March 15, 1932. T D, DUTTQN 1,849,141 TRANSMISSION REGULATOR SYSTEM Filed March 11, 1930

Total Page:16

File Type:pdf, Size:1020Kb

March 15, 1932. T D, DUTTQN 1,849,141 TRANSMISSION REGULATOR SYSTEM Filed March 11, 1930 March 15, 1932. T_ D, DUTTQN 1,849,141 TRANSMISSION REGULATOR SYSTEM Filed March 11, 1930 "1 J. BY §_ ATTORNEY Patented Mar. 15, 1932 0' f 11,849,141‘ ‘ UNITED "STA/res 'PATENTYOFFICE‘ “ 'rnoivms nnur'roiv, or CHEVY CHASE Gnmmns, MARYLAND, 'ASSIGNOR 'ro 'mnnIoAN :. TELEPHONE AND TELEGRAPH COMPANY, A oonromvrroiv or new YORK ’ "mmsmssm 313G111, ATO'R .VSY-STEM Application ?led Marcli- 11,’ 1930. Serial No. 435,000.‘ This invention relates to signaling systems temperature causes an increase in the‘ trans- . and particularly to those employing repeat-' mission loss and, conversely, a- decrease in - ' ers to adjust the magnitude of transmitted temperature. causes - a’ decrease in the trans signals. More‘ particularly, this invention mission loss. I > _ The pilot wire W1 isiconnected: in series .' 55 5 relates to arrangements for automatically adjusting the gain of a repeater in‘ order to circuit whichincludes a battery B1 anda re compensate for variations in the transmission sistance R1. vIt will be‘ apparent that‘ as the equivalent of one or more conductors form temperature of the pilot wire increases, its _ ing a circuit when the temperature of. these resistance increases and, consequently,'the flow of current from battery 131 through the‘ 10v conductors changes under varying ‘atmos pheric conditions. resistance Rlwill decrease. Conversely, a In’ ‘signaling systems employing cable cir decrease 1n temperature wlllcause a greater cuits for the transmission ofenergy in whic h ?ow of current from battery B1? through the ampli?ers are located at repeater points for resistance R1. ' A vacuum tube designated Vl includes three? 65' 15 increasing the level of the transmitted energy so as to overcome the attenuation of the con electrodes, a- grid electrode 91, a plate elec- ~ ductors, it has been determined that variable trode p1 and a ?lament electrode f1. , The grid temperature is an important factor in~chang~ electrode is connected to the filament electrode ing the effective attenuation ‘of the‘ circuit. through the resistance Rlf anda battery-1B2. '20 At high temperatures, the attenuation ‘is A battery B3 is connected across the ?lament quite large and, conversely, it is low at low electrode 7‘, and one side'of: this battery is temperatures. A pilot wire is often‘ set aside. grounded. The plate ‘electrode 101, and the ' in a cable andthis wire forms a. circuit which ?lament electrode _/"1 are: connected ina'cir is connected to a repeater so that the gain of -.cuit1 which includes, in addition to theseele 25' therepeater may be changed in accordance ments, a battery B4, ‘a resistance R2,;a- battery“ 75 with variations in the temperature of the. B5 and ground. The resistanceRz is shunted . pilot wire. It is the purpose of they arrange by a condenser G.’ ‘ ‘ ' ' - ' ' ment to increase the gain of the repeater when 1. The‘ reference character .Vg designates a the resistance changes by virtue of‘ an in vacuum tube which includes four elements,‘ I30, crease in temperature and to decrease its gain . a plate electrode p2, a ?lament electrode 7%, 80 a grid electrode 92 and a. screen gridv elec- . with a decrease in temperature. 7 , _ .. - It is an obj ectofthis invention to provide trodes. The grid electrode 92 is connected a pilot wire-regulating system intended for to‘the' ?lament electrode f2 through a wind use with the repeaters of signaling systems to ing'L; and a battery B6, this battery being -35 automatically adjust the gain of each repeater . employediior biasing the .grid electrode 92‘ ‘so as to take care of temperature ‘changes at a suitable negative potential with ‘respect which bring about variations in the transmis to the. ?lament electrode f2. The plate elec sion equivalent of the conductors forming ‘trode p2 is connected to the ?lamentielectrode ' ' the signaling circuit. This obj ect may becar f2 through a winding L2and a battery B-,,'the ‘ 40 ried out with the‘ apparatus‘ shown in the battery l37 providing a suitable positive po-' ‘90 drawing, details of which willnow be de tential for the plate electrode 102. The ?la- I ment f2 is connected to a battery B8, one ter scribed.Referring , to the drawing,p the- reference -minal of which is grounded. The screen grid character W1 designates two’ conductors electrode 8 is connected to the negativepter '45 forming a cable pair or circuit. Such a pair minal‘ of battery Bé through a'choke coil K1. or'circuit is known as a “pilotwire”. It may This screen grid electrode may be maintained be saidof this pilot wire, aswell as otieach of at a positive potential and the magnitude of the other conductors of the cable, that its re this positive potential may be ‘changed in " sista-nce changes in‘ accordancelwith temper order to correspondingly vary the. gain of the 50.. attire.’ It is well- lmown 'that‘an increaseiin .vacuum; tube V2. i V .The- mannerin which: the"? 100’ I 2 1,849,141 gain of the vacuum tube may be controlled through the resistance R2 which is in the will be described in greater detail herein plate circuit of the vacuum tube V1 changes after. in accordance with the temperature of the A winding L3 is connected to a source of pilot wire “71. An increase in temperature signals El and the signals that reach the brings about a decrease in the current ?owing 70 winding L3 may be of the voice frequency through resistance R2 and a decrease in tem type or carrier current modulations corre perature produces an increase in the ?ow sponding to voice frequency signals or of of current through resistance R2. any other type. , Windings L1 and ‘L3 are in The screen grid electrode 8 of the vacuum 10 ductively related to each other and the wind tube V2 is'connectedin series with choke coil 75 ing L1 transmits the currents impressed upon K1, resistance R2, battery B5 and ground. the winding L3 through the circuits associ The battery B5 and the magnitude of the cur ated with the vacuum tube V2 to a winding rent ?owing through the resistance R2 deter L4. The winding L4 is inductively related to mine the effective potential of the screen grid winding L2 and, moreover, it transmits the electrode 8. When the current flowing 80 signals ampli?ed by the vacuum tube V2 to through resistance R2 increases as a result of an output circuit E2. ' ' a decrease in the temperature of the pilot wire The degree of ampli?cation of the vacuum W1, the potential difference established by re tube V 2 is determined by the relative poten sistance R2 will be increased and the poten .20 tial of its screen grid electrode 8. As the tial of the screen grid electrode 8 will be. 85 positive potential of the screen grid electrode dropped below its normal value. Similarly,a increases, the ampli?cation of the vacuum decrease inthe ?ow of current through re tube will increase and upon a decrease in the sistance R2 as a result of an increase in the positive potential of the screen grid electrode temperature of the pilot wire W1, will in 25 8, the ampli?cation of the tube will be corre crease the positive potential of the screen grid 90 spondingly decreased. Thus, it will be appar electrode 8 above its normal value. Thus, ent that the gain in the signals transmitted 7 the gain of the repeater which includes the from the source E1 to the circuit E2 may be vacuum tube V2 will be increased when the changed by any desired amount merely by the temperature of the pilot wire increases and 30 control in the size of the potential impressed the gain will decrease as the temperature of 95 upon the screen grid electrode 8. - . the pilot wire decreases. Under normal conditions of temperature, The screen grid electrode of another vacu the ?ow of current from battery B1 through um tube V’2 is connected in series with the resistance R1 will produce a potential dif resistance R2, battery B5 and ground. The 35 ference across resistance R1 which opposes gain of the repeater which includes this vac; 100 the voltage established by the battery B2. uum tube will be effected by temperature Under normal conditions, the voltage of the changes of the pilot wire W1 in the same man battery B2 is greater than the potential di?er ner'as the repeater which includes the vacu ence across the resistance R1 and the differ um tube V2 is effected. The conductor W2 40 ence between these voltages determines the may extend to other repeaters or groups of‘ 105 negative potential impressed upon the grid repeaters. ' electrode 91 of the vacuum tube V1 with re The choke‘ coil connected in series with each spect to the ?lament electrode f1 of that tube. screen grid electrode is employed to prevent The vacuum tube V1 is operated on the alternating currents from being impressed 45 straight line portion of its plate current-grid upon these electrodes. These choke coils 110 voltage characteristic curve in order that any together with the condenser C substantially change in the effective potential of grid elec eliminate crosstalk between repeaters.‘ trode 91 will cause a corresponding change in The repeater'regulating system employed the thermionic emission between the ?lament in this invention is automatic in operation .50 electrode f1 and the plate electrode 391 of the and has. a great many advantages over those' 115 tube V1. When there is a decrease in the tem regulating systems known in the art. It perature of the pilot wire l/V1, the potential employs no relays or moving parts and, con di?'erence determined by resistance R1 will sequently, there can be no trouble due to the be increased and, therefore, the ?ow of cur sticking of contacts or due to dirty ‘or cor ,7 55 rent in the plate circuit of the tube V1, which roded contacts.
