INDEX

SUBJECT INDEX

ANALOG DEVICES' PARTS INDEX

STANDARD DEVICE PARTS INDEX

OP AMP APPLICATIONS

INDEX

SUBJECT INDEX

A H.63 Aavid Thermal Technologies, Inc. general AD549: catalog, 7.108 , 1.58 Absorption, shielding, 7.116 JFET input electrometer grade op amp, ACCEL Technologies, Inc., 7.164 with TO-99 package, 4.43 Accelerometer, 4.62 monolithic IC electrometer op amp, H.64 sensor, 4.3 schematic, H.64 Active feedback amplifier, constant current AD549K, JFET input electrometer grade op source, circuit, 6.179 amp, 4.42 Active , design, 5.65 AD549KH, TO-99 package, 4.47 Actuator, sensor, 4.4 AD588, precision zener reference, 4.34 AD210: AD590, TO52 package, temperature transducer, key specifications and circuit, 2.45 4.86 three-port isolator, 2.44-46 AD590 Two-Terminal IC Temperature AD210 Precision, Wide Bandwidth 3-Port Transducer, 4.92 Isolation Amplifier, 2.51 AD592, TO92 package, temperature transducer, AD215 120kHz Bandwidth, Low Distortion, 4.86-87 Isolation Amplifier, 2.51 AD594, single-chip in-amp, thermocouple AD215: cold-junction compensator, 4.77-78 key specifications and block diagram, AD595, single-chip in-amp, thermocouple 2.47 cold-junction compensator, 4.77-78 low distortion two-port high speed AD600/602: isolation amplifier, 2.47 dual X-AMP, diagram, 6.154 AD260 and AD261 High Speed Logic Isolators, gain as function of control voltage, 2.51 plots, 6.155 AD260/AD261: AD620: digital isolator, key specifications, CMR as function of frequency, 2.19 2.50 gain-bandwidth pattern, 2.21 digital isolator family, 2.49-50 generalized external voltage protection, one-channel schematic, 2.49 circuit, 7.88 output voltage, 2.50 in-amp, 4.33 AD275 Dual Bipolar/JFET, Audio Operational bridge applications, 4.14 Amplifier, 3.53 thin-film , 7.87-89 AD503, two-chip hybrid IC op amp, schematic, monolithic IC in-amp, 2.12-15 H.60 preamp, 2.46 AD506, two-chip hybrid IC op amp, schematic, PSR as function of frequency, 2.19 H.60 schematic, 7.87 AD506L: Economical Low-Drift FET-Input, single-supply in-amp, 2.22-23 H.69 three op amp in-amp, schematic, 2.12-15 AD508J, K, L IC Chopperless Low Drift AD620 Low Cost, Low Power Instrumentation Operational Amplifier Preliminary Data Amplifier, 2.29 Sheet, H.68 AD620/AD822, single-supply composite in-amp, AD509: Fast Op Amp 2µs to 0.01%, H.70 performance summary, 2.15 AD515, hybrid IC electrometer amplifier, AD620B: H.63 bridge amplifier DC error budget, 2.21 AD526: specifications, 2.21, 2.23 key specifications and schematic, 2.34 AD621: programmable precision non-inverting op pin-programmable-gain in-amp, 2.17 amp gain stage, 2.34 specifications, 2.23 AD526 Programmable Gain Instrumentation AD622, specifications, 2.23 Amplifier, 2.41 AD623: AD526 Software Programmable Gain Amplifier, in-amp 2.41 in bridge applications, 4.14 AD545, hybrid IC electrometer amplifier, single-supply, 6.186 Index 1 OP AMP APPLICATIONS

architecture and key preamplifier specifications, 2.16 noise analysis, 4.52-53 AD623 Single Supply, Rail-to-Rail Low Cost noise gain, 4.51 Instrumentation Amplifier, 2.29 single-supply op amp, in SOIC package, AD624C, monolithic in-amp, 2.17 4.46 AD625, circuit, 2.39 SOIC package, 4.56 AD626, differential amplifier, 2.23 AD795JR: AD627: JFET input electrometer grade op amp, in-amp, in bridge applications, 4.14 4.42-43 key specifications, 2.11 SOIC package, 4.44 single supply in-amp, architecture, 2.10 op amp, low input current, 4.66 two op amp in-amp, circuit, 2.10 photodiode preamp, performance summary, AD627 Micropower, Single and Dual Supply 4.56 Rail-to-Rail Instrumentation Amplifier, photodiode preamplifier offset error 2.29 model, 4.48 AD629: summary, 4.49 CMR, 2.6 AD795K, preamp with output filter and high common-mode input voltage offset null option, 4.55 difference amplifier, 2.5 AD797: high voltage in-amp IC, 7.81-82 controlled decompensation, 6.58 AD704: family of distortion curves, 6.59 quad op amp, H.54 low noise op amp, 3.45 super-beta input bipolar op amp, 1.35 recommended connections, circuits, 6.58 AD705: THD versus frequency, plots, 6.59 single op amp, H.54 AD797/ADG412 PGA, performance summary, super-beta input bipolar op amp, 1.35 2.36 AD706: AD810, video op amp, disable mode, 6.124 dual op amp, H.54 AD811: super-beta input bipolar op amp, 1.35 current feedback amplifier, 6.50 AD707, precision amplifier, 4.22 current feedback video op amp, 7.148 AD708: AD812, dual current feedback amplifier, dual op amp, H.57 6.110 dual precision op amp, in bridge circuit, AD813: 4.16 triple amplifier, 6.110 AD741, precision monolithic IC op amp, H.50- triple current feedback op amp, 51 programmable gain video amplifier, AD741J, K, L, S Lowest Cost High Accuracy circuit, 6.126 IC Op Amp Data Sheet, H.67 video op amp, disable mode, 6.124 AD743: AD815 High Output Current Differential FET input op amp, for high speed Driver data sheet, 7.108 photodiode preamps, 4.59 AD817: low noise BiFET op amp, 4.64-66 internal capacitive load compensation, low noise JFET IC op amp, H.65 circuit, 6.88 AD744, FET input op amp, for high speed unity gain inverter, 6.89 photodiode preamps, 4.59 video op amp driver, 7.106 AD745: wideband in-amp, circuit, 6.184 FET input op amp, for high speed AD818, op amp, in simple video line photodiode preamps, 4.59 receiver, circuit, 6.115 low noise BiFET op amp, 4.63-66 AD820: low noise JFET IC op amp, H.65 FET input op amp AD768 16-Bit, 30 MSPS D/A Converter, 3.53 guard techniques, 4.46 AD768, 16-bit BiCMOS DAC, 3.50 for high speed photodiode preamps, AD780, with SAR ADC, 3.44 4.59 AD795: single low-power op amp, H.65 FET input op amp, for high speed single op amp, N-channel JFET input, photodiode preamps, 4.59 6.167 low bias current FET input op amp, 7.82- AD820B, JFET input electrometer grade op 83 amp, 4.42 Index 2 INDEX

AD820BN, DIP package, 4.45 high resolution, 3.24-25 AD822: AD789X, single supply SAR ADC, 3.27 dual low-power op amp, H.65 AD813X: dual op amp, N-channel JFET input, 6.167 differential ADC driver, functional JFET-input dual rail-to-rail output op diagram and equivalent circuit, 3.37 amp, 2.14 differential op amp, 3.51 AD823: AD855X, chopper-stabilized op amp series, dual 16MHz op amp, N-channel JFET input, 1.32 1.40 AD860X, CMOS op amp family, 1.47 FET input op amp, for high speed AD922X: photodiode preamps, 4.59 dual op amp, 3.37 photodiode preamp SFDR, transformer coupling, 3.36 dark current compensation, 4.60 AD976X: equivalent circuit, 4.61 TxDAC, 3.48-49 schematic diagram, 1.41 high speed output, model, 3.48 AD825: AD977X: high speed FET input op amp, 5.128-129, TxDAC, 3.48-49 5.131 high speed output, model, 3.48 op amp integrator, circuit and plot, AD7528, 8-bit dual MDAC, 5.128-129, 5.131 6.180 AD7730: AD828, dual op amp, 6.181 24-bit sigma-delta ADC, 4.36 AD829: sigma-delta high resolution measurement input voltage noise, 6.169 ADC, 4.23-24 input voltage noise spectral density, on-chip PGA, circuit, 2.40 plot, 6.166 AD7730 Bridge Transducer ADC, 4.25, 4.37 wideband video amplifier, bipolar AD7776, 10-bit ADC, 2.26 differential input, 1.34-35 AD7846, 16-bit converter, 2.36-37 AD830: AD7890-10, 12-bit 8-channel ADC, circuit, active feedback amplifier, 6.179-181 3.27 grounded integrator, circuit AD8001: and plot, 6.180 current feedback op amp, bandwidth AD830/AD8129/AD8130, active feedback flatness versus feedback amplifier, circuit, 6.117 value, plots, 6.99 AD843: high speed current-feedback op amp, FET input op amp, for high speed 7.161-162 photodiode preamps, 4.59 pulse response high-speed FET input op amp, 6.190 coaxial cable driver, 6.102, 6.104 AD845: direct driving uncontrolled loads, BiFET 16MHz op amp, circuit, 1.111 6.105 FET input op amp, 6.73 resistance versus load capacitance, for high speed photodiode preamps, plots, 6.86 4.59 RF and Rg values, for DIP and SOIC AD846, current feedback op amp, diagram, packages, table, 6.99 1.25 AD8002, cross-coupled driver, frequency AD847, Bode plot, 5.111 response, plots, 6.113 AD847 family, folded cascaded simplified AD8004, current feedback op amp, circuit, 1.110 sensitivity to inverting input AD1853, stereo DAC, 3.52 capacitance, plots, 6.100 AD1853 Stereo, 24-Bit, 192 kHz, Multibit AD8010, video distribution amplifier, Sigma-Delta DAC, 3.53 circuit, 6.107 AD76XX, single supply SAR ADC, 3.27 AD8011 300 MHz, 1 mA Current Feedback AD77XX family: Amplifier Data Sheet, 1.127 ADC with on-chip PGA, 2.32, 2.40 AD8011: characteristics, 3.24 CFB op amp, noise calculations, 6.151 equivalent input circuit, 3.25 current feedback op amp high resolution ADCs, 4.80-81 frequency response, 1.115 sigma-delta ADC key specifications, 1.116 driving unbuffered, 3.25 noise figure, input conditions, 6.151 Index 3 OP AMP APPLICATIONS

