Abundance and Microdistribution of Freshwater Gastropods in Three Streams of Moorea, French Polynesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load
fluids Article Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load Qiancheng Xie 1,* , James Yang 2,3 and T. Staffan Lundström 1 1 Division of Fluid and Experimental Mechanics, Luleå University of Technology, 97187 Luleå, Sweden; [email protected] 2 Vattenfall AB, Research and Development, Hydraulic Laboratory, 81426 Älvkarleby, Sweden; [email protected] 3 Resources, Energy and Infrastructure, Royal Institute of Technology, 10044 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +4672-2870-381 Received: 9 December 2018; Accepted: 20 January 2019; Published: 22 January 2019 Abstract: Meandering is a common feature in natural alluvial streams. This study deals with alluvial behaviors of a meander reach subjected to both fresh-water flow and strong tides from the coast. Field measurements are carried out to obtain flow and sediment data. Approximately 95% of the sediment in the river is suspended load of silt and clay. The results indicate that, due to the tidal currents, the flow velocity and sediment concentration are always out of phase with each other. The cross-sectional asymmetry and bi-directional flow result in higher sediment concentration along inner banks than along outer banks of the main stream. For a given location, the near-bed concentration is 2−5 times the surface value. Based on Froude number, a sediment carrying capacity formula is derived for the flood and ebb tides. The tidal flow stirs the sediment and modifies its concentration and transport. A 3D hydrodynamic model of flow and suspended sediment transport is established to compute the flow patterns and morphology changes. -
CLASSIFICATION of CALIFORNIA ESTUARIES BASED on NATURAL CLOSURE PATTERNS: TEMPLATES for RESTORATION and MANAGEMENT Revised
CLASSIFICATION OF CALIFORNIA ESTUARIES BASED ON NATURAL CLOSURE PATTERNS: TEMPLATES FOR RESTORATION AND MANAGEMENT Revised David K. Jacobs Eric D. Stein Travis Longcore Technical Report 619.a - August 2011 Classification of California Estuaries Based on Natural Closure Patterns: Templates for Restoration and Management David K. Jacobs1, Eric D. Stein2, and Travis Longcore3 1UCLA Department of Ecology and Evolutionary Biology 2Southern California Coastal Water Research Project 3University of Southern California - Spatial Sciences Institute August 2010 Revised August 2011 Technical Report 619.a ABSTRACT Determining the appropriate design template is critical to coastal wetland restoration. In seasonally wet and semi-arid regions of the world coastal wetlands tend to close off from the sea seasonally or episodically, and decisions regarding estuarine mouth closure have far reaching implications for cost, management, and ultimate success of coastal wetland restoration. In the past restoration planners relied on an incomplete understanding of the factors that influence estuarine mouth closure. Consequently, templates from other climatic/physiographic regions are often inappropriately applied. The first step to addressing this issue is to develop a classification system based on an understanding of the processes that formed the estuaries and thus define their pre-development structure. Here we propose a new classification system for California estuaries based on the geomorphic history and the dominant physical processes that govern the formation of the estuary space or volume. It is distinct from previous estuary closure models, which focused primarily on the relationship between estuary size and tidal prism in constraining closure. This classification system uses geologic origin, exposure to littoral process, watershed size and runoff characteristics as the basis of a conceptual model that predicts likely frequency and duration of closure of the estuary mouth. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Appendices for the White River Base Flow Study
APPENDIX 1 Habitat types and descriptions adapted from Bisson et al. 1982 and Upper Colorado River Basin Database _____________________________________________________________________________ Habitat Category Habitat Description _____________________________________________________________________________ Riffles Shallow (<20 cm deep), moderate current velocity (20-50 cm/sec), moderate turbulence, substrate gravel, pebble, and cobble-sized particles (2-256 mm), gradient <4% Rapids Gradient >4%, swiftly flowing water (>50 cm/sec), considerable turbulence, substrate largely composed of boulders Pools A portion of stream that is deep and less velocity than run; often lies between riffles Eddies Presence of counter- current; usually deep and less velocity than main- channel Runs Possess attributes of both riffles and pools; characterized by moderately shallow water (10-30 cm deep) with laminar flow; substrate gravel and cobble. _____________________________________________________________________________ 50 APPENDIX 2 - Habitat Suitability Criteria Table 1. Habitat use curve for adult Colorado pikeminnow for daytime resting (bottom velocities); from Miller and Modde (1999). ________________________________________ Velocity HSI Depth HSI (m/s) (m) ________________________________________ 0.000 0.25 0.000 0.00 0.027 0.50 0.427 0.00 0.030 1.00 0.792 0.125 0.244 1.00 0.914 0.25 0.366 0.500 1.158 0.50 0.396 0.25 1.280 1.00 0.427 0.00 6.096 1.00 ________________________________________ Table 2. Habitat use curve for adult Colorado pikeminnow for -
Relevance of Aquatic Environments for Hominins: a Case Study from Trinil (Java, Indonesia)
Journal of Human Evolution 57 (2009) 656–671 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Relevance of aquatic environments for hominins: a case study from Trinil (Java, Indonesia) J.C.A. Joordens a,*, F.P. Wesselingh b, J. de Vos b, H.B. Vonhof a, D. Kroon c a Institute of Earth Sciences, VU University Amsterdam, De Boelelaan 1056, 1051 HV Amsterdam, The Netherlands b Naturalis National Museum of Natural History , P.O. Box 9517, 2300 RA Leiden, The Netherlands c School of Geosciences, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK article info abstract Article history: Knowledge about dietary niche is key to understanding hominin evolution, since diet influences body Received 31 December 2008 proportions, brain size, cognition, and habitat preference. In this study we provide ecological context for Accepted 9 April 2009 the current debate on modernity (or not) of aquatic resource exploitation by hominins. We use the Homo erectus site of Trinil as a case study to investigate how research questions on possible dietary relevance of Keywords: aquatic environments can be addressed. Faunal and geochemical analysis of aquatic fossils from Trinil Hominin evolution Hauptknochenschicht (HK) fauna demonstrate that Trinil at w1.5 Ma contained near-coastal rivers, lakes, Strontium isotopes swamp forests, lagoons, and marshes with minor marine influence, laterally grading into grasslands. Freshwater wetland Marine influence Trinil HK environments yielded at least eleven edible mollusc species and four edible fish species that Stingray could be procured with no or minimal technology. We demonstrate that, from an ecological point of Fish view, the default assumption should be that omnivorous hominins in coastal habitats with catchable Molluscs aquatic fauna could have consumed aquatic resources. -
Sediment Transport in River Mouth Estuary
SEDIMENT TRANSPORT IN RIVER MOUTH ESTUARY Katsuhide YOKOYAMA, Dr.Eng. Assistant Professor Department of Civil Engineering dredge Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo, Japan 192-0397 [email protected] tel;81-426-77-2786 fax;81-426-77-2772 Introduction & Study Area 0 2km N The river mouth estuary and wetland are comprised of variety of view natural, morphologically and ecologically complex aquatic point environments. In this region, fresh water mixes with salt water, therefore the Tidal river stream runs more slowly, the suspended sediment supplied Sea from the upstream basin deposit and the shallow water area is flat created. River mouth estuary is very important area for ecosystem and 白川 fishery. On the other hand, it is necessary to dredge and enlarge the Port river channel in some cases in order to discharge the river flood into SHIRAKAWA sea safely. River The purpose of this study is to develop the rational management practices of river mouth estuarine resource. It is necessary to Flood and sediment Tidal pumping and explain the sediment transport and the topographical process. discharge sediment transport A field study was undertaken in the SHIRAKAWA river. The Sea topography change of tidal flat was surveyed and the sediment discharge by floods was measured and the annual sediment transport by tidal current was monitored. Using these results, the amount of sediment load was calculated and the influence of the sediment transport by flood and by tidal current on the topography Deposition of silt and change -
Hydrology and Morphology of Two River Mouth Regions
Hydrology OCEANOLOGIA, 47 (3), 2005. pp. 365–385. and morphology of two C 2005, by Institute of river mouth regions Oceanology PAS. (temperate Vistula Delta KEYWORDS and subtropical Red River River mouth Delta) Delta Sedimentation Discharge Waves Coastal currents Zbigniew Pruszak1 Pham van Ninh2 Marek Szmytkiewicz1 Nguyen Manh Hung2 Rafał Ostrowski1,∗ 1 Institute of Hydroengineering, Polish Academy of Sciences, Kościerska 7, PL–80–953 Gdańsk, Poland; e-mail: rafi@ibwpan.gda.pl ∗corresponding author 2 Institute of Mechanics, Center for Marine Environment, Survey, Research and Consultation, 264 Don Can, Hanoi, Vietnam Received 7 February 2005, revised 3 August 2005, accepted 29 August 2005. Abstract The paper presents a comparative analysis of two different river mouths from two different geographical zones (subtropical and temperate climatic regions). One is the multi-branch and multi-spit mouth of the Red River on the Gulf of Tonkin (Vietnam), the other is the smaller delta of the river Vistula on a bay of the Baltic Sea (Poland). The analysis focuses on the similarities and differences in the hydrodynamics between these estuaries and the adjacent coastal zones, the features of sediment transport, and the long-term morphodynamics of the river outlets. Salinity and water level are also discussed, the latter also in the context of the anticipated global effect of accelerated sea level rise. The analysis shows The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 366 Z. Pruszak, P. V. Ninh, M. Szmytkiewicz, N. M. Hung, R. Ostrowski that the climatic and environmental conditions associated with geographical zones give rise to fundamental differences in the generation and dynamic evolution of the river mouths. -
Link to SRSB Dune Restoration and Management Plan
The Greater Salinas River State Beach Dune Restoration and Management Plan Central Coast Wetlands Group at Moss Landing Marine Labs and Coastal Conservation and Research in partnership with California Department of Parks and Recreation Revised June 2020 This page intentionally left blank CONTENTS Existing Conditions and Background ....................................................................................... 1 Introduction ................................................................................................................. 1 Site Description ............................................................................................................ 1 Plants and Animals at the Dunes ........................................................................................ 5 Dunes and Iceplant ....................................................................................................... 10 Previous Restoration Efforts in Monterey Bay ...................................................................... 12 Dunes as Coastal Protection from Storms ........................................................................... 14 Restoration Plan ............................................................................................................. 16 Summary................................................................................................................... 16 Restoration Goals and Objectives ..................................................................................... 18 Goal 1. Eradicate -
Sediment Transport and Deposition at River Mouths: a Synthesis
Sediment transport and deposition at river mouths: A synthesis L. D. WRIGHT Coastal Studies Unit, Department of Geography, The University of Sydney, Sydney, N.S.W., Australia 2006 ABSTRACT Yoshida (1967, 1969, 1971), Waldrop and Farmer (1973), Scruton (1956, 1960), Komar (1973), Garvine (1974,1975), Wright (1970, River-mouth process studies and comparisons of river-mouth 1971), Wright and Coleman (1971, 1972, 1973, 1974), and forms from contrasting environments suggest that sediment disper- Wright and others (1973). Synthesis of the above studies suggests sal and accumulation patterns are governed by three basic effluent that river-mouth variability can best be understood by considering forces and by tide- or wave-induced processes. Neglecting river-mouth systems as the resultants of varying contributions from modifications by tides or waves, effluent behavior and consequent a few primary and modifying forces. The primary river-mouth depositional patterns depend on the relative dominance of (1) out- forces are related directly to the interactions between effluent and flow inertia, (2) turbulent bed friction seaward of the mouth, and basin waters, and they rely on the river outflow for their driving (3) outflow buoyancy. Inertia-dominated effluents are charac- energy. These primary forces and their depositional products are terized by fully turbulent jet diffusion, exhibit low lateral spreading modified to varying degrees by tides and waves. angles and progressive lateral and longitudinal deceleration, and produce narrow river-mouth bars. Under most natural circum- PRIMARY PROCESSES AND FORMS stances, inertial effects are equaled or exceeded by either turbulent bed friction or effluent buoyancy. When the tidal range and incident wave power of the receiving Shallow depths immediately basinward of a river mouth enhance basin are negligible or small relative to the strength of river out- the effects of bed friction, causing more rapid deceleration and flow, river-dominated configurations result (Wright and Coleman, lateral expansion. -
Defining the Greater York River Indigenous Cultural Landscape