Recommended publications
  • P1-Extreme Amplifier by David Sorlien, Revised and Updated by Stephen Keller
    Introduction to Tube Amplifier Theory: 10.02.15 Featuring the AX84 P1-eXtreme Amplifier by David Sorlien, revised and updated by Stephen Keller The P1-eX amplifier is a simple three-stage vacuum tube electric guitar amplifier. As outlined in Fig. 1, it consists of two preamp stages driving a power amp stage. Depending on the choice of output tube, this amp is can deliver between 7 and 15 watts into a 4-, 8-, or 16-ohm load. Fig. 1: P1-eX block diagram Placed between the two preamp stages is a preamp volume control. In a similar manner, the bass, middle, and treble tone controls and a master volume control are placed between the preamp and the final power amp stage. The guitar amplifier performs two primary functions: One, it amplifies the small voltages and currents produced by the guitar pickup into a signal powerful enough to drive a speaker. Two, it shapes the frequency response, tonality, and distortion characteristics of the raw guitar signal into a form pleasing to the musician. To better grasp how a guitar amplifier accomplishes these functions, let©s take a walk through the inner workings of the AX84 P1-eXtreme amp (P1-eX). For reference, there is copy of revision 06.03.16 of the schematic provided in Appendix 1 at the end of this document. To fully understand how a guitar amp works, even a simple one like the P1-eX, you must know how to read schematic diagrams, and understand what things like resistors and capacitors are. You also need some knowledge of basic algebra and electronic theory.
    [Show full text]
  • The Beginner's Handbook of Amateur Radio
    FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc.
    [Show full text]
  • 6\ M?L/ K7 Gmwy 4 I ' + /‘4 I- E 7 4-‘1 :"I'yl’‘‘‘‘ ‘N I ‘ 7'0 LP 2: J- = ' '
    Oct.’ 8, 1940. s. HUNT £2,217,277 ' ‘ DEGENERATIVE PLATE cmcun: DETECTOR Filed Sept. '28, 19:8 DEGENERAT/VE PLATE __———_C/RCU/T DETECTOR | /2 6\ M?l/ k7 gmwy 4 i ' + /‘4 i- E 7 4-‘1 :"I'Yl’‘‘‘‘ ‘n I ‘ 7'0 LP 2: J- = ' ' a . °~ I ?|__' I ~ 70 A. E AMPLIFIER INVENTOR. Ilse MOUR HUNT BY ATTORNEY. Patented Oct. 8, 1940 2,2l7,277 UNITED STATES F ICE 2,217,277 DEGENERAT'IVE PLATE CIRCUIT DETECTOR Seymour Hunt, Jackson Heights, Long llsland, N. Y., assignor to Radio Corporation of Amer ica, a corporation of Delaware Application September 28, 1938, Serial No. 232,075 6 Claims. (Cl. 256-4237) My present invention relates to detector cir art are fully acquainted with the construction of cuits, and more particularly to degenerative plate superheterodyne receivers, it is not believed nec circuit detectors capable of substantially ampli essary to explain the construction thereof at any fying the audio voltage output thereof. greater length. The output electrode for the 5 One of the main objects of this invention is to detector circuit includes electrode 4. Preferably, provide a detector of the in?nite impedance type this electrode is a wound grid. The latter is con which includes an electronic section having a nected through load resistor 52 to the plus B negative mutual conductance characteristic terminal of any desired direct current source, which functions to amplify the audio output of such as the usual direct current energizing source 10 the detector. of a radio receiver. The coupling condenser l3 Another important object is to provide in a transmits the audio voltage, in ampli?ed form, biased plate circuit detector of the degenerative to the following audio ampli?er for ?nal repro type a negative mutual conductance section duction.
    [Show full text]
  • Electrostatic Design and Characterization of a 200 Kev Photogun and Wien Spin Rotator
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Spring 2021 Electrostatic Design and Characterization of a 200 keV Photogun and Wien Spin Rotator Gabriel G. Palacios Serrano Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons, and the Physics Commons Recommended Citation Palacios Serrano, Gabriel G.. "Electrostatic Design and Characterization of a 200 keV Photogun and Wien Spin Rotator" (2021). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/mf9f-r453 https://digitalcommons.odu.edu/ece_etds/224 This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. ELECTROSTATIC DESIGN AND CHARACTERIZATION OF A 200 keV PHOTOGUN AND WIEN SPIN ROTATOR by Gabriel G. Palacios Serrano B.S. August 2014, Universidad Autónoma Metropolitana, Mexico M.S. May 2017, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY May 2021 Approved by: Helmut Baumgart (Director) Carlos Hernández (Member) Linda Vahala (Member) Mohammad Obeid (Member) Gon Namkoong (Member) ABSTRACT ELECTROSTATIC DESIGN AND CHARACTERIZATION OF A 200 keV PHOTOGUN AND WIEN SPIN ROTATOR Gabriel G. Palacios Serrano Old Dominion University, 2021 Director: Dr.
    [Show full text]
  • Cre|4|L-Feuhis ATTORNEYS Nov
    Nov. 28, 1961 M. V. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 1 NVENTOR MICHAEL V.SULL VAN cre|4|l-feuHIS ATTORNEYS Nov. 28, 1961 M. W. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 2 aa- ?-s? ? O ???? S I INVENTOR MICHAEL V. SULLIVAN -a?.--77. ? ????? ??? HIS AT TORNEYS Nov. 28, 1961 M. V. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 3 NVENTOR MiCHAEL V. SULLIVAN Y Cit...!!* His A ?????? la? 3,011,018 United States Patent Office Patented Nov. 28, 1961 3,011,018 FIG. 2 illustrates the waveform of the television pic HIGHLIGHT APERTURE CORRECTION SYSTEM ture signal at various points in the aperture equalization Michael V. Sullivan, Florham Park, N.J., assignor to system shown in FIG. 1; Columbia Broadcasting System, Inc., New York, N.Y., FIG. 3 is a circuit diagram of the input and white a corporation of New York clipper portions of the system shown in FIG. 1; Filed Sept. 26, 1956, Ser. No. 612,221 FIG. 4 is ? circuit diagram of the difference ampli 7 Claims. (Cl. 178-6) fier portion of the system shown in FIG. 1; and FIG. 5 is a circuit diagram of the summing amplifier This invention relates to television, and more particu and output portions of the system shown in FIG.1. larly to a new and improved aperture equalization O Referring first to the block diagram of FIG. 1 and method and means for correcting aperture distortion in the graphic representations of the signal waveform of the highlight regions of the television picture, without FIG.2, a television picture information signal as illus increasing the high frequency noise which is inherent in trated in FIG.
