are essential for its survival and normal functioning. Enzyme deficiencies in the Embden-Myerhoff glycolytic pathway can result in nonspherocytic hemoly­ tic anemia (NSHA), and some are also associated with neuromuscular or neurologic disorders. Glucose-6-phosphate dehydrogenase deficiency in the hexose monophosphate shunt also results in hemolytic anemia, espe­ cially following exposure to various drugs. Defects in glutathione synthesis and pyrimidine 5'-nucleotidase deficiency also cause NSHA, as does in­ creased adenosine deaminase activity. Glutathione synthetase deficiency which is not limited to the red cell also presents as oxoprolinuria with neurologic signs. All red cell enzyme defects appear as single gene errors, in most cases recessive in inheritance, either autosomal or X-linked. Clinical Consequences of Enzyme tains over 40 different enzymes, many of Deficiencies in the Erythrocyte which are essential for its survival or nor­ mal functioning. The purpose of this re­ Prior to maturity, the nucleated red port is to review some inherited enzyme blood cell (rbc) can perform a variety of deficiencies of the erythrocyte which metabolic functions, including active en­ compromise its viability in the circulation zyme synthesis. The mature erythrocyte or its capacity to transport oxygen, result­ has no nucleus or ribosomal apparatus, ing in clinical disease. and thus cannot synthesize protein. How­ ever, it is not metabolically inert and con- Red Blood Cell Metabolism Reprinted requests to: Michael L. Netzloff, M.D., In addition to the metabolic restrictions Department of Pediatrics and Human Development, B-240 Life Sciences, Michigan State University, on the mature erythrocyte previously East Lansing, MI 48824. noted, its energy sources are also some­ 414 0091-7370/80/0900-0414 $01.80 © Institute for Clinical Science, Inc. SIGNS OF RED CELL ENZYME DEFICIENCIES 415 what limited by the loss of its mitochon­ H M P may be used in the synthesis of nuc­ dria. Without these organelles, the rbc leotides or rearranged to the 3-and cannot metabolize pyruvate through the 6-carbon sugars used in glycolysis for Krebs citric acid cycle. Other energy sub­ production of additional 2,3-DPG and strates can be used by the red cell, but the ATP. major source is normally glucose through Some common hereditary diseases of either the Embden-Meyerhoff or hexose the rbc which involve alterations in shape monophosphate pathways. The energy (e.g., spherocytosis, elliptocytosis, etc.) thus derived has several essential uses:3,24 are likely membrane defects and may in­ (1) the m aintenance of sodium and potas­ volve enzyme deficiencies not yet iden­ sium gradients across the cell membrane; tified.24 This review will be limited to (2) the prevention of calcium accumula­ known enzyme deficiency states, many of tion in the red cell membrane; (3) mainte­ which cause nonspherocytic hemolytic nance of the integrity and shape of the rbc anemia. m em brane; (4) reduction of m ethem oglo- bin and oxidized gluthathione; (5) inacti­ Red Blood Cells Enzyme Deficiencies vation of peroxides and other oxidants in the Embden-Meyerhoff Pathway which denature hemoglobin; and (6) P y r u v a t e K i n a s e D e f i c i e n c y maintenance of levels of organic phos­ phates, e.g., 2,3 diphosphoglycerate Although the recognition of non­ (2,3-DPG) and adenosine triphosphate spherocytic hemolytic anemia (NSHA) (ATP), affecting hemoglobin-oxygen was made as recently as 1953, it was not affinity. until 1961 that Valentine et al32 discov­ The energy derived from the ered pyruvate kinase (PK) deficiency, the Embden-Meyerhoff glycolytic pathway is most common cause of NSHA. PK defi­ primarily stored in the high energy phos­ ciency is second to glucose-6-phosphate phate of ATP. The latter is used to drive dehydrogenase (G-6-PD) deficiency as the sodium and potassium pumping sys­ the most common inherited rbc enzyme tems which oppose the passive diffusion defect and is an autosomal recessive dis­ of these ions and water across the cell order. Although it has been suggested that membrane. If