Modeling Coastal River, Wetland, and Shoreline Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(P 117-140) Flood Pulse.Qxp
117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g. -
Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply. -
PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms. -
Explain How Rivers Adjust to a Change in Base Level with Reference to Examples You Have Studied (2013 Q1C)
Isostasy | A1 Sample answer Explain how rivers adjust to a change in base level with reference to examples you have studied (2013 Q1C) Isostatic uplift is when land rises above sea level because of tectonic activity. This is usually due to a large weight being removed from the land e.g. when an ice cap melts. Eustatic changes are when the sea level drops. This is due to water being locked away somewhere e.g., in a glacier. When it melts, the sea level rises again. The River Nore in Kilkenny has experienced a change in base level. This can be seen since there are knickpoints along it, roughly 150-200m above sea level. A knickpoint can be seen when the sea level drops and a river rejuvenates because the river starts vertically eroding once more. Rejuvenation is the term used to describe a river that starts eroding like a youthful river even when it is in its old age stage. A knickpoint is a spot where the newly eroded river profile meets the old river profile. Sometimes you will find a waterfall here. River terraces are also found where rejuvenation has occurred. This is when a river forms a new floodplain that is lower down than the last. The remnants of the old floodplain are left as steps and are called terraces. If there are terraces on both sides of the river, they are called paired terraces. Terraces can be formed multiple times if the river rejuvenates more than once, appearing as a series of steps down to the river. -
Application of a Coastal Vulnerability Index. a Case Study Along the Apulian Coastline, Italy
water Article Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy Daniela Pantusa 1,* , Felice D’Alessandro 1, Luigia Riefolo 2 , Francesca Principato 3 and Giuseppe Roberto Tomasicchio 1 1 Innovation Engineering Department, University of Salento, I-73100 Lecce, Italy; [email protected] (F.D.); [email protected] (G.R.T.) 2 Department of Engineering, University of Campania “Luigi Vanvitelli”, I-81031 Aversa, Italy; [email protected] 3 Department of Civil Engineering, University of Calabria, I-87036 Arcavacata di Rende, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0832-29-7795 Received: 4 July 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: The coastal vulnerability index (CVI) is a popular index in literature to assess the coastal vulnerability of climate change. The present paper proposes a CVI formulation to make it suitable for the Mediterranean coasts; the formulation considers ten variables divided into three typological groups: geological; physical process and vegetation. In particular, the geological variables are: geomorphology; shoreline erosion/accretion rates; coastal slope; emerged beach width and dune width. The physical process variables are relative sea-level change; mean significant wave height and mean tide range. The vegetation variables are width of vegetation behind the beach and posidonia oceanica. The first application of the proposed index was carried out for a stretch of the Apulia region coast, in the south of Italy; this application allowed to (i) identify the transects most vulnerable to sea level rise, storm surges and waves action and (ii) consider the usefulness of the index as a tool for orientation in planning strategies. -
Lesson 4: Sediment Deposition and River Structures
LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Sandbridge Beach FONSI
FINDING OF NO SIGNIFICANT IMPACT Issuance of a Negotiated Agreement for Use of Outer Continental Shelf Sand from Sandbridge Shoal in the Sandbridge Beach Erosion Control and Hurricane Protection Project Virginia Beach, Virginia Pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and Department of the Interior (DOI) regulations implementing NEPA (43 CFR 46), the Bureau of Ocean Energy Management (BOEM) prepared an environmental assessment (EA) to determine whether the issuance of a negotiated agreement for the use of Outer Continental Shelf (OCS) sand from Sandbridge Shoal Borrow Areas A and B for the Sandbridge Beach Erosion Control and Hurricane Protection Project near Virginia Beach, VA would have a significant effect on the human environment and whether an environmental impact statement (EIS) should be prepared. Several NEPA documents evaluating impacts of the project have been previously prepared by both the US Army Corps of Engineers (USACE) and BOEM. The USACE described the affected environment, evaluated potential environmental impacts (initial construction and nourishment events), and considered alternatives to the proposed action in a 2009 EA. This EA was subsequently updated and adopted by BOEM in 2012 in association with the most recent 2013 Sandbridge nourishment effort (BOEM 2012). Prior to this, BOEM (previously Minerals Management Service [MMS]) was a cooperating agency on several EAs for previous projects (MMS 1997; MMS 2001; MMS 2006). This current EA, prepared by BOEM, supplements and summarizes the aforementioned 2012 analysis. BOEM has reviewed all prior analyses, supplemented additional information as needed, and determined that the potential impacts of the current proposed action have been adequately addressed. -
Late Holocene Sea Level Rise in Southwest Florida: Implications for Estuarine Management and Coastal Evolution
LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION Dana Derickson, Figure 2 FACULTY Lily Lowery, University of the South Mike Savarese, Florida Gulf Coast University Stephanie Obley, Flroida Gulf Coast University Leonre Tedesco, Indiana University and Purdue Monica Roth, SUNYOneonta University at Indianapolis Ramon Lopez, Vassar College Carol Mankiewcz, Beloit College Lora Shrake, TA, Indiana University and Purdue University at Indianapolis VISITING and PARTNER SCIENTISTS Gary Lytton, Michael Shirley, Judy Haner, STUDENTS Leslie Breland, Dave Liccardi, Chuck Margo Burton, Whitman College McKenna, Steve Theberge, Pat O’Donnell, Heather Stoffel, Melissa Hennig, and Renee Dana Derickson, Trinity University Wilson, Rookery Bay NERR Leda Jackson, Indiana University and Purdue Joe Kakareka, Aswani Volety, and Win University at Indianapolis Everham, Florida Gulf Coast University Chris Kitchen, Whitman College Beth A. Palmer, Consortium Coordinator Nicholas Levsen, Beloit College Emily Lindland, Florida Gulf Coast University LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION MICHAEL SAVARESE, Florida Gulf Coast University LENORE P. TEDESCO, Indiana/Purdue University at Indianapolis CAROL MANKIEWICZ, Beloit College LORA SHRAKE, TA, Indiana/Purdue University at Indianapolis PROJECT OVERVIEW complicating environmental management are the needs of many federally and state-listed Southwest Florida encompasses one of the endangered species, including the Florida fastest growing regions in the United States. panther and West Indian manatee. Watershed The two southwestern coastal counties, Collier management must also consider these issues and Lee Counties, commonly make it among of environmental health and conservation. the 5 fastest growing population centers on nation- and statewide censuses. -
Gallop Et Al., 2013
Marine Geology 344 (2013) 132–143 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo The influence of coastal reefs on spatial variability in seasonal sand fluxes Shari L. Gallop a,b,⁎, Cyprien Bosserelle b,c, Ian Eliot d, Charitha B. Pattiaratchi b a Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK b School of Environmental Systems Engineering and The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, MO15, Crawley, WA 6009, Australia c Secretariat of the Pacific Community (SPC), Applied Geoscience and Technology Division (SOPAC), Private Mail Bag, GPO, Suva, Fiji Islands d Damara WA Pty Ltd, PO Box 1299, Innaloo, WA 6018, Australia article info abstract Article history: The effect of coastal reefs on seasonal erosion and accretion was investigated on 2 km of sandy coast. The focus Received 21 June 2012 was on how reef topography drives alongshore variation in the mode and magnitude of seasonal beach erosion Received in revised form 11 July 2013 and accretion; and the effect of intra- and inter-annual variability in metocean conditions on seasonal sediment Accepted 23 July 2013 fluxes. This involved using monthly and 6-monthly surveys of the beach and coastal zone, and comparison with a Available online 2 August 2013 range of metocean conditions including mean sea level, storm surges, wind, and wave power. Alongshore ‘zones’ Communicated by J.T. Wells were revealed with alternating modes of sediment transport in spring and summer compared to autumn and winter. Zone boundaries were determined by rock headlands and reefs interrupting littoral drift; the seasonal Keywords: build up of sand over the reef in the south zone; and current jets generated by wave set-up over reefs. -
Living Shoreline Sea Level Resiliency: Performance and Adaptive Management of Existing Breakwater Sites, Year 2 Summary Report
W&M ScholarWorks Reports 11-2019 Living Shoreline Sea Level Resiliency: Performance and Adaptive Management of Existing Breakwater Sites, Year 2 Summary Report C. Scott Hardaway Jr. Virginia Institute of Marine Science Donna A. Milligan Virginia Institute of Marine Science Christine A. Wilcox Virginia Institute of Marine Science Angela C. Milligan Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Natural Resources and Conservation Commons Recommended Citation Hardaway, C., Milligan, D. A., Wilcox, C. A., & Milligan, A. C. (2019) Living Shoreline Sea Level Resiliency: Performance and Adaptive Management of Existing Breakwater Sites, Year 2 Summary Report. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.25773/jpxn-r132 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Living Shoreline Sea Level Resiliency: Performance and Adaptive Management of Existing Breakwater Sites November 2019 Living Shoreline Sea‐Level Resiliency: Performance and Adaptive Management of Existing Breakwater Sites Year 2 Summary Report C. Scott Hardaway, Jr. Donna A. Milligan Christine A. Wilcox Angela C. Milligan Shoreline Studies Program Virginia Institute of Marine Science William & Mary This project was funded by the Virginia Coastal Zone Management Program at the Department of Environmental Quality through Grant # NA18NOS4190152 Task 82 of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, under the Coastal Zone Management Act of 1972, as amended. The views expressed herein are those of the authors and do not necessarily reflect the views of the U.S. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.