    [Show full text]
  • BY 7% É Arrórney Patent-Ed Nov
    Nov. 24, 1942. s. HUNT 2,302,867 COMÈINED MIXER AND INTERMEDIATE FREQUENCY STAGE l Filed Oct. 25, 1941 Q/ T - l INVENToR ’ SEYMOUR BY 7% é ArróRNEY Patent-ed Nov. 24, 1942 2,302,867 . UNITED STATES PATENT OFFICE tratas@r COMBINED MIXER AND INTÉRMEDIATE FREQUENCY STAGE Seymour Hunt, Flushing, N. Y., assîgnor to Radio Corporation of America, a corporation of Dela Ware Application october 25, 1941, serial No. 416,438 8 Claims. (>Cl. 250-20) This invention is concerned with an improve ` accelerate the electron stream and to shield elec ment in radio receivers of the superheterodyne trostatically the signal control grid G4 from volt type and more particularly with a combined first age fluctuations on the oscillator anode-grid G2 detector-oscillator or mixer and intermediate fre and the output anode P. quency stage that may be used with advantage in Cl According to my invention the functions of such receivers. the several electrodes and the connections there In the present state of the art it isknown to tol of the circuit elements are modified somewhat use in superheterodyne circuits a multi-electrode ~ as will now be pointed out more particularly. In type of tube designed to perform simultaneously the circuit of Fig. 1 the grid G1 serves as the the functions of a mixer tube and of an oscillator signal control grid as well as the oscillator grid. tube. According to my present invention the ` Connected between the signal grid G1 and cath same or equivalent multi-electrode tube is made ode 'is the circuit L1-C1 which is tuned to the to perform in addition the function of interme received signal oscillations.
    [Show full text]
  • Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
    Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit­ m WIng promise at the beginning of the twentieth century. Peo­ ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com­ munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra­ phy detector& wauid have on elec­ tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless­ telegraphy technology. He demon­ strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ­ Jish Channel. By the end of 1901. Mar­ coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber­ ent flmltations woUld soon disappear, Ships· at sea would no longer be iso­ la1ed. No locatlon on Eorth would. be too remote to send and receive mes­ sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio­ ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band­ width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans­ missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln­ cterlng the development of commer­ () cial wireless-telegraph nefWorks.
    [Show full text]
  • Short Wave Radio
    Short Wave Radio A Working Electronic Sculpture Honoring the History of Radio Please note: This radio picks up short wave stations, but for your best satisfaction it will require a little time and attention, both to learn how to operate it and to appreciate the principles and history that it embodies. You’ll find bare-bones instructions on this page and more details inside the notebook. To turn the radio on, rotate the volume control clockwise until you hear a click, then set its dial to 3 or 4. If the radio was not already turned on, you’ll have to wait about 30 seconds for its vacuum tubes to warm up. •Put on the headphones. •Set the radio’s other controls as follows: •RF Gain: Fully clockwise. •Preselector: 1 •Tuning: 20 •Fine Tuning: 5.0 (This works like a clock, only with ten “hours” instead of 12) •Regeneration: 7 (Or advance slowly clockwise from zero until just after the point you hear a louder hiss in the headphones.) •Volume: Set to a comfortable level, usually about 4. Now, slowly adjust the TUNING control back and forth looking for squeals that indicate signals. (The shortwave broadcast band with 31 meter wavelength is located between about 10 and 30 on the dial.) You’ll should find a few unless ionospheric conditions are particularly poor on this day. Leave the TUNING control set on a loud squeal. Then slowly adjust the FINE TUNING to “zero beat.” (You’ll notice as you move the dial across a signal, it starts with a high-pitched note, moving down to a low-pitched or zero note, then back up to high pitch again.
    [Show full text]
  • Sept. 17, 1935. A. H. TAYLOR 2,04,913 CIRCUIT for PRECISION CONTRO of MASTER OSCILLATORS Filed Feb
    Sept. 17, 1935. A. H. TAYLOR 2,04,913 CIRCUIT FOR PRECISION CONTRO OF MASTER OSCILLATORS Filed Feb. 8, 1933 rvuorvov ALBERT H.TAYLOR &tkow, Patented Sept. 17, 1935 2014,913 UNITED STATES PATENT OFFICE 2,014,913 CIRCUIT FOR PRECISION CONTROL OF MASTER, CSCELLATORS Albert H. Taylor, Washington, D. C., assignor to Wired Radio, Inc., New York, N. Y., a corpora tion of Belaware Application February 8, 1933, Serial No. 655,829 4 Claims. (C. 250-36) My invention relates broadly to high frequency oscillation systems and more particularly to a screen grid electrode of the tetrode Oscillator and circuit for the precision control of master Oscil another of the taps at higher potential leading to lators in a high frequency OScillation System. the plate electrode. A high frequency inductance One of the objects of my invention is to pro system is connected in circuit between the control vide a simplified circuit for a high frequency grid and the anode. A pair of balancing con Oscillation system which is constructed to deliver densers is connected in series across the induc Oscillations of high frequency and efficiency. tance and a connection taken from a midpoint Another object of my invention is to provide between the condensers to a return circuit lead 0. a circuit arrangement for a high frequency OScil ing to the Cathode. Provision is made for con lator and amplifier System having a high degree necting a balance condenser between the Screen O of freedom from variation in frequency brought grid and any point in the coil system.