unopposed, these natural heterozygotes may infrequently have processes would result in eventual clinical findings, most of these examples hemolysis. Anaerobic glycolysis also gen­ are confounded by the simultaneous oc­ erates reducing power by converting currence of other hemolytic disorders.3 nicotinamide adenine dinucleotide Large numbers of heterozygotes have (NAD+) to NADH, which reduces been found to have no hemolytic disease, methemoglobin to hemoglobin. Synthesis and it is doubtful that the heterozygous of 2,3-DPG also occurs in the glycolytic condition itself causes hemolysis.3 pathway. Considerable heterogeneity in bio­ Normally, the hexose monophosphate chemical properties of mutant PK enzymes pathway (HMP) accounts for only 10 per­ has been observed and may explain cent of the glucose metabolism of the red the marked variation in hemolysis and cell.3 This percentage is greatly increased anemia in affected patients. Disease oc­ during oxidative stress with the produc­ curs in true homozygotes who have inher­ tion of NADP+ from NADPH. The HMP ited two identical mutant alleles, as well maintains this conversion in favor of as in double heterozygotes, or genetic NADPH, which keeps gluthathione in its compounds, with two different mutant al­ reduced form, in turn protecting the rbc leles affecting different parts of the PK from peroxidation. Pentose formed in the enzyme. The latter condition could give 416 NETZLOFF rise to two different abnormal amino acid Earlier studies and those recently re­ substitutions with the formation of two ported by Bowman and Oski5 have variant enzymes or their hybrid enzyme. suggested that the spleen is the first organ Since PK is known to be an allosteric en­ to trap and destroy susceptible PK defi­ zyme affected by fructose diphosphate cient red cells, principally reticulocytes. with marked pH dependency, a mutant These observations help to explain the re- allele might result in enzyme products ticulocytosis which occurs in all red cell with modifications of either the catalytic PK-deficient patients after splenectomy. or the allosteric site. Gherardi et al11 has When the spleen is present, its low oxy­ recently reported data on a family suggest­ gen tensions prevent mitochondrial ATP ing an alteration of the PK allosteric site. production in reticulocytes both in normal In addition to the hereditary PK defi­ and PK-deficient patients. The later ciency, the enzyme defect can be caused would also suffer from impaired by a wide variety of hematologic disor­ glycolysis, with further reduction of avail­ ders.3 These include, most commonly, able ATP. The ATP-dependent cation acute leukemia, as well as cytopenias, pump appears defective in red cells from anemias, and aplasias. The acquired vs. such patients, and this might affect the hereditary forms of PK deficiency can be external calcium pump and cause inter­ differentiated by observing the return of membrane calcium concentration, induc­ enzym e activity to norm al once the u nder­ ing membrane ridigity. This sequence lying disorder is treated, or by family could be the pathogenesis of the abnormal studies. The latter rely on the facts that cell morphology21 and deformability22 parents of patients with hereditary PK de­ reported in erythrocyte populations in ficiency are obligate heterozygotes with PK-deficiency anemia following diminished enzyme levels intermediate splenectomy. between normal and affected, and sib­ Because of the biochemical hetero­ lings of patients with hereditary PK defi­ geneity of PK-deficiency, variability of ciency may also have demonstrable PK clinical expression is expected.3 Anemia disorders. may be so severe that multiple transfu­ Since some investigators have reported sions or splenectomy is life-saving, or the no relationship between in vitro proper­ patient may remain asymptomatic for ties of variant PK enzymes and the sever­ years. Other signs are also not distinctive ity of hemolysis, the hypothesis has been for PK-deficiency disease. Patients may advanced that hemolysis in PK deficient have jaundice, bilirubinuria, splenome­ red cells is caused by another defect in the galy, and sometimes gallstones. Jaundice cell membrane.36 However, interpretation usually presents in the neonatal period of biochemical results is hampered by and kernicterus has been reported and can several factors. First, inheritance of two be fatal. Hemolysis increases during in­ different mutant alleles allows formation tercurrent infection and following use of of five different types of the tetramer en­ oral contraceptives.18 PK-deficiency is a zyme. Also, studies utilizing crude cause of failure to thrive in severely af­ hemolysates are hampered by the actions fected children. Radiographs show the of other enzymes, and purification of PK changes secondary to a hypertrophic bone itself can change
Recommended publications
  • HEMOLYTIC ANEMIA in DISORDERS of REO CELL METABOLISM TOPICS in HEMATOLOGY Series Editor: Maxwell M
    HEMOLYTIC ANEMIA IN DISORDERS OF REO CELL METABOLISM TOPICS IN HEMATOLOGY Series Editor: Maxwell M. Wintrobe, M.D. University of Utah, Salt Lake City THE RESPIRATORY FUNCTIONS OF BLOOD Lars Garby, M.D. and Jerry Meldon, M.D. HEMOLYTIC ANEMIA IN DISORDERS OF RED CELL METABOLISM Ernest Beutler, MD. TRACE ELEMENTS AND IRON IN HUMAN METABOLISM Ananda S. Prasad, M.D. HEMOLYTIC ANEMIA IN DISORDERS OF REO CELL METABOLISM Ernest Beutler, M. O. City of Hope National Medical Center Duarte, California PLENUM MEDICAL BOOK COMPANY· New York and London Library of Congress Cataloging in Publication Data Beutler, Ernest. Hemolytic anemia in disorders of red cell metabolism. (Topics in hematology) Includes index. 1. Hemolytic anemia. 2. Erythrocyte disorders. I. Title. II. Series. CR641.7.H4B48 616.1'52 78-2391 ISBN 978-1-4684-2459-1 ISBN 978-1-4684-2457-7 (eBook) DOI 10.1007/978-1-4684-2457-7 © 1978 Plenum Publishing Corporation Softcover reprint of the hardcover 1st edition 1978 227 West 17th Street, New York, N.Y. 10011 Plenum Medical Book Company is an imprint of Plenum Publishing Corporation All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher FOREWORD I am prepared to predict that this monograph by Dr. Ernest Beutler will long serve as a model for monographs dealing with topics in medical science. I make this bold statement because we encounter in this work a degree of accuracy and authoritativeness well beyond that found in much of the medical literature.
    [Show full text]
  • The Genetics of Metabolic Disorders* D
    Postgrad Med J: first published as 10.1136/pgmj.48.558.207 on 1 April 1972. Downloaded from Postgraduate Medical Journal (April 1972) 48, 207-2,11. The genetics of metabolic disorders* D. A. HOPKINSON M.A., M.D. MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London THE first work on the genetics of metabolic disorders tion (Harris, 1970) more than sixty such disorders in Man was of course carried out by that great were listed and further examples are regularly being pioneer Sir Archibald Garrod at the turn of the reported. present century (Garrod, 1902). From a study of the It is interesting to note that there is no one hereditary background of a small series of patients particular aspect of metabolism which seems with a rare disorder, alcaptonuria, he discovered the peculiarly susceptible to genetic variation of this first example of recessive Mendelian inheritance in kind. Nor is there any indication that enzymes Man and with remarkable foresight he suggested catalysing particular types of reaction or utilizing that this unusual condition was an example of specialized cofactors are more prone. On the one 'chemical individuality'-an inborn alteration in the hand we have disorders like acatalasia in which metabolism of tyrosine. He also suggested that other there is a deficiency of catalase, the enzyme res- conditions such as albinism and cystinuria could be ponsible for the simple reaction splitting hydrogen manifestations of inborn changes or defects in meta- peroxide to water and oxygen, and on the other hand bolism. He called them 'freaks' or 'sports' of meta- we have the glycogen diseases in which there are bolism.
    [Show full text]
  • Download Download
    Acta Biomed 2021; Vol. 92, N. 1: e2021169 DOI: 10.23750/abm.v92i1.11345 © Mattioli 1885 Update of adolescent medicine (Editor: Vincenzo De Sanctis) Rare anemias in adolescents Joan-Lluis Vives Corrons, Elena Krishnevskaya Red Blood Cell Pathology and Hematopoietic Disorders (Rare Anaemias Unit) Institute for Leukaemia Research Josep Car- reras (IJC). Badalona (Barcelona) Abstract. Anemia can be the consequence of a single disease or an expression of external factors mainly nutritional deficiencies. Genetic issues are important in the primary care of adolescents because a genetic diagnosis may not be made until adolescence, when the teenager presents with the first signs or symptoms of the condition. This situation is relatively frequent for rare anemias (RA) an important, and relatively heteroge- neous group of rare diseases (RD) where anaemia is the first and most relevant clinical manifestation. RA are characterised by their low prevalence (< 5 cases per 10,000 individuals), and, in some cases, by their complex mechanism. For these reasons, RA are little known, even among health professionals, and patients tend to re- main undiagnosed or misdiagnosed for long periods of time, making impossible to know the prognosis of the disease, or to carry out genetic counselling for future pregnancies. Since this situation is an important cause of anxiety for both adolescent patients and their families, the physician’s knowledge of the natural history of a genetic disease will be the key factor for the anticipatory guidance for diagnosis and clinical follow-up. RA can be due to three primary causes: 1. Bone marrow erythropoietic defects, 2. Excessive destruction of mature red blood cells (hemolysis), and 3.
    [Show full text]
  • Haematological Abnormalities in Mitochondrial Disorders
    Singapore Med J 2015; 56(7): 412-419 Original Article doi: 10.11622/smedj.2015112 Haematological abnormalities in mitochondrial disorders Josef Finsterer1, MD, PhD, Marlies Frank2, MD INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes.
    [Show full text]
  • Centometabolic® COMBINING GENETIC and BIOCHEMICAL TESTING for the FAST and COMPREHENSIVE DIAGNOSTIC of METABOLIC DISORDERS
    CentoMetabolic® COMBINING GENETIC AND BIOCHEMICAL TESTING FOR THE FAST AND COMPREHENSIVE DIAGNOSTIC OF METABOLIC DISORDERS GENE ASSOCIATED DISEASE(S) ABCA1 HDL deficiency, familial, 1; Tangier disease ABCB4 Cholestasis, progressive familial intrahepatic 3 ABCC2 Dubin-Johnson syndrome ABCD1 Adrenoleukodystrophy; Adrenomyeloneuropathy, adult ABCD4 Methylmalonic aciduria and homocystinuria, cblJ type ABCG5 Sitosterolemia 2 ABCG8 Sitosterolemia 1 ACAT1 Alpha-methylacetoacetic aciduria ADA Adenosine deaminase deficiency AGA Aspartylglucosaminuria AGL Glycogen storage disease IIIa; Glycogen storage disease IIIb AGPS Rhizomelic chondrodysplasia punctata, type 3 AGXT Hyperoxaluria, primary, type 1 ALAD Porphyria, acute hepatic ALAS2 Anemia, sideroblastic, 1; Protoporphyria, erythropoietic, X-linked ALDH4A1 Hyperprolinemia, type II ALDOA Glycogen storage disease XII ALDOB Fructose intolerance, hereditary ALG3 Congenital disorder of glycosylation, type Id ALPL Hypophosphatasia, adult; Hypophosphatasia, childhood; Hypophosphatasia, infantile; Odontohypophosphatasia ANTXR2 Hyaline fibromatosis syndrome APOA2 Hypercholesterolemia, familial, modifier of APOA5 Hyperchylomicronemia, late-onset APOB Hypercholesterolemia, familial, 2 APOC2 Hyperlipoproteinemia, type Ib APOE Sea-blue histiocyte disease; Hyperlipoproteinemia, type III ARG1 Argininemia ARSA Metachromatic leukodystrophy ARSB Mucopolysaccharidosis type VI (Maroteaux-Lamy) 1 GENE ASSOCIATED DISEASE(S) ASAH1 Farber lipogranulomatosis; Spinal muscular atrophy with progressive myoclonic epilepsy
    [Show full text]
  • 6 the Glycogen Storage Diseases and Related Disorders
    6 The Glycogen Storage Diseases and Related Disorders G. Peter A. Smit, Jan Peter Rake, Hasan O. Akman, Salvatore DiMauro 6.1 The Liver Glycogenoses – 103 6.1.1 Glycogen Storage Disease Type I (Glucose-6-Phosphatase or Translocase Deficiency) – 103 6.1.2 Glycogen Storage Disease Type III (Debranching Enzyme Deficiency) – 108 6.1.3 Glycogen Storage Disease Type IV (Branching Enzyme Deficiency) – 109 6.1.4 Glycogen Storage Disease Type VI (Glycogen Phosphorylase Deficiency) – 111 6.1.5 Glycogen Storage Disease Type IX (Phosphorylase Kinase Deficiency) – 111 6.1.6 Glycogen Storage Disease Type 0 (Glycogen Synthase Deficiency) – 112 6.2 The Muscle Glycogenoses – 112 6.2.1 Glycogen Storage Disease Type V (Myophosphorylase Deficiency) – 113 6.2.2 Glycogen Storage Disease Type VII (Phosphofructokinase Deficiency) – 113 6.2.3 Phosphoglycerate Kinase Deficiency – 114 6.2.4 Glycogen Storage Disease Type X (Phosphoglycerate Mutase Deficiency) – 114 6.2.5 Glycogen Storage Disease Type XII (Aldolase A Deficiency) – 114 6.2.6 Glycogen Storage Disease Type XIII (E-Enolase Deficiency) – 115 6.2.7 Glycogen Storage Disease Type XI (Lactate Dehydrogenase Deficiency) – 115 6.2.8 Muscle Glycogen Storage Disease Type 0 (Glycogen Synthase Deficiency) – 115 6.3 The Generalized Glycogenoses and Related Disorders – 115 6.3.1 Glycogen Storage Disease Type II (Acid Maltase Deficiency) – 115 6.3.2 Danon Disease – 116 6.3.3 Lafora Disease – 116 References – 116 102 Chapter 6 · The Glycogen Storage Diseases and Related Disorders Glycogen Metabolism Glycogen is a macromolecule composed of glucose viding glucose and glycolytic intermediates (. Fig. 6.1). units.
    [Show full text]
  • Chapter 03- Diseases of the Blood and Certain Disorders Involving The
    Chapter 3 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D50- D89) Excludes2: autoimmune disease (systemic) NOS (M35.9) certain conditions originating in the perinatal period (P00-P96) complications of pregnancy, childbirth and the puerperium (O00-O9A) congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) endocrine, nutritional and metabolic diseases (E00-E88) human immunodeficiency virus [HIV] disease (B20) injury, poisoning and certain other consequences of external causes (S00-T88) neoplasms (C00-D49) symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified (R00-R94) This chapter contains the following blocks: D50-D53 Nutritional anemias D55-D59 Hemolytic anemias D60-D64 Aplastic and other anemias and other bone marrow failure syndromes D65-D69 Coagulation defects, purpura and other hemorrhagic conditions D70-D77 Other disorders of blood and blood-forming organs D78 Intraoperative and postprocedural complications of the spleen D80-D89 Certain disorders involving the immune mechanism Nutritional anemias (D50-D53) D50 Iron deficiency anemia Includes: asiderotic anemia hypochromic anemia D50.0 Iron deficiency anemia secondary to blood loss (chronic) Posthemorrhagic anemia (chronic) Excludes1: acute posthemorrhagic anemia (D62) congenital anemia from fetal blood loss (P61.3) D50.1 Sideropenic dysphagia Kelly-Paterson syndrome Plummer-Vinson syndrome D50.8 Other iron deficiency anemias Iron deficiency anemia due to inadequate dietary
    [Show full text]
  • Hemolytic Anemia with Impaired Hexokinase Activity
    Hemolytic anemia with impaired hexokinase activity Alan S. Keitt J Clin Invest. 1969;48(11):1997-2007. https://doi.org/10.1172/JCI106165. Research Article Analyses of key glycolytic intermediates in freshly drawn red cells from six related individuals suggest that decreased hexokinase activity underlies the hemolytic process in the two members with overt hemolysis. Low red cell glucose 6- phosphate (G6P) was observed not only in the anemic patients but in the presumptive heterozygotes as well and served as a useful marker for the presence of the trait. Hexokinase activity was labile in distilled water hemolysates but was only slightly low when protected by glucose, mercaptoethanol, and ethylenediaminetetraacetate (EDTA). Normal red cell hexokinase was demonstrated to be dependent on glucose for maintenance of activity after heating to 45°C. The cells of the proposita are unable to utilize glucose efficiently at glucose concentrations lower than 0.2 mmole/liter whereas normal cells maintain linear glucose consumption to at least 0.05 mM glucose. These qualitative abnormalities could result from the presence of a mutant hexokinase with an abnormally reactive sulfhydryl group and altered substrate affinity in the red cells of this kindred. Find the latest version: https://jci.me/106165/pdf Hemolytic Anemia with Impaired Hexokinase Activity ALAN S. KErrr From the Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32601 A B S T R A C T Analyses of key glycolytic intermediates cells of a young girl with moderately severe chronic in freshly drawn red cells from six related individuals anemia. Although hexokinase activity was only slightly suggest that decreased hexokinase activity underlies the below the range of normal, a comparison between the hemolytic process in the two members with overt he- activity of red cell hexokinase in the affected proposita molysis.
    [Show full text]
  • Metabolic Myopathies of Texas Health Science Center San Antonio, 8300 Floyd Curl Alejandro Tobon, MD Drive, San Antonio, TX, 78229, [email protected]
    Review Article Address correspondence to Dr Alejandro Tobon, University Metabolic Myopathies of Texas Health Science Center San Antonio, 8300 Floyd Curl Alejandro Tobon, MD Drive, San Antonio, TX, 78229, [email protected]. Relationship Disclosure: Dr Tobon reports no disclosure. ABSTRACT Unlabeled Use of Purpose of Review: The metabolic myopathies result from inborn errors of Products/Investigational metabolism affecting intracellular energy production due to defects in glycogen, Use Disclosure: Dr Tobon reports no disclosure. lipid, adenine nucleotides, and mitochondrial metabolism. This article provides an * 2013, American Academy overview of the most common metabolic myopathies. of Neurology. Recent Findings: Our knowledge of metabolic myopathies has expanded rapidly in recent years, providing us with major advances in the detection of genetic and biochemical defects. New and improved diagnostic tools are now available for some of these disorders, and targeted therapies for specific biochemical deficits have been developed (ie, enzyme replacement therapy for acid maltase deficiency). Summary: The diagnostic approach for patients with suspected metabolic myopathy should start with the recognition of a static or dynamic pattern (fixed versus exercise-induced weakness). Individual presentations vary according to age of onset and the severity of each particular biochemical dysfunction. Additional clinical clues include the presence of multisystem disease, family history, and laboratory characteristics. Appropriate investigations, timely
    [Show full text]
  • Productivity Productivity
    Productivity Productivity A Selection of Publications from Our Current and Previous Fellows 1. Maxwell RR, Egan-Sherry D, Gill JB, Roth ME. Management of chemotherapy-induced febrile neutropenia in pediatric oncology patients: A North American survey of pediatric hematology/oncology and pediatric infectious disease physicians. Pediatr Blood Cancer. 2017 Dec; 64(12) 2. Maxwell RR, Cole PD . Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep. 2017 Jun;12(3):176-186 3. Green NS, Manwani D, Qureshi M, Ireland K, Sinha A, Smaldone AM. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatr Blood Cancer. 2016 Dec;63(12):2146-2153. 4. Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016 Feb 26;3:5 5. Knapp E, Cohen H, Kutlar A, Ghalie R, Manwani D. Intrapatient variability in fetal hemoglobin measurements over time in sickle cell patients not on fetal hemoglobin inducing agents. Am J Hematol. 2016 Mar;91(3) 6. Figueiredo L, Morrone K, Wei C, Ireland K, Cohen HW, Driscoll C, Manwani D. An age dependent response to hydroxyurea in pediatric sickle cell anemia patients with alpha thalassemia trait. Blood Cells Mol Dis. 2017 Jul;66:19-23 7. Khazal S, Polishchuk V, Manwani D, Gallagher PG, Prinzing S, Mahadeo KM, 2016, Allogeneic bone marrow transplantation for treatment of severe hemolytic anemia attributable to hexokinase deficiency.
    [Show full text]
  • SSIEM Classification of Inborn Errors of Metabolism 2011
    SSIEM classification of Inborn Errors of Metabolism 2011 Disease group / disease ICD10 OMIM 1. Disorders of amino acid and peptide metabolism 1.1. Urea cycle disorders and inherited hyperammonaemias 1.1.1. Carbamoylphosphate synthetase I deficiency 237300 1.1.2. N-Acetylglutamate synthetase deficiency 237310 1.1.3. Ornithine transcarbamylase deficiency 311250 S Ornithine carbamoyltransferase deficiency 1.1.4. Citrullinaemia type1 215700 S Argininosuccinate synthetase deficiency 1.1.5. Argininosuccinic aciduria 207900 S Argininosuccinate lyase deficiency 1.1.6. Argininaemia 207800 S Arginase I deficiency 1.1.7. HHH syndrome 238970 S Hyperammonaemia-hyperornithinaemia-homocitrullinuria syndrome S Mitochondrial ornithine transporter (ORNT1) deficiency 1.1.8. Citrullinemia Type 2 603859 S Aspartate glutamate carrier deficiency ( SLC25A13) S Citrin deficiency 1.1.9. Hyperinsulinemic hypoglycemia and hyperammonemia caused by 138130 activating mutations in the GLUD1 gene 1.1.10. Other disorders of the urea cycle 238970 1.1.11. Unspecified hyperammonaemia 238970 1.2. Organic acidurias 1.2.1. Glutaric aciduria 1.2.1.1. Glutaric aciduria type I 231670 S Glutaryl-CoA dehydrogenase deficiency 1.2.1.2. Glutaric aciduria type III 231690 1.2.2. Propionic aciduria E711 232000 S Propionyl-CoA-Carboxylase deficiency 1.2.3. Methylmalonic aciduria E711 251000 1.2.3.1. Methylmalonyl-CoA mutase deficiency 1.2.3.2. Methylmalonyl-CoA epimerase deficiency 251120 1.2.3.3. Methylmalonic aciduria, unspecified 1.2.4. Isovaleric aciduria E711 243500 S Isovaleryl-CoA dehydrogenase deficiency 1.2.5. Methylcrotonylglycinuria E744 210200 S Methylcrotonyl-CoA carboxylase deficiency 1.2.6. Methylglutaconic aciduria E712 250950 1.2.6.1. Methylglutaconic aciduria type I E712 250950 S 3-Methylglutaconyl-CoA hydratase deficiency 1.2.6.2.
    [Show full text]
  • Non-Commercial Use Only
    Thalassemia Reports 2013; volume 3(s1):e33 Diagnosis and epidemiology of red blood cell enzyme disorders Richard Van Wijk Associate professor, Laboratory For Red Blood Cell Research, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands The red blood cell possess an active metabolic machinery that pro- tion of fava beans. Patients with uncommon, functionally very severe, vides the cell with energy to pump ions against electrochemical gradi- genetic variants of G6PD experience chronic hemolysis, a disorder ents, to maintain its shape, to keep hemoglobin iron in the reduced designated hereditary nonspherocytic hemolytic anemia (HNSHA).(3) (ferrous) form, and to maintain enzyme and hemoglobin sulfhydryl Hereditary nonspherocytic hemolytic anemia also occurs as a conse- groups. The main source of metabolic energy comes from glucose. quence of other enzyme deficiencies, the most common of which is Glucose is metabolized through the glycolytic pathway and through the pyruvate kinase (PK) deficiency.(4-6) Deficiencies of glucosephos- hexose monophosphate shunt. Glycolysis catabolizes glucose to pyru- phate isomerase(6), triosephosphate isomerase(7), and pyrimidine 52 vate and lactate, which represent the end products of glucose metabo- -nucleotidase deficiency(8) are included among the relatively rare lism in the erythrocyte. Adenosine diphosphate (ADP) is phosphorylat- causes of HNSHA. In the case of some deficiencies, notably those of ed to adenosine triphosphate (ATP), and nicotinamide adenine dinu- glutathione synthetase(9), triosephosphate isomerase(7), and phos- cleotide (NAD)+ is reduced to NADH in glycolysis. 2,3- phoglycerate kinase(10), the defect is expressed throughout the body, Bisphosphoglycerate, an important regulator of the oxygen affinity of and neurologic and other defects may be a prominent part of the clin- hemoglobin, is generated during glycolysis by the Rapoport-Luebering ical syndrome.
    [Show full text]