Defining the Greater York River Indigenous Cultural Landscape Prepared by: Scott M. Strickland Julia A. King Martha McCartney with contributions from: The Pamunkey Indian Tribe The Upper Mattaponi Indian Tribe The Mattaponi Indian Tribe Prepared for: The National Park Service Chesapeake Bay & Colonial National Historical Park The Chesapeake Conservancy Annapolis, Maryland The Pamunkey Indian Tribe Pamunkey Reservation, King William, Virginia The Upper Mattaponi Indian Tribe Adamstown, King William, Virginia The Mattaponi Indian Tribe Mattaponi Reservation, King William, Virginia St. Mary’s College of Maryland St. Mary’s City, Maryland October 2019 EXECUTIVE SUMMARY As part of its management of the Captain John Smith Chesapeake National Historic Trail, the National Park Service (NPS) commissioned this project in an effort to identify and represent the York River Indigenous Cultural Landscape. The work was undertaken by St. Mary’s College of Maryland in close coordination with NPS. The Indigenous Cultural Landscape (ICL) concept represents “the context of the American Indian peoples in the Chesapeake Bay and their interaction with the landscape.” Identifying ICLs is important for raising public awareness about the many tribal communities that have lived in the Chesapeake Bay region for thousands of years and continue to live in their ancestral homeland. ICLs are important for land conservation, public access to, and preservation of the Chesapeake Bay. The three tribes, including the state- and Federally-recognized Pamunkey and Upper Mattaponi tribes and the state-recognized Mattaponi tribe, who are today centered in their ancestral homeland in the Pamunkey and Mattaponi river watersheds, were engaged as part of this project. The Pamunkey and Upper Mattaponi tribes participated in meetings and driving tours. -
Results of the Austrian-Indian Hydrobiological Mission 1976 to the Andaman-Islands: Part IV: the Freshwater Gastropods of the Andaman-Islands
©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 86 B 145-204 Wien, November 1984 Results of the Austrian-Indian Hydrobiological Mission 1976 to the Andaman-Islands: Part IV: The Freshwater Gastropods of the Andaman-Islands By FERDINAND STARMÜHLNER ') Abstract The study deals with 20 species of Fresh- and Brackishwater Gastropods, collected by the Austrian-Indian Hydrobiological Mission 1976 on the Andaman-Islands (North- and South-Andaman) in the Gulf of Bengal. From every species, collected at 26 stations (20 at South-, and 6 at North- Andaman), mostly in running waters, are given conchological, anatomical, ecological-biological and zoogeographical remarks. In the General Part the distribution of the found species in the running waters between headwaters and mouth-region is shown. The zoogeographical position of the Freshwater Gastropods is characterized by the dominance of malayo-pacific elements.* 1. Introduction In contrast to the high increased literature concerning the Freshwater Gas- tropods of the Western Indian Ocean Islands (Madagascar and adjacent islands, Sri Lanka) for example: SGANZIN (1843); DESHAYES (1863); MORELET (1877, 1879, 1881 a & b, 1882 and 1883); CROSSE (1879, 1880, 1881); DOHRN (1857, 1858); BOETTGER (1889, 1890, 1892); MARTENS (1880 [in MOEBIUS]); MARTENS & WIEG- MANN (1898); SYKES (1905), GERMAIN (1921); CONOLLY (1925); DAUTZENBERG (1929); HUBENDICK (1951); GRÉBINE & MENACHÉ (1953); RANSON (1956); BARNACLE (1962); MENDIS & FERNANDO (1962); STARMÜHLNER (1969, 1974, 1983); FERNANDO (1969 and some others) particulars, concerning the Freshwater Gastropods of the Andaman- & Nicobar Islands are very rare: The stations, mostly from the Nicobars, are based on shell-collections such as from ROEPSTORFF, WARNEFORD and the Austrian NOVARA-Expedition 1857 to the Nicobars. -
Proceedings of the United States National Museum
PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 103 Washington : 1954 No. 3325 THE RELATIONSHIPS OF OLD AND NEW WORLD MELANIANS By J. P. E. Morrison Recent anatomical observations on the reproductive systems of certain so-called "melanian" fresh-water snails and their marine rela- tives have clarified to a remarkable degree the supergeneric relation- ships of these fresh-water forms. The family of Melanians, in the broad sense, is a biological ab- surdity. We have the anomaly of one fresh-water "family" of snails derived from or at least structurally identical in peculiar animal characters to and ancestrally related to three separate and distinct marine famiHes. On the other hand, the biological picture has been previously misunderstood largely because of the concurrent and convergent evolution of the three fresh-water groups, Pleuroceridae, Melanopsidae, and Thiaridae, from ancestors common to the marine families Cerithiidae, Modulidae, and Planaxidae, respectively. The family Melanopsidae is definitely known living only in Europe. At present, the exact placement of the genus Zemelanopsis Uving in fresh waters of New Zealand is uncertain, since its reproductive characters are as yet unknown. In spite of obvious differences in shape, the shells of the marine genus Modulus possess at least a well- indicated columellar notch of the aperture, to corroborate the biologi- cal relationship indicated by the almost identical female egg-laying structure in the right side of the foot of Modulus and Melanopsis. 273553—54 1 357 358 PROCEEDINGS OF THE NATIONAL MUSEUM vol. los The family Pleuroceridae, fresh-water representative of the ancestral cerithiid stock, is now known to include species living in Africa, Asia, and the Americas.