    [Show full text]
  • A/72-7Ey/ Sept
    Sept. 6, 1955 P. POURET METHOD OF DETECTION AND ELECTRIC DETECTOR 2,716,979 OF ACUPUNCTURE AND IGNIPUNCTURE POINTS Filed July 31, l95l 2. Sheets-Sheet l I-1 v-era 72 Aerre A2u re? A/72-7ey/ Sept. 6, 1955 P. POURET 2,716,979 METHOD OF DETECTION AND ELECTRIC DETECTOR OF ACUPUNCTURE AND IGNIPUNCTURE POINTS Filed July 31, l95l 2 Sheets-Sheet 2 J.7 ye-Z/2 - Aerre All ey 2-azé2--- 47/2/12ey United States Patent Office 2,716,979 Patented Sept. 6, 1955 2 drop between the two resistances. 105 and 106 with a 2,716,979. resulting variation in voltage between the plate 101 and the fluorescent screen 102. This variation causes a sector METHOD OF DETECTION ANE).ELECTRIC DE of shadow to appear on the screen, the extent of the dark TECTOR OF ACUPUNCTURE ANE). IGNIPUNC. 5 surface being determined by the difference in potential TURE POINTS occurring between the plate 101 and screen 102. For Pierre Pouret, Chatellerault, France each discharge of the condenser 5, the cathodic eye blinks once only. The sensitivity of the cathodic eye 12 is regu Application July 31, 1951, Serial No. 239,515 lated by potentiometer 14. It should be understood that Claims priority, application France August 3, 1959 0. any equivalent indicating means can be used instead of 13 Claims. (C. 128-e-2.1) electronthe cathode ray eye,indicator. which is also known as a magic eye or In the assembly heretofore described a compromise. between the adjustment of voltage divider 4 and potenti The object of the present invention is the electrical 5 ometer 14 allows contact with the patient in the best detection of particular cutaneous points the location of conditions of sensitivity.
    [Show full text]
  • The Plate Electrode Is What Type of Grounding Electrode? A) Manufactured Grounding Electrode B) Field Assembled Grounding Electr
    A) manufactured grounding B) field assembled grounding The plate electrode is what type of grounding electrode? C) in-situ grounding electrode D) artificial grounding electrode electrode electrode When installing an electrical system using Rigid PVC Conduit, what characteristic must be A) has a higher coefficient of B) has a lower coefficient of C) has a lower coefficient of D) has approximately the same considered? expansion than steel expansion than aluminum expansion than steel coefficient of expansion as steel A single dwelling is supplied with electrical power from the local supply authority. The owner of the single dwelling wishes to interconnect his own electrical renewable power system with the local supply authority's system. The owner also wants to use the energy from the renewable A) 120 V B) 80 V C) 50 V D) 46 V system to charge storage batteries for standby power. What is the maximum operating voltage rating of the storage batteries to be used for the standby power system? Which type of enclosure can be used to house a panelboard inside a building that has circulating A) Type 1 B) Type 2 C) Type 4 D) Type 5 metal dust from grinding metal castings? What is the minimum size of RW90XLPE copper conductor that can be installed in a run of EMT that is used to feed the primary of a 75 kVA, dry-type, 600-120/208 V transformer protected by a A) No. 1 AWG B) No. 2 AWG C) No. 3 AWG D) No. 4 AWG moulded case circuit breaker? What is the maximum distance that the disconnecting means for a roof top air make up unit can A) 1 m B) 3 m C)
    [Show full text]
  • Photosensitive Camera Tubes and Devices Handbook
    11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal.
    [Show full text]