output noise analysis, 6.151 distortion versus output signal level, AD8013: 3.24 2:1 video multiplexer, circuit, 6.125 high speed low distortion op amp, 3.22-24 3:1 video multiplexer , circuit, key specifications, 3.23 6.125 distortion versus frequency plot, 3.23 triple amplifier, 6.110 AD8057/AD8058 Low Cost, High Performance triple current feedback op amp, 6.124 Voltage Feedback, 325 MHz Amplifiers, video op amp, disable mode, 6.124 3.41 AD8016: AD8058: 20-lead PSOP3 package, 7.104-105 dual op amp, 3.37 diagram, 7.105 op amp, thermal ratings, 7.106-107 IC AD8074: BATWING package, 7.104 triple buffer, 6.82 PSOP3 package, 7.104-105 triple video buffer, 6.98 AD8016 Low Power, High Output Current, video op amp, disable mode, 6.124 xDSL AD8075: Line Driver data sheet, 7.108 triple video buffer AD8016ARP, 20-lead PSOP3 package, 7.104 bandwidth, 1.75 AD8017 Dual High Output Current, High Speed gain and gain flatness, plots, 6.98 Amplifier data sheet, 7.108 video op amp, disable mode, 6.124 AD8017AR: AD8116, 16x16 buffered video crosspoint op amp , diagram, 6.129 8-pin SOIC packaging, 7.101 AD8129, SOIC packaging, 6.118 maximum power dissipation, data sheet AD8130: statement, 7.101 common-mode rejection versus frequency, thermal rating curves, 7.103 plots, 6.118 AD8018: high impedance input, 6.119 xDSL upstream data line driver in video cable-tap amplifier, circuit, circuit, 6.159 6.119 key specifications, 6.160 AD8131 Low-Cost, High-Speed Differential AD8036: Driver, 3.41 clamping amplifier, 6.171-172 AD8132 Low-Cost, High-Speed Differential input versus output clamping, plot, 6.121 Amplifier, 3.41 AD8036/AD8037, clamp amplifier, equivalent AD8138: circuit, 6.120 differential driver amplifier, circuits, AD8036/AD8037 Applications, 6.187 6.114 AD8037: op amp, in driver circuit, 3.39 clamp amplifier, 6.122 SINAD and ENOB, 3.39 clamping amplifier, 6.171-173 AD8138 Low Distortion Differential amplitude modulator, 6.174-175 Amplifier, 3.41 circuit, 6.174 AD8170, 2:1 video multiplexer, 6.128 as piecewise linear amplifier, 6.177- AD8170/AD8174/AD8180/AD8182, bipolar 178 video inverting amplifier, gain of unity, 6.172 multiplexer, block diagram, 6.127 AD8039, settling time, plot, 1.71 AD8183/AD8185, triple 2:1 video multiplexer, AD8047, voltage feedback op amp, video line block diagram, 6.127 driver, 6.106 AD8323: AD8048: CATV digitally controlled variable gain voltage feedback op amp amplifier in lowpass filter, 1.120 diagram, 6.157 video line driver, circuit, 6.106 key specifications, 6.158 AD8055, op amp, 3.49-50 AD8350, spot noise figure and gain versus AD8055/AD8056 Low Cost, 300 MHz Voltage frequency, plots, 6.152 Feedback Amplifiers, 3.53 AD8531/AD8532/AD8534 CMOS rail-to-rail op AD8057: amp, schematic, 1.46 non-inverting input, 3.34 AD8551: op amp, thermal ratings, 7.106-107 chopper-stabilized amplifier, 7.38 AD8057/AD8058: chopper-stabilized op amp, 4.76 Index 4 INDEX

AD8551/AD8552/AD8554, chopper-stabilized applications, and op amp specifications, amplifier, 4.22 3.22-24 AD8551/AD8552/AD8554 Zero-Drift, Single- buffered differential input, 3.29 Supply, Rail-to-Rail Input/Output advantages, 3.29 Operational Amplifiers Data Sheet, 1.102 schematic, 3.29 AD8571/AD8572/AD8574 chopper stabilized op buffered input, 3.28 amp family, characteristics, 1.100 CMOS AD8571/AD8572/AD8574 Zero-Drift, Single- hold-to-sample mode transition, 3.31 Supply, Rail-to-Rail Input/Output input switching transients, 3.31 Operational Amplifiers Data Sheet, 1.102 sample-to-hold mode transition, 3.31 AD8601, single rail-to-rail CMOS op amp, settling time, 3.32 1.47 SHA, 3.30 AD8602: input, 3.30 CMOS op amp, with DigiTrim, 1.47 CMOS latched buffer, 7.49 dual rail-to-rail CMOS op amp, 1.47 differential amplifiers, 3.37 AD8604, quad rail-to-rail CMOS op amp, 1.47 differential input AD8610, precision JFET op amp, 2.27 drivers, 3.35 AD9002, 8-bit flash converter, with clamp performance advantages, 3.35 amplifier, circuit, 6.122 transformer coupling, 3.36 AD9042: direct-coupled single-ended single- 12-bit 41MSPS ADC, 3.28 supply driver, 3.34 input structure, 3.28 evaluation board, 3.32 AD9203 10-Bit, 40 MSPS, 3 V, 74mW A/D fast Fourier transform analysis, 3.17 Converter, 3.41 gain and ENOB versus frequency, plot, AD9203: 3.16 10-bit 40MSPS ADC, 3.37-38 harmonic distortion, 3.17-18 driver circuit, 3.39 high performance, driving, 3.21-41 SINAD and ENOB, 3.39 high-impedance differential input, high AD9220: transmission accuracy, 7.40 12-bit 10MSPS ADC, 3.16 ideal N-bit quantization noise, 3.10 SINAD/ENOB plot, 3.16 input-referred noise, 3.11 AD9225: compared with op amp output noise, 12-bit 25MSPS ADC, 3.12 3.12-13 12-bit 25MSPS CMOS ADC, 3.31, 3.34-35 input/output quantization, 3.7 DC coupled single-ended level shifter inputs, driving, 3.21-41 and driver, 3.34 intermodulation products, 3.19 input transients, 3.35 logic noise, buffering, 7.48-49 waveforms, 3.35 missing codes, 3.10 AD9620, closed-loop unity-gain monolithic non-monotonicity, 3.10 buffer, 6.81 overvoltage, 3.40 AD9630, closed-loop unity-gain monolithic protection circuits, 3.40 buffer, 6.81 performance measurement, 3.14 AD9632: quantization noise, 3.10-11 op amp, noise calculations, 3.13 SFDR, 3.19 wideband low distortion op amp, 3.12 performance, 3.36 AD9772A 14-Bit, 160 MSPS TxDAC with 2x sigma-delta, high resolution, driving, Interpolation Filter, 3.53 3.24-25 AD22100 Voltage Output Temperature Sensor single-ended drive circuit, 3.31 with Signal Conditioning, 4.91 single-ended switched capacitor, input AD22103 3.3V Supply, Voltage Output drive circuit, 3.32 Temperature Sensor with Signal single-supply, scaled output, 3.27-28 Conditioning, 4.91 SNR, performance, 3.36 AD22103, ratiometric voltage output specifications, 3.7-20 temperature sensor, 4.89-90 THD+N, 3.17-18 ADA830/AD8130, active feedback amplifier, THD, 3.17-18 6.179 transfer functions, 3.8 ADC: two tone IMD, 3.19 analog bandwidth, definition, 3.16 voltage range, 3.2 Index 5 OP AMP APPLICATIONS

worst harmonic, 3.17-18 support, 7.152 ADC/DAC: voltage feedback, input and gain/pole capacitive loads, instability, 3.44 stages, circuit, 7.142 decoupling, 3.43 ADV7120/ADV7121/ADV7122, triple video reference input, driving, 3.43-45 DAC, voltage reference considerations, 3.43 6.130 ADG409, CMOS switch, 2.38 Aging, 1.58 ADG438, fault-protected multiplexer, 7.81 Air discharge, 7.91 ADG439F, fault-protected multiplexer, 7.81 Air-gap discharge, ESD testing, 7.96 ADG465, CMOS channel protector, 7.80 Alexander power amplifier topology, 6.196 ADG466: Alexander, Mark, 6.207, 7.163 CMOS channel protector, 7.80 Aliased harmonics, 3.17 in-amp channel-protector, circuit, 7.89 "All inverting" balanced line receiver, ADG467, CMOS channel protector, 7.80 6.37-38 ADG508, fault-protected multiplexer, 7.81 diagram, 6.37 ADG509F, fault-protected multiplexer, 7.81 Allen, P.E., 5.133 ADG511, single supply switch, 2.39 Allpass filter, 5.12-13 ADI, birth, H.35 second-order response, 5.13 ADI model 44 FET op amp, H.38 transfer function, 5.12 schematic, H.38 "Almost" rail-to-rail output stages, 1.45 ADI model 45 FET op amp, H.38 Alternate balanced line receiver, 6.37 ADI model 48 FET op amp, H.38 Aluminum electrolytic capacitor: schematic, H.38 OS-CON, 7.65 ADI model 50 FET op amp, H.39-40 switching, 7.65 ADI model 121 wideband DC op amp, AMP03: schematic, CMR, 2.4 H.36-37 lower gain in-amp, 7.82 ADI Modular Products, H.42 precision four-resistor differential ADI Staff, H.42 amplifier, 2.4, 7.39 ADI Thermal Coastline IC 8-pin SOIC package, small-signal bandwidth, 2.4 thermal rating curve, 7.104 AMP04, in-amp, 2.39 ADI Thermal Coastline IC package, 7.103 Amplification frequency response, RIAA ADI Website, 3.5 equalizer, 6.17 ADM660, charge-pump IC, 7.61 Amplifier: ADM3311E RS-232 Port Transceiver data sheet, applications;, 6.163-188 7.100 applications, 6.163-188 ADMXXX-E, RS-232/RS-485 driver/receiver, audio, 6.1-78 7.98 audio line stage, 6.28 ADP330X, anyCAP LDO regulator, 7.56, 7.58 biasing, noiseless, 6.3 ADP3331, adjustable LDO regulator, 7.58-59 biological, H.9 ADP3603: bridge, 4.13 voltage inverter, 7.62 buffer, 6.79-82, 6.79-92 voltage regulated output device, 7.60 open-loop hybrid, circuits, 6.79 ADP3604: cable-tap, 6.119 voltage inverter, 7.62 communications, 6.139-162 voltage regulated output device, 7.60 distortion, 6.139 ADP3605: noise, 6.139 regulated supply inverter, circuit, 7.62 specifications, 6.139-143 voltage regulated output device, 7.60 composite, 6.189-207 ADP3607, voltage regulated output device, difference, 2.3-6 7.60 balanced, push-pull feedback, 2.6 ADSpice model, 7.140-141, 7.145 CMR, 2.4 frequency shaping stages, 7.143 differential, development, H.9-12 op amp differential, defined gain, precision DC, current feedback, 7.147-148 H.9 noise performance, 7.145-147 feedback, H.2 op amp macromodels, 7.141 FET, 6.41 portions, 7.141 FET-input, voltage noise, 6.19 Index 6 INDEX

forcing high noise gain, 6.84 Audio balanced transmission system, diagram, high gain, general purpose, H.14 6.29 high speed clamping, 6.120-123 Audio buffer, 6.48-64 input versus output clamping, plot, 6.121 heat sinks, 6.49 instrumentation, 2.1-30 high current, basic considerations, 6.48- see also In-amp 49 isolation, 2.43-51 power supply characteristics, 6.49 linear-in-dB gain, 6.154 standalone, unity-gain, circuit, 6.48 load capacitance, 6.83 THD+N performance, 6.50 long-tailed pair, H.10 Audio DAC, active lowpass filter, 3.52 loopthrough, 6.119 Audio driver: low distortion, third order intercept amplifier, test circuit, 6.52 point, plots, 6.142 capacitive loading, 6.52 noise components, 6.148 THD+N versus frequency, plots, 6.54-55 noise figure, 6.144 Audio line driver, 6.48-64 noise resistance, 6.5 design, and noise susceptibility, 6.31 offset error, 4.22 Audio line level stages, 6.28-47 output, cable, EMI/RFI protection, 7.129 line amplifiers, 6.28 output voltage phase-reversal, 7.83-84 line drivers, 6.28 overcompensation, 6.83 line receivers, 6.28 paralleled, quiet load driving, 6.168-169 Audio line receiver, 6.30-47 programmable gain, 2.31-42 common-mode noise susceptibility, 6.30 with arbitrary attenuation step size, differential amplifier, diagram, 6.30 6.182-183 noise susceptibility, 6.30 signal, applications, 6.1-207 simple line receiver, 6.33-34 specialty, 2.1-51 source-load interactions in balanced subtractor, 2.3-6 systems, 6.30-32 , 2.3 CM noise, diagram, 6.31 CMR, 2.3 Audio preamplifier, 6.1-27 CMR, 2.4 Audio Precision System 1, test setup, 6.42 THD+N, 6.3 Audio system, differential or balanced variable gain, in automatic gain control, transmission, block diagram, 6.28-29 6.153 Audio transformer, output balance, 6.74 video, 6.93-138 , H.1 voltage controlled, 6.154-156 Automatic gain control system, diagram, Amplitude, filter, curves, 5.28-38 6.153 Analog bandwidth, 3.14, 3.16-17 Analog circuit: B breadboarding, 7.139-164 B4001 and B4003 common mode chokes, 7.137 prototyping, 7.139-164 Back-termination resistor, 6.163 simulation programs, 7.139-164 Bainter notch filter: Analog computing: design, 5.76 developments, H.13-16 design equations, 5.95 first op amp application, H.13 transformation, 5.123 Analog Devices Inc., birth, H.35 Bainter, J.R., 5.134 Analog Dialogue magazine, H.42 Balanced line receiver, 6.36 began, H.37 "all inverting," 6.37-38 Analog filter, 5.1-134 diagram, 6.37 Analog ground, 7.32-33 alternate, 6.37 Analog-to-digital converter, see ADC buffered input, 6.40-41 ANSI Standard 268-15 (Revision 1987, CM error versus frequency, plots, amendments 1989, 1990, 1991), 6.10 6.38, 6.42-43 Antialias filter: diagram, 6.40 design, 5.113 performance, 6.38-40, 6.41-43 specifications, 5.113 TD+N, 6.39 Artillery Director, H.13 Balanced transformer driver, THD+N versus Artzt, Maurice, H.5, H.7, H.17, H.26 frequency, plots, 6.76 Audio amplifier, 6.79-92 Band reject filter, distortion, 5.109 Index 7 OP AMP APPLICATIONS

Bandgap, 3.43 Binary gain PGA, 2.31 Bandpass filter, 5.2, 5.9-10 performance summary, 2.37 distortion, 5.109 using DAC, circuit, 2.36 peaking versus quality factor, plot, 5.10 Biological amplifier, H.9 phase response, 5.15-16 Bipolar input, op amp, 1.34-35 response, 5.122 Bipolar junction , see also BJT second-order response, 5.13 Bipolar (NPN-based) op amp, 1.50 transfer function, 5.9 Bipolar (NPN)/CMOS (BiCOMS) op amp, 1.50 transformation, 5.122 Bipolar op amp, voltage noise, 1.77 "1-Bandpass" notch filter, design, 5.79 Bipolar transistor gain-boosted input Bandreject filter, 5.2, 5.10-11 composite op amp, circuit, 6.197 response, 5.124 Bipolar transistor input stage, diagram, second-order response, 5.13 1.34 transformation, 5.123 Bipolar video multiplexer, block diagrams, Bandwidth: 6.127 full-power, 1.68-69 Bipolar/JFET (BiFET) op amp, 1.50 summary, 1.69 Biquadratic filter: Bandwidth flatness, 1.75 design, 5.73 op amp, 1.75 design equations, 5.91-92 Bardeen, J., H.41 Birt, David, 2.6, 2.29, 6.36, 6.47 Bardeen, John, H.29 Bishop, P.O., H.12, H.24 Barrow, J., 6.77 BJT: Barrow, Jeff, 7.50 input device, rectification, 7.123 Basic single-ended mixed feedback RFI rectification, 7.123-125 transformer driver, circuit, 6.72 see also Bipolar junction transistor Basic transformer coupled line driver: Black, Harold, H.15 circuit, 6.69 Black, Harold S., H.3-4, H.6 THD+N versus frequency, plots, 6.70 Black, H.S., H.6 Baudisch, Werner, 6.77 Black's feedback amplifier, H.4 Baxendall, P., 6.27 Blattner, D.G., H.25 Beam force sensor, using strain gage bridge, Bleaney, B.I., 7.23, 7.50 diagram, 4.30 Blinchikoff, H.J., 5.133 Bell Telephone Laboratories, H.1, H.15, Blood, William R. Jr., 6.91, 6.137, 7.138 H.19, H.29 Blumlein, A.D., H.9, H.23 M9 gun director, H.13 Boctor notch filter: Bench, Steve, H.27 design, 5.77-78 Bernardi, Scott, H.68 highpass, design equations, 5.97-98 Bessel filter, 5.3, 5.17-18, 5.21-23, 5.25 lowpass, design equations, 5.96 in CD reconstruction, 5.125-127 Boctor, S.A., 5.134 design table, 5.45 Bode plot, 1.13-14, 1.73, 1.106, 1.114, poles, 5.21 1.118, 1.120, 4.57, 5.111, 6.203 response curves, 5.34 equations, 4.50 Best straight line, integral linearity log-log scale, 4.53 error, 3.9 noise gain, 4.50 Beyschlag Resistor Products, 7.23 Bode, Hendrick, H.5, H.6-7, H.15, 1.20 Bias current, 4.22 Bogatin, Eric, 7.137, 7.138 canceling effects, external to op amp, Website, 7.138 1.60 Boghosian, W.H., H.25 very low, measurement, circuit, 1.60 Boghosian, William, H.13 Bias current compensated bipolar input Boltzmann's constant, 1.76, 1.84, 1.105, stage: 4.52, 4.84, 6.144 diagram, 1.36 Bootstrapping, 7.82 offset current, 1.37 Bore, G., 6.10 Bias current compensation, using super-beta Borlase, Walter, 1.20, 2.29, 6.47 , 1.35 Bourdon tube, 4.32 Biasing, H.12 Bowers, Derek, H.54, H.59, H.71, 6.91, 6.207, BiFET, amplifier, output voltage phase- 7.163 reversal, 7.83-84 Boyle, 7.163 Index 8 INDEX

Boyle model, 7.141, 7.145 Brokaw, Adrian P., H.70, 4.91-92 Bradley-McCoy circuit, H.18 Brokaw, P., 6.77 Bradley, F., 6.27 Brokaw, Paul, 4.91, 6.77, 6.207, 7.50, 7.73, Bradley, Frank, H.18 7.138 Bradley, Frank R., H.26 Brown, Thomas, H.31 Brant, James, 1.1 Bruner, Eberhard, 6.187 Brattain, Walter, H.29 Bryant, James, 1.23, 1.31, 1.53, 2.1, 2.31, Brattain, W.H., H.41 2.43, 4.1, 4.69, 7.1, 7.25, 7.75, 7.99, Breadboarding: 7.109, 7.137, 7.139 op amp functions, 7.139-164 Bryne, Mike, 7.100 and parasitics, 7.150-151 Buchanan, James E., 7.22 techniques, 7.153-162 Budak, A., 5.133 versus simulation, 7.148-149 Buderi, Robert, H.25 Bridge: BUF03, open-loop IC buffer, circuit diagram, AC excitation, offset voltage 6.80 minimization, 4.23 BUF04: all-element varying, 4.11 closed-loop unity-gain monolithic buffer, circuit, 4.33 6.81-82 amplifier unity-gain buffer amplifier, 6.22 in-amp, circuit, 4.14 Buffer: single op amp, circuit, 4.13 amplifier, 6.79-82, 6.79-92 circuit, 4.7 audio, THD+N performance, 6.50 configurations, 4.11 closed-loop unity-gain monolithic, output voltage, 4.9 diagrams, 6.81 design considerations, 4.12 dual amplifier, 6.50-51 linearization, using op amps, 4.16 circuit, 6.51 measurement, offset voltage, 4.22 THD+N versus frequency, plots, 6.51 nonlinearity, 4.10, 4.14-15 , 6.185 null, 4.9 circuits, 6.185 operation, 4.8 open-loop, disadvantages, 6.81 output single-supply RGB video, 6.130-131 amplifying and linearizing, 4.13-17 standalone, unity-gain, circuit, 6.48 linearization, 4.14 unity-gain stable voltage/current remote feedback op amp, 6.82 3- sensors, 4.19 Buffered input balanced line receiver, 6.40- 4-wire current-driven, 4.21 41 4-wire sensors, 4.20 CM error versus frequency, plots, 6.42-43 6-wire sensors, 4.20 diagram, 6.40 buffer, 4.21 performance, 6.41-43 driving, 4.18-21 Buffering, DAC, with op amps, 3.47 problems, 4.18 Buried zener, 3.43 using Kelvin sensing, 4.20 Burkhardt, Andrew, 7.137 wiring resistance errors, diagram, Burr-Brown Applications Staff, H.41 4.18 Burr-Brown Research Corporation, H.31, H.35, sensitivity, 4.10 H.63 and CMR, 6.32 Burr, Robert Page, H.31 gain, 4.15 Burton, L.T., 5.134 sensor resistances, listing, 4.7 Burwen, Dick, H.36-37, H.42, H.43, H.69 signal conditioning circuit, 4.33-36 Butler, Jim, H.62 single-element varying, 4.10 Butterworth filter, 5.3, 5.17, 5.19, 5.23, linearization, 4.15-16 5.25 output amplification, 4.13 design table, 5.39, 5.114 two-element varying, 4.10-11 response curves, 5.28, 5.113 current-driven, linearization, 4.17 transformation, 5.119 voltage-driven, 4.16-17 Buxton, Joe, 6.91, 7.75, 7.99, 7.137, 7.139, varying, diagram, 4.11 7.163 voltage output, 4.12 C Brokaw cell, sensor, 4.85 CA3130, H.61 Index 9 OP AMP APPLICATIONS

CA3140, H.61 selection criteria, 7.7 Cable: Teflon, 7.7 coaxial temperature coefficient, 7.5-6, 7.6 bandwidth flatness, 6.103 tolerance, 7.5-6 losses, 6.101 type, 7.2 resistive load, 6.101 voltage coefficient, 7.6 shielding, 7.121 Capsule Listing of Analog Devices Op Amps, driving, behavior, 6.101 H.42 electrical length, 7.118-119 Card-entry filter, 7.69 and EMI/RFI, 7.118-121 Cartridge frequency response, RIAA grounding, 7.119 equalizer, 6.17 hybrid grounding, shields, 7.120 Cascaded NPN differential pair topology, in shielded, impedance-balanced drive, 7.121 op amp, H.32 twisted pair, ground loops, 7.119 Cauer filter, 5.23-24 Cable modem, 6.157 Cauer, W., 5.133 Cable-tap amplifier, 6.119 CD reconstruction filter, 5.125-127 Caddock firm, resistors, 6.34 performance, 5.127 Cadigan, John, H.37 transformation, diagrams, 5.126 Capacitance, parallel plates, 7.46 Ceramic capacitor, 7.66 Capacitive coupling, equivalent circuit Ceramic dielectric, 5.102, 5.104 model, 7.47 Channel protector, advantages, 7.80 Capacitive load: Charge amplifier: active (in-the-loop), circuit, 6.87 basic circuit, 4.62 audio driver, 6.52 basic configurations, 4.63 driving, 6.79-92, 6.82-92, 6.83-90 Charge transducer, types, 4.62-63 forced high-loop noise gain, 6.83 Charge-pump voltage converter, 7.59-60 and frequency response, 6.86 characteristics, 7.60 internal compensation, disadvantages, unregulated inverter and doubler, 7.61 6.89 voltage doubler, 7.59-60 open-loop series resistance, 6.85 voltage inverter, 7.59-60 overcompensation, 6.83 Charged Device Model, for ESD, 7.95 "passive" compensation, 6.85 Chebyshev filter, 5.7, 5.17-18, 5.19-23, Capacitive noise, 7.47 5.54, 5.57 Capacitor, 7.64-67 bandwidths, 5.21 ceramic, 7.7, 7.65, 7.66 design tables, 5.40-44 classes, 7.64-65 inverse, 5.25 comparison chart, 5.104 lowpass, 5.51 critical component assembly, 7.6-8 poles, 5.20 decoupling, 7.19 response curves, 5.29-33 dielectric, 7.64-65 stopband, maximally flat delay, 5.25 dielectric absorption, 7.2-4 transformation, 5.119-120 open-circuit voltage, 7.3 Checkovich, Peter, 6.137, 6.187 dissipation factor, 7.4-5 Chemical sensor, 4.39 electrolytic, 7.7-8, 7.65 Chesnut, Bill, 7.73 equivalent circuit, 5.103, 7.66 Chestnut, Bill, 4.5 film, 7.65, 7.65-66 Chip Center's "Signal Integrity" page, 7.138 filter problem, 5.101-105 Choosing and Using N-Channel Dual J-FETs, high-K ceramics, 7.4 6.207 materials, 7.4-5 Chopper stabilized amplifier, 1.98-100 mica, 7.7 noise, 1.101 multi-layer ceramic, 7.57 Christie, S.H., 4.8 non-ideal equivalent circuit, parasitic Chrominance, 6.96 elements, 7.2 Circuit: parasitics, 7.4-5, 7.66 digital, noise, 7.31 polycarbonate, 7.4, 7.7 peaking, 5.59 polyester, 7.7 performance, summary, 4.56 polypropylene, 7.7 Clamping, input versus output, 6.121 polystyrene, 7.7 Clamping diode leakage, 7.77-78 Index 10 INDEX

Clarke, Bob, 6.161 1 dB compression point and intercept Classic Cameo, H.72, 2.30 points, plots, 6.141 Clelland, Ian, 7.73 distortion, 6.140-143 Closed loop bandwidth, 4.51 dynamic range specifications, 6.139 voltage feedback op amp, 1.107 intermodulation distortion, 6.140 Closed loop error, calculation, 1.64-65 multitone power ratio, 6.143 Closed loop gain: noise, 6.144-152 calculation, 1.65 noise figure, 6.144 nonlinearity, calculation, 1.67 SFDR, 6.143 uncertainty, 1.65 Compatibility of Analog Signals for Close, JoAnn, H.62, H.64, H.70, H.71, 6.187 Electronic Industrial Process CM, see also common mode Instruments, 4.5 CM over-voltage protection, using high CM Complementary bipolar (CB) op amp, 1.50 in-amp, 7.81-82 Complementary bipolar/CMOS (CBCMOS) op CMOS DAC Application Guide, 5.134 amp, CMOS device, video use, disadvantages, 6.127 1.50 CMOS latched buffer, 7.49 Complementary bipolar/JFET (CBFET) op amp, CMOS switch, in multiplexer, 3.26 1.50 CMR: Complementary bridge, 4.13 common-emitter/common-source in-amp, 2.2, 2.18 output stages, diagrams, 1.45 resistor, worst case, 6.34 Complementary MOSFET (CMOS) op amp, subtractor amplifier, 2.4 1.50 CMRR: Composite amplifier, 6.189-207 measurement, 1.90 bipolar transistor gain-boosted input, op amp, 1.89-92 circuit, 6.197 test circuit, 1.90 DC performance limitations, 6.203 no precision resistors, 1.90 definition, 6.189 Coaxial cable: gain-boosted input, 6.197-205 bandwidth flatness, 6.103 gain/phase versus frequency, plots, 6.198 driver, pulse response, 6.102 high voltage boosted rail-rail, 6.195 losses, 6.101 JFET transistor gain-boosted, 6.201-203 resistive load, 6.101 gain/phase versus frequency, plots, CODECs, 6.4 6.202 Cohen, Avner, 7.99 low noise gain-boosted input, 6.200 Cold-junction compensation, thermocouples, circuit, 6.200 4.70-76 low noise JFET gain-boosted input, 6.204- Colloms, M., 6.27 205 Color: gain/phase versus frequency, plots, intensity, 6.96 6.205 saturation, 6.96 low voltage single-supply to high output subcarrier, amplitude, 6.96 voltage interface, 6.191-192 Common mode, see also CM circuit, 6.191 Common mode choke, 7.114 multiple op amp, 6.190-192 Common mode over-voltage protection, using "nostalgia" input/output, CMOS channel protectors, 7.80-82 6.206 Common mode rejection: circuit, 6.206 calculation, 6.31 slew rate, 6.199 see CMR time domain response, 6.203 Common mode signal, 2.2 two op amp, 6.190 Common mode voltage: low noise/low drift, circuit, 6.190 op amp, 7.75-77 voltage-boosted output, 6.193-196 and signal voltage, rule, 2.13 rail-rail output driver, 6.193-195 Common-mode feedback, H.9 Composite current boosted driver, 6.62-64 Common-mode rejection, H.9 circuits, 6.62-64 Communication network, available power gain, Composite gain response, multiple-slope circuit, 6.145 response, 6.202 Communications amplifier, 6.139-162 Computer Labs, H.39-40 Index 11 OP AMP APPLICATIONS

Conant, James, 2.51 buffering, by differential op amp, 3.51 Conductivity, infinite ground, 7.29 control word Conductor, resistance, 7.26-27 and frequency response, 5.129 Connelly, J.A., 7.99 and gain variation, 5.130 Consumer equipment line driver, 6.55-56 and quality response, 5.130 circuit, 6.56 differential to single-ended conversion, THD+N performance, 6.56 3.48-50 Contact discharge, 7.91 filtered output, 3.2 ESD testing, 7.96 input/output quantization, 3.7 Controlled decompensation, 6.58 non-monotonicity, 3.9 Counts, Lew, H.43, H.62, H.69, H.70, H.71, output, buffering, 3.47-54 2.29, 6.47, 6.187, 7.22, 7.99, 7.137 performance measurement, 3.14 Cross-coupled differential driver, 6.67-68, quantization noise, 3.10-11 6.111-113 specifications, 3.7-20 circuit, 6.67 transfer functions, 3.8 Cross-coupled in-amp: transformer, 3.49 circuit, 6.186 DAC programmed PGA, 2.36-37 for increased CMR, 6.186 Damping ratio, filter, 5.7 Crosspoint switches and integrated video Daniels, R.W., 5.133 multiplexers, 6.127-129 Dark current, 4.41, 4.59 Crosstalk, 7.112 Darlington buffer, H.38 multiplexer, 3.26 Darlington connection, 7.55 Culmer, Daniel D., H.61, H.69 Darlington, Sydney, H.13 Current boosted buffered line driver, 6.60- Data acquisition, multiplexer, fast 61 settling op amp, 3.27 circuit, 6.60 Data converter: THD+N versus frequency, plots, 6.61 applications, 3.8 Current feedback: characteristics, 3.3 in macromodel, 7.141 datasheets, 3.4 using vacuum tubes, 1.26-28 dynamic performance Current feedback op amp, 1.24-25, 1.113-117 quantifying and measuring, 3.14 basics, 1.24-25 specifications, 3.14 closed-loop bandwidth, 1.74 integral linearity, 3.9 comparison with voltage feedback op amp, parameters, Websites, 3.4 1.124-125 performance, 3.3 in current-to-voltage converter, 1.122 requirements, 3.3-4 frequency response, 1.74 sampling and reconstruction, 3.8 plots, 1.74 test setup, performance measurement, 3.14 input capacitance sensitivity, 1.123 transient currents, 3.4 input impedance, diagram, 1.62 trends, 3.3-5 low inverting input impedance, 1.123 Data Sheet for Model K2-W Operational model, 7.147-148 Amplifier, H.27 open-loop transimpedance gain, 1.24 Davis, William, H.51, H.67 Current noise gain: DC-coupled active feedback RIAA moving op amp, 1.118-119 magnet preamp, circuit, 6.18 definition, diagram, 1.119 De Forest, Lee, H.1, H.6 Current output temperature sensor, 4.86-88 De-compensated op amp, 1.107 Current-to-voltage converter: Deadbug prototyping, 7.153-155 high speed, inverting input capacitance "bird's nest" construction, 7.154 effects, 1.120-124 Decade gains, PGA, 2.31 using current feedback op amp, 1.122 Decoupling, 3.43 Cutoff frequency, 5.2 capacitor, 7.19 filter, 5.3 op amp, techniques, 1.92 and power supplies, 1.92 D Delay constant, microstrip, 7.133 DAC: Delyiannis, T., 5.133 audio, lowpass filter, 3.52 Demrow, Robert, 2.29, 2.30, 6.47, 6.207 buffered voltage output, 3.47 Derating curves, 7.103 Index 12 INDEX

Development of an Extensive SPICE advantages, 1.49 Macromodel for "Current-Feedback" Dinsmore, Kristen, H.70 Amplifiers, 7.163 Diode: Dielectric: clamping, reverse bias current absorption, 7.2-4 characteristics, 7.77 material characteristic, 7.4 clamps, 2.24 PCB, 7.45 p-n junction, rectifiers, 7.123 sample-hold errors, 7.3 Discrete multitone signal, in frequency hysteresis, 7.2-3 domain, plot, 6.159 types, 7.6 Discrete transistor, for op amp, H.30 Difference amplifier, 2.3-6 Displacement transducer, 4.30 Differential circuit, 7.28 Dissipation factor, 7.5 Differential current-to-differential Distortion curves, for AD797, 6.59 voltage conversion, 3.51 DNL, excess in ADCs, missing codes, 3.10 Differential DC coupled output, 3.49-50 Dobkin, Bob, H.66 Differential driver: Doebelin, Ernest O., 4.37 cross-coupled, 6.111-113 Doeling, W., 7.22, 7.50 advantages, 6.111-113 Dos Santos, Francisco, H.65 circuit, 6.111 Dostal, J., 1.93 fully integrated, 6.114 Dostal, Jiri, 4.67 inverter-follower, circuit, 6.109 Doubler charge-pump voltage converter, 7.61 Differential gain, color video, 6.96 DPAD1, dual low leakage diode, 7.83 Differential input ground isolating Drift, 1.58 amplifier, circuit, 7.39 Driver, audio line stage, 6.28 Differential line driver, 6.65-68 Driving capacitive load, 6.82-92 cross-coupled, 6.67-68 Dropout voltage, 7.52 circuit, 6.67 Dual 16MHz Rail-Rail FET, H.70 "inverter-follower" Dual amplifier bandpass filter: circuit, 6.65 design, 5.74 THD+N versus frequency, plots, 6.66 design equations, 5.93 Differential line driver/receiver, 6.108-119 Dual amplifier buffer, 6.50-51 Differential line receiver: circuit, 6.51 4-resistor, 6.115-116 THD+N versus frequency, plots, 6.51 circuit, 6.115-116 Dual FET, 3 to ±18V, H.70 active feedback, 6.117-119 Dual RGB source video multiplexer, 6.128 CM rejection, 6.117 Dual-supply low frequency rail balanced feedback, 6.36 bypass/distribution filter, circuit, 7.70 Differential non-linearity, 3.9 Dobkin, Bob, H.70 see also DNL Dummer, G.W.A., 7.23, 7.50 Differential pair biasing, H.10 Duncan Munro's SPICE vacuum tube models, Differential phase, color video, 6.96 6.207 Differential transformer coupling, 3.49 Duncan, B., 6.27 Differential-mode filter, 7.114 Digital audio filter, 5.125-127 E Digital ground, 7.32-33 Early effects, 4.84 Digital isolation techniques, 2.48-50 Edson, J.O., 1.29 application, 2.50 EEPROM trimming, advantages, 1.49 using LED/photodiode optocouplers, 2.48 Effective number of bits, see ENOB using LED/phototransistor optocouplers, Effective series inductance, 7.5 2.48 Effective series resistance, 7.5 Digital signal processor, see DSP Effective voltage gain, transformer, 6.6 Digital-to-analog converter, see DAC EIAJ ED-44701 Test Method C-111, 7.99 Digitally programmable state variable Electret microphone preamp interface, 6.4 filter, 5.128-131 circuit, 6.4 circuit diagram, 5.129 Electrical Gun Director Demonstrated, H.25 Digitizing RGB signals, using ADC and 4:1 Electrolytic capacitor, 5.102, 5.104, 7.7-8 multiplexer, diagram, 6.128-129 advantages, 7.65 DigiTrim, 1.47 equivalent series resistance, 7.67 Index 13 OP AMP APPLICATIONS

finite ESR, 7.67 H.61, H.67, H.68, H.71, 1.51, 6.91 general purpose aluminum, 7.65 Eric Bogatin Website, 7.138 OS-CON, 7.65 Erisman, Brian, 7.73 switching, 7.65 ESD: impedance curves, 7.67 prevention, summary, 7.98 leakage errors, 3.45 see also electrostatic discharge tantalum, 7.65 test circuits and values, 7.97 Electromagnetic compatibility, definition, test methods, comparison, 7.96-97 7.109 test waveforms, 7.97 Electrometer, 1.58 ESD Association Draft Standard DS5.3, 7.99 Electrometer IC op amp, H.63-64 ESD Association Standard S5.2, 7.99 Electrostatic discharge: ESD Prevention Manual, 7.99 damage, 7.92 ESD-sensitive device: failure mechanisms, 7.92 handling techniques, 7.93-94 models and testing, 7.95-98 packaging and labeling, 7.92 see also ESD Evaluation board, for prototyping, 7.160-162 sources, 7.91 Evolution from Operational Amplifier to voltage amounts generated, 7.90 Data Amplifier, 2.30 Elliptical filter, 5.23-24 Excess noise, resistors, 7.13-14 definition, 5.24 Exponential amplifier, X-AMP, 6.154 lowpass, 5.54 External current, 7.29 Embedding traces, in , External series resistors, 2.24 7.135-136 EMI/RFI: F and amplifier outputs, 7.129 Fagen, M.D., H.24 cables, 7.118-121 Fair-Rite ferrites, PSpice models, 7.68 and circuitry, 7.109-138 Fair-Rite Linear Ferrites Catalog, 7.73 coupling paths, 7.110-112 Fairchild Semiconductor Corporation, H.29- noise coupling mechanisms, 7.110-111 30, H.45, H.48, H.49, H.55-56, H.61 reducing common-impedance noise, Faraday shield, 6.73-74, 7.18, 7.46-47, 7.110-111 7.49, 7.112 summary, 7.111 floating, 7.48 impedance mismatch, 7.116 impracticality, 7.48 maximum radiation, opening, 7.117-118 operational model, 7.47 mechanisms, 7.110-112 Farnsley, Larry, H.53 noise filters, for op amp circuits, 7.126 Fast FET Op Amp, H.69 noise sources, 7.110 Fast Fourier transform, 3.2, 3.14 printed circuit board design, 7.130-136 Fast Op Amp, High Performance, Low Power, reduction Low Cost, H.71 passive components, 7.114-115 FDNR filter: shielding, 7.115-121 in CD reconstruction, 5.125-127 system susceptibility, 7.115 design, 5.66, 5.117 susceptibility, 7.109 op amp limitations, 5.107 reduction, 7.115 Feedback transformer coupled line driver, Emission, spurious, 7.109 6.71-76 Emitter degeneration, 1.108 Ferrite: End point, integral linearity error, 3.9 beads, 7.68 ENOB, 3.14, 3.15-16 characteristics, 7.68 calculation, 3.15 filter Equiripple error: inductor, 7.68-69 filter, 5.22 local high frequency design tables, 5.46-47 bypass/decoupling, 7.71 linear phase, response curves, 5.35-36 functions, 7.68 Equivalent noise bandwidth, 1.82-83 impedance, 7.68 calculation, 4.61 FET, RFI rectification, 7.124-125 Equivalent series inductance, 7.2 The FET Constant-Current Source/Limiter, Erdi, G., 6.27 6.207 Erdi, George, H.49, H.53, H.55-56, H.58, FET input op amp, 1.38-39 Index 14 INDEX

filter distortion, 5.107 transformation, 5.119 low-noise, in high-output moving coil Cauer, 5.23-24 microphone preamp, 6.22 CD reconstruction, 5.125-127 lower current noise, 1.38 Chebyshev, 5.7, 5.17-18, 5.19-23, 5.54, rectification, 7.123 5.57 FET-Input AD545, H.69 bandwidths, 5.21 FET-Input ICs Can Slew at 50V/µs, H.69 design tables, 5.40-44 FET-Input Op Amp Has Lowest Combined V inverse, 5.25 and lowpass, 5.51 I Noise, H.70 poles, 5.20 Fieldbuses: Look Before You Leap, 4.5 response curves, 5.29-33 5751, H.22 stopband, maximally flat delay, 5.25 Film capacitor, 7.65-66 transformation, 5.119-120 linear temperature coefficient, 5.102 circuit quality factor, 5.59 Filter: component quality factor, 5.59 60Hz notch, 5.131-132 cutoff frequency, 5.2, 5.3, 5.7-14 schematic, 5.132 damping ratio, 5.7 "1-bandpass" notch, 5.79 definition, 5.1 active topology, using integrator design, denormalization, 5.26 6.180 design, 5.59-100, 5.113-132 all-pole, comparison, 5.23 active inductor, 5.65 allpass, 5.12-13, 5.57-58 frequency dependent negative resistor second-order response, 5.13 (FDNR), 5.66-67 transfer function, 5.12 general impedance converter, 5.64 amplitude curves, 5.28-38 integrator, 5.63 analog, 5.1-134 passive LC section, 5.61-63 anti-aliasing, 3.2 problems, 5.101-112 positioning, 3.13 single pole RC, 5.60 applications, 5.1 digitally programmable state variable, Bainter notch, 5.76 5.128-131 design equations, 5.95 circuit diagram, 5.129 transformation, 5.123 dual amplifier bandpass, 5.74 bandpass, 5.2, 5.5, 5.9-10 design equations, 5.93 peaking versus quality factor, plot, effect of nonlinear phase, 5.16 5.10 elliptical, 5.23-24 phase response, 5.15 definition, 5.24 response, 5.122 lowpass, 5.54 second-order response, 5.13 equiripple error transfer function, 5.9 design tables, 5.46-47 transformation, 5.122 linear phase, response curves, 5.35-36 bandreject, 5.2, 5.10-11 equivalent series resistance, 7.65 response, 5.124 FDNR second-order response, 5.13 in CD reconstruction, 5.125-127 transformation, 5.123 design, 5.117 bandwidth, 5.9 first order allpass, 5.80 Bessel, 5.3, 5.17-18, 5.21-23, 5.25 design equations, 5.99 in CD reconstruction, 5.125-127 frequency dependent response, 5.5 design table, 5.45 frequency transformation, 5.51-58 poles, 5.21 algorithm, 5.53-54 response curves, 5.34 Gaussian, 5.22 biquadratic, 5.73 design tables, 5.48-49 design equations, 5.91-92 response curves, 5.37-38 Boctor notch, 5.77-78 group delay curves, 5.28-38 highpass, design equations, 5.97-98 harmonics, 5.14 lowpass, design equations, 5.96 highpass, 5.2, 5.5, 5.8 buffers, 5.59 from Sallen-Key, transformation, 5.120 Butterworth, 5.3, 5.17, 5.19, 5.23, 5.25 peaking versus quality factor, plot, design table, 5.39 5.8 Index 15 OP AMP APPLICATIONS

phase response, 5.14-16 S-plane, 5.5-6 response, 5.121 Sallen-Key, 5.67-69 second-order response, 5.13 bandpass, design equations, 5.84 ideal, 5.2 design, 5.115-117 impulse response curves, 5.28-38 highpass, design equations, 5.83 in-amp lowpass, design equations, 5.82 common-mode/differential-mode RC to lowpass, 5.119 EMI/RFI, 7.127 transformation, 5.119-120 family, circuit, 7.128 second order allpass, 5.80 inductor, 7.68-72 design equations, 5.100 key parameters, 5.3 single pole, design equations, 5.81 limitations of op amps, 5.106-107 standard responses, 5.19-50 linear phase with equiripple error, 5.22 state variable, 5.72-73 local high frequency bypass/decoupling, design, 5.116 7.71 design equations, 5.88-90 lowpass, 5.2 step response, 5.18 from Sallen-Key, transformation, 5.119 curves, 5.28-38 peaking versus quality factor, plot, stopband, 5.2 5.7 frequency, 5.3 phase response, 5.14-16 switched capacitor structure, 5.115 response, 5.26-49, 5.121 time domain response, 5.17-18 second-order response, 5.13 impulse response, 5.17-18 to allpass, frequency transformation, transfer function, 5.5-16 5.57-58 transformations, 5.119-124 to bandpass, frequency transformation, transitional, 5.22 5.52-55 twin T notch, 5.75 to bandreject, frequency design equations, 5.94 transformation, 5.55-57 schematic, 5.132 to highpass, frequency transformation, voltage standing wave ratio, 5.24 5.51-52 First Monolithic FET Op Amp with to notch, frequency transformation, 1µV/ C Drift, H.69 5.55-57 First order allpass filter: lowpass prototype, 5.8 design, 5.80 minimizing EMI, 7.114 design equations, 5.99 minimum passband attenuation, 5.3 Fitchen, F.C., 6.10 multiple feedback, 5.70-71 Flash converter, with clamp amp input bandpass, design equations, 5.87 protection, 6.122-123 design, 5.116 Flat pulse generator, 1.71 highpass, design equations, 5.86 Fleming diode, H.1 lowpass, design equations, 5.85 Fleming, J.A., H.6 transformation, 5.121 Fleming, Tarlton, 7.22 notch, 5.2, 5.10-11 Flexible voltage follower protection second-order response, 5.13 circuit, 7.78-79 standard, lowpass, and highpass, plot, Flicker noise, 1.79, 7.146 5.11 Flow: order, 5.3, 5.113 defining, 4.32 passband, 5.2 measurement, 4.27-37 passband gain, 5.8 The Flow and Level Handbook, 4.37 passband ripple, 5.3 Force, measurement, 4.27-37 PC card entry, 7.69 44, FET op amp, H.38 performance, and op amp accuracy, 5.117 45, FET op amp, H.38 phase response, 5.14-16 48, FET op amp, H.38 power supply, 7.64 Fourier analysis, 5.14 prototype response curves, 5.26-49 Fourier transform, 5.17 quality factor, 5.7 Fraden, Jacob, 4.37 rail bypass/distribution, 7.70 Franco, S., 5.133 realizations, 5.59-100 Franco, Sergio, 1.20, 1.93, 1.127 RLC circuit, 5.6 Frantz, Rich, H.69 Index 16 INDEX

Frederiksen, Thomas, H.49, H.67 Graphics display system, video formats, Frederiksen, Thomas M., 1.93 6.96-97 Freeman, Wes, 7.75, 7.99 Graphics resolution, versus pixel rates, Frequency dependent negative resistance non-interlaced refresh rate, table, 6.97 filter, design, 5.66, 5.117 Gray, Paul R., 1.93 Frequency domain, 5.1 Gregg, Christopher, 7.137 Frequency response, op amp, 1.69-74 Ground: Frequency shaping stage, macromodel gain analog, 7.31-33 stage, 7.143 concepts, 7.32 Frequency transformation, filters, 5.51-58 currents, in precision amplifier, Friend, J.J., 5.133 circuit, 7.38 Frost, Seymour, H.17, H.26 digital, 7.31-33 Fullagar, Dave, H.48, H.49, H.67, H.69 isolation techniques, 7.38-40 star, 7.31 G Ground loop, 7.29-31 Gain error, in-amp specification, 2.17 diagram, 7.30 Gain sense, in PGA, 2.38 Ground noise, 7.29-31 Gain-bandwidth product: Ground plane, 7.33-34, 7.131-132 op amp, 1.72-73 breaks, 7.37 voltage feedback op amp, plot, 1.73 key points, 7.34 Gain-boosted input composite amplifier, Ground reference, op amp, 1.32 6.197-205 Grounded-input histogram, effect of ADC Galvanic isolation, driver, by transformer, input-referred noise, 3.11 6.29 Grounding, with "inverter-follower" GAP/R, H.20-21 differential line driver, 6.66 op amp firm, H.31-32, H.34-35 Group delay, filter, curves, 5.28-38 GAP/R K2-P, H.20-21 Grown junction silicon transistor, H.29 GAP/R model P2 varactor bridge op amp, H.33- Grundfest, Harry, H.12, H.24 34 Guarding: GAP/R model P45 solid-state op amp, H.32 inverting mode, 7.41 GAP/R model P65 solid-state op amp, MINIDIP (N) package, 7.43-44 schematic, H.31 non-inverting mode, 7.42 GAP/R model PP65 potted module solid-state PCBs, 7.41 op amp, H.33 SOIC surface mount "R" package, 7.44 Garcia, A., 2.29, 6.10, 6.47, 6.77 Guinta, Steve, H.43 Garcia, Adolfo, 7.99, 7.137, 7.164 Gaussian filter, 5.22 H design tables, 5.48-49 HA2500, H.66 response curves, 5.37-38 Hageman, E.C., H.25 Gaussian noise, 3.11 Hageman, Steve, 7.73 Geffe, P.R., 5.133 Handbook of Chemistry and Physics, 4.91 General capacitor information resource, 7.22 Hard limiter, ADC, 3.19 General impedance converter, design, 5.64 Hardware, 7.1-164 Gerke, Daryl, 7.137 Harmonic distortion, 1.88, 3.14, 3.17-18 Germanium semiconductor, H.29 ADC, location, 3.17 Germano, Antonio, 7.163 Harrington, Brian, 6.187 Gerstenhaber, Moshe, H.57, 6.187, 6.207 Harris Semiconductor, H.66 Gianino, Mike, 6.187 Harris, E.J., H.12, H.24 Gilbert, Barrie, 6.161 Hayes, John, 7.163 Ginzton, Edward L., H.5, H.7, H.17, H.26, 1.29 Heat sink, 7.103-107 Goldberg, E.A., H.26 definition, 7.103 Goldberg, Edwin A., H.17 Henderson, K.W., 5.133 Goldberg, Harold, H.11, H.23 Hendricks, Paul, 6.187 Goodenough, Frank, H.66, H.71, 7.73 Henning, H.H., 1.29 Gosser, Roy, 1.127 Henry Ott Website, 7.138 Gosser, Royal A., 1.29, 6.91 Higgins, H.C., H.24 Graeme, Jerald G., 4.67 High impedance sensor, 4.39-67, 4.62-63 Grant, Doug, H.68, 7.22, 7.23, 7.50 High speed clamping amplifier, 6.120-123 Index 17 OP AMP APPLICATIONS

High speed current-to-voltage converter, 7.93 inverting input capacitance effects, IC op amp, H.30 1.120-124 ICL8007, monolithic P-channel FET input op High speed op amp: amp, H.61 DC characteristics, 1.125-126 IEC 1000-4-2, ESD test method, 7.95, 7.97 noise summary, 1.125 IEC standards, for ESC testing, 7.95 offset error summary, 1.126 IEC testing, coupling methods, 7.96 High voltage boosted output driver, 6.195- IEC, "Publication 98 (1964), Amendment no. 196 4," 6.27 High voltage boosted rail-rail composite op IEEE EMC Website, 7.138 amp, circuit, 6.195 IEEE Standard for Performance Measurements High-Performance Dual FET Op Amps, H.69 of A/D and D/A Converters for PCM High-Performance Electrometer Op Amp in Television circuits, 6.137 Plastic 8-Pin DIP, H.70 Impedance range, transformer, 6.6 High-speed video multiplexing, 6.124-126 Impedance scaling factor, 5.114 Highest-Performing Low-Cost BiFET Op Amps, Improvements in or Relating to Arrangements H.69 for Amplifying Electrical Oscillations, Highpass filter, 5.2, 5.8 H.6 distortion, 5.109 Impulse function, filter, definition, 5.17 from Sallen-Key, transformation, 5.120 Impulse response, filter, curves, 5.28-38 peaking versus quality factor, plot, 5.8 In-amp, 2.1-30 response, 5.14-16, 5.121 with 290MHz gain-bandwidth, 6.181 second-order response, 5.13 advantages, 2.8 transfer function, 5.8 applications, 2.25-30 Hilton, Barry, 1.29 A/D interface, 2.26 Hindi, David, 7.163 bridge amplifier, 2.25 Hoerni, Jean, H.30 driven current source, 2.26-27 Hoerni, Jean A., H.41 remote load driver, 2.28 Hofer, Bruce, 6.47, 6.77 bridge amplification, 4.14 Hogan, Steve, 6.10 CMR, 2.2, 2.18 Hohman, Bruce, H.71 common-mode signal, 2.2 Hold-to-sample mode transition, 3.31 configuration, 2.1, 2.7-16 Holst, Per, H.13 AD623 in-amp, 2.16 Holst, Per A., H.24 AD627 single-supply two op amp in-amp, Horizontal sync, 6.94 2.10-11 Horn, Geoffrey, H.6 precision single-supply composite in- HOS-050 high speed FET hybrid op amp, amp, 2.13-15 schematic, H.39-40 three op amp in-amp, 2.11-13 HOS-100, open-loop bipolar hybrid amplifier, two op amp in-amps, 2.7-9 6.79 cross-coupled, for increased CMR, 6.186 Howland circuit, 6.164 DC error, 2.17-20 Howland type current source, 2.27 bridge amplifier error budget HP5082-4204 PIN Photodiode, characteristics, analysis, 2.22 4.59 gain, 2.17 Huelsman, L.P., 5.133 noise specifications, 2.17 Human Body Model, for ESD, 7.95, 7.97 referred to input, 2.20 Humidity monitor, 4.39 definitions, 2.2 Hunt, W., 5.134 gain, 2.2 Husky, Harry, H.22, H.27 generic, circuit diagram, 2.2 Hybrid ground, cables, 7.120 high CM voltage, CM over-voltage Hybrid op amp, H.30 protection, 7.81-82 Hydrophone, 4.62, 4.65 input, and RFI rectification, 7.127-129 piezo-ceramic cylinder, 4.65 input bias currents, 2.18 input offset voltage, 2.18 I input overvoltage, 2.24 IC 8-pin SOIC package, thermal rating curve, noise model, 2.20 7.104 noise sources, 2.20-23 IC, linear, electrostatic discharge, damage, input voltage, 2.20-21 Index 18 INDEX

offset voltage model, 2.18 plot, 5.108 output offset voltage, 2.18 Input current noise, 6.150 output voltage, 2.2 summary, 1.77 over-voltage protection, 7.87-90 Input impedance, 1.62 performance, tables, 2.22-23 current feedback op amp, diagram, 1.62 precision Input offset current, calculation, 1.59-60 data, 2.23 Input offset voltage, 1.53-58 remote load driver, circuit, 2.28 adjustments, 1.56-57 precision bridge amplifier, circuit, 2.25 drift and aging effects, 1.58 precision signal conditioning element, in-amp, 2.18 2.25 op amp precision single-supply composite, 2.13- diagram and specifications, 1.53 15 measurement RFI rectification, sensitivity tests, diagram, 1.54 7.122-123 using in-amp, circuit, 1.55 single-supply Input overvoltage, 1.43 data, 2.23 Input pin isolation, 4.47 over-voltage protection, 7.89 Input voltage noise, 4.53-56, 6.150 three op amp, circuit, 2.11-12 Johnson noise, 4.54 total noise, calculation, 2.21 Instrumentation amplifier, see In-amp total output noise, calculation, 2.21 Insulation resistance, 7.2 versus op amp, 2.1 Integral linearity error, 3.9 wideband, 6.184 : In-circuit over-voltage: invention, H.29 protection, 7.91-95 planar process, invention, H.29 op amp, 7.75-77 Integrated video multiplexers and Individual resistor tolerance, in line crosspoint switches, 6.127-129 receiver, 6.33 Integrator: Inductance, 7.2, 7.16-21 design, 5.63 equivalent series, 7.2 digitally variable, circuit diagram, mutual, 7.16-18 5.130 signal trace routing, 7.17 Intensity, color, 6.96 stray, 7.16 Interconnection stability, resistors, 7.10 Inductive coupling, 7.17 Interference, as unwanted information, 2.43 reduction via signal routing, 7.18 Intermodulation distortion: signal cabling, 7.18 communications amplifier, 6.140 Inductor: plot, 6.141 filter problem, 5.101-105 third order intercept point, 6.141 parasitic effects, 7.19-20 plots, 6.142 Q or quality factor, 7.20 Intersil, H.61 tuned circuits, 7.20 Inverter-follower differential driver, 6.65- Infinite ground conductivity, 7.29 66, 6.109-110 Input bias current, 1.58-61, 4.48 THD+N versus frequency, plots, 6.66 calculating total output offset error, Inverting input, summing point, 1.7 1.61 Inverting op amp: canceling effects (external to op amp), external offset trim methods, circuit, 1.60 1.57 in-amp, 2.18 protection, 7.82-83 op amp Isolation amplifier, 2.43-51 diagram, 1.58 applications, 2.43-44 measurement, circuit, 1.59 carrier-operated, 2.46 Input bias current cancellation, H.53 input circuit, 2.44 Input capacitance, compensation, in current- linearity and isolation voltage, 2.44 to-voltage converter using VFB op amp, Isolation barrier, 2.43 1.121 Input capacitance modulation: J filter distortion, 5.107-112 Jenkins, Andrew, 6.207 compensation, plot, 5.108 Jensen JT-11P-1, transformer, 6.44-45 Index 19 OP AMP APPLICATIONS

Jensen JT-OLI-2 isolation device, 6.69 Kirchoff's laws, 5.5, 7.16, 7.28 Jensen , 6.44, 6.69 Kitchin, Chuck, 2.29, 4.1, 4.39, 7.99, 7.137 Jensen, Deane, 6.47, 6.77 Kline, Barry, 6.207 JFET, rectification sensitivity, versus BJT, Konigsberg, R.L., H.22, H.27 7.125 Koren, Victor, 6.187 JFET input op amp: Korn, G., 6.27 headroom needs, 1.39 Korn, Granino, H.18-19, H.22, H.26, H.27 output phase-reversal, 7.83-84, 7.90 Korn, T., 6.27 PNP or N-channel stages, with CM inputs, Korn, Theresa, H.18-19, H.26, H.27 diagrams, 1.40 Krehbiel, John, 2.41 showing offset and drift trims, diagram, Kress, Dave, H.66, H.69, H.71 1.39 Kurz, Dov, 7.99 Jofeh, Lionel, H.11, H.23 Johnson noise, 1.76, 1.78, 1.84, 1.86, 3.7, L 4.52-53, 6.149, 6.165, 7.82 Lapham, Jerome F., H.70 broadband, 4.53 Lapham, Jody, H.65 resistor, 4.54, 7.13 Laplace transform, 5.1, 5.17 spectral density, 4.53 in RIAA response, PSpice circuit Johnston, Denis L., H.11, H.24 analysis, 6.20, 6.23 Jones, Morgan, H.27 Laser trimming: JT-11-DM, 6.69 advantages, 1.49 JT-11P-1 Line Input Transformer Data Sheet, for precision amplifiers, 1.48 6.47 Law of Intermediate Metals, 4.72 JT-OLI-2, 6.69 Leaded ferrite bead, 7.68 Julie, Loebe, H.16-17 Leakage, 7.2 Jung, W., 5.134, 6.10, 6.27 circuit board static effect, 7.40 Jung, Walt, H.1, H.68, H.70, 1.1, 1.3, 1.23, surface, eliminating, 7.41 1.31, 1.53, 1.95, 2.1, 2.29, 3.46, 4.1, Least significant bit, see LSB 4.69, 6.1, 6.10, 6.27, 6.47, 6.77, 6.79, Leclercq, Paul De Raymond, H.27 6.91, 6.137, 6.163, 6.187, 6.189, 7.1, Lee, P., H.51, H.67 7.51, 7.73, 7.75, 7.101, 7.108, 7.109, Lee, Seri, 7.108 7.137, 7.139 LF155, H.61, H.63 Jung, Walter G., 1.20, 1.93, 6.10, 6.207, LF156, H.61, H.63 7.22 LF157, H.61, H.63 LH0033, open-loop FET input hybrid K amplifier, 6.79 K2-W op amp, H.20-21 LH101, monolithic IC op amp, hybrid Kaufman, M., 1.93, 6.27 topology, H.49 Kautz, W.H., 5.133 Lightning Empiricist, periodical, H.21 Kelvin connections, for RTD, 4.80 Line driver: Kelvin feedback, 7.27-28 audio, 6.48-64 Kelvin sensing, 4.20-21, 4.31, 4.34 composite current boosted, 6.62-64 ratiometric reference, diagram, 4.24 circuits, 6.62-64 Kester, W.A., 6.137 current boosted buffered, 6.60-61 Kester, Walt, H.43, 1.1, 1.20, 1.23, 1.31, circuit, 6.60 1.51, 1.53, 1.93, 1.95, 1.102, 1.103, THD+N versus frequency, plots, 6.61 1.127, 2.1, 2.31, 2.43, 3.5, 3.20, 3.41, differential, 6.65-68 3.46, 3.53, 4.1, 4.5, 4.7, 4.25, 4.27, fixed-gain video transmission, 6.82 4.37, 4.39, 4.67, 4.69, 4.91, 6.1, 6.79, high efficiency, 6.163-164 6.91, 6.93, 6.137, 6.139, 6.163, 7.1, mixed feedback, 6.71 7.51, 7.73, 7.75, 7.99, 7.108, 7.109, paralleled output, 6.57 7.137, 7.139 single-ended, 6.55-64 Key, E.L., 5.133 mixed feedback transformer, circuit, Kilby, Jack, H.29-30 6.72 Kilby, J.S., H.41 transformer coupled, 6.69-76 Kimmel Gerke Associates Website, 7.138 basic, 6.69-70 Kimmel, William, 7.137 circuit, 6.69 King, Grayson, 4.5 feedback, 6.71-76 Index 20 INDEX

video, high efficiency, circuit, 6.163 LM317, adjustable , 7.54-55 wide dynamic range ultra low distortion, LM318, H.66 6.58-59 LM324, quad op amp, industry standard, H.49 xDSL upstream, 6.158-160 LM358, dual op amp, H.49 Line input transformer, audio signals, CM Load cell, 4.27 isolation, 6.44-45 amplifier circuit, with Kelvin sensing, Line receiver: 4.34 balanced, 6.36 single-supply amplifier, diagram, 4.35 buffered input, 6.40-41 using strain gages, diagram, 4.31 CM error versus frequency, plots, Long-tailed pair, H.10, 1.104 6.42-43 Longrie, Gary, H.7, H.27 diagram, 6.40 Loop gain, with frequency, filter, 5.109 performance, 6.41-43 Loops, ground network, 7.30 CM error versus frequency, plot, 6.38 Loopthrough amplifier, 6.119 TD+N, 6.39 Lorber, Matt, H.35 buffered balanced, advantages, 6.47 Losmandy, Bela, H.22, H.27 CM rejection versus frequency, plot, 6.34 Lovell, C.A., H.13, H.25 differential, balanced feedback, 6.36 Low DropOut regulator, 7.52 summary, 6.47 architectures, 7.55-59 transformer-input, 6.44-46 pole splitting, 7.56 advantages, 6.47 see also LDO circuit, 6.44 Low noise charge amplifier, circuit CMR errors, plot, 6.45 configurations, 4.63-64 Linear Design Seminar (1995), 2.41, 2.51 Low noise PGA, using AD797 and ADG412, Linear IC pioneer, H.72 circuit, 2.35 Linear IC regulation, 7.52 Low-Cost HOS-050C Is Internally Linear phase with equiripple error, Compensated, response curves, 5.35-36 Settles to 0.1% in 80ns, 0.01% in 200ns, Linear post regulator, supply switching, H.43 7.63 Low-noise JFET gain-boosted input composite , op amp power supply, 7.51 amplifier, 6.204-205 Linear Technology Corporation, H.53 Low-Noise, Low-Drift Precision Op Amps for Linear voltage regulator, basics, 7.52-54 Instrumentation, H.70 Link trimming, 1.48 Lowpass filter, 3.32, 3.45, 5.2, 5.26-49 advantages, 1.49 from Sallen-Key, transformation, 5.119 Lipshitz, S., 6.27 peaking versus quality factor, plot, 5.7 LM101: phase response, 5.14-16 monolithic IC op amp prototype, 5.8 design objectives, H.46 response, 5.121 schematic, H.47 second-order response, 5.13 second generation, H.46-48 to allpass, frequency transformation, two-stage topology, H.46 5.57-58 LM101A, monolithic IC op amp, greater to bandpass, frequency transformation, stability, H.49 5.52-55 LM102, voltage follower, H.51 to bandreject, frequency transformation, LM107, monolithic IC op amp, H.49 5.55-57 LM108, H.55 to highpass, frequency transformation, super-beta input monolithic IC op amp, 5.51-52 H.52 to notch, frequency transformation, 5.55- schematic, H.52 57 LM108A, super-beta input monolithic IC op using AD8048 voltage feedback op amp, amp, H.52 1.120 LM110, voltage follower, H.51 LPKF Laser & Electronics, 7.164 LM112, super-beta input monolithic IC op LSB, resolution of data converter, 3.7 amp, H.52 LT1008, super-beta op amp, H.53 LM118, H.66 LT1012, super-beta op amp, H.53 LM148, quad IC op amp, H.49 Luminance, 6.95 LM281, H.66 Lundahl LL1517 transformer, 6.73-76 Index 21 OP AMP APPLICATIONS

THD+N versus frequency, plots, 6.71 MAT03 Low Noise, Matched Dual PNP Lundahl LL1582 transformer, 6.72-74 Transistor Data Sheet, 6.207 without Faraday shield, 6.73 Matrix board, prototyping system, 7.153 Lundahl LL2811 transformer, 6.72 Matthews, B.H.C., H.9, H.23 THD+N versus frequency, plots, 6.73 May, Dale, H.69 Lundahl, Per, 6.77-78 MC1458, dual IC op amp, H.49 Lyne, Niall, 7.99 MC1556, super-beta op amp, H.51 MC1558, dual IC op amp, H.49 M MC4741, quad IC op amp, H.49 M9 gun director, H.13 MD3257, H.36 designers, H.15 Melliar-Smith, C. Mark, H.41 Medal of Merit for designers, H.15 Melsa, James L., 1.93, 1.127, 4.67 with SCR584 radar system, H.15 Mesa process, for IC development, H.30 M9 op amp, schematic, H.19 MESC series RFI suppression chokes, 7.73 µA702, first monolithic IC op amp, H.45 Metal foil strain gage, 4.29 The µA702 Wideband Amplifier, H.67 Metal migration, op amp, 7.76 µA709: Meyer, Robert G., 1.93 monolithic IC op amp, H.45-46 Mezger, G. Robert, H.11, H.23 schematic, H.45, H.47 Mica capacitor, 5.103-104 µA725, H.53, H.55-59 Micro-Gee PRoducts, Inc., H.22 monolithic IC op amp, schematic, H.55 MicroConverter Technology Backgrounder, 4.5 µA740, H.61 Micromodel: µA741: advantages and disadvantages, 7.140 monolithic IC op amp, H.48-49 versus macromodel, 7.140-141 schematic, H.48 Microphone preamp: similarity to AD741, H.50 audio, 6.1-10 µA748, externally compensated monolithic IC electret interface, 6.4 op amp, H.49 circuit, 6.4 McCoy, R., 6.27 single-ended, single-supply high- McCoy, Rawley, H.18, H.26 impedance, 6.2-3 McFee, Richard, H.12, H.24 transformer-coupled, THD+N, 6.7 Machine Model, for ESD, 7.95 transformer-coupled low-impedance, 6.5-7 MacKenzie, Scott, 4.5 circuit, 6.5 Macromodel: very low noise transformer-coupled, 6.8-9 advantages and disadvantages, 7.140 circuit, 6.8 current feedback, 7.141, 7.147-148 THD+N, 6.9 gain stage, frequency shaping, 7.143 Microphonics, in , 5.103 input stage, rail-rail, 7.145 Microstrain, 4.27 op amp, ADSpice model, 7.141 Microstrip, 7.131-133 output stage, 7.144-145 delay constant, 7.133 general-purpose, circuit, 7.144 rules, 7.133 transient response, 7.145 transmission line, 7.36 versus micromodel, 7.140-141 MIL-PRF-55182G, 2.29 voltage feedback, 7.141 MIL-STD-883 Method 3015, 7.99 Magnetic phono cartridges, topology, 6.16 MIL-STD-883 Method 3015 classification, 7.95 Maidique, Modesto, H.68, H.69 MIL-STD-883B Method 3015.7 test method, Maidique, Modesto "Mitch," H.54, H.60 7.96-97 Main amplifier, 1.98-100 Millaway, Steve, H.63, H.69 Malter, Bob, H.31, H.34 Miller circuit, 1.26 Marcin, Joe, 4.91 Miller Integrator, 1.109 Mark Montrose Website, 7.138 Miller-compensated low drift system, H.17 Mark, M., 7.22 Miller, Stewart, H.5, H.17 Mark, W., 7.50 Miller, Stewart E., H.7, H.26, 1.29 Marsh, R., 6.27 Milne, Bob, H.7, H.27 Marsh, Richard, 7.22 Mindell, David, H.5, H.15 Marwin, Bob, H.71 Mindell, David A., H.6, H.25-26 MAT02 Low Noise, Matched Dual Monolithic Mini-Mount, prototyping system, 7.155 Transistor Data Sheet, 6.207 MINIDIP (N) package, 7.43-44 Index 22 INDEX

Minimum passband attenuation, filter, 5.3 Multiplexer: Missing codes, excess DNL in ADCs, 3.10 expansion, 6.129 Mixed feedback driver, 6.71 fault-protected, 7.81 balanced transformer, circuit, 6.75 key specifications, 3.26 THD+N versus frequency, plots, 6.74 Multiplexing, definition, 3.26 Mixed-Signal and DSP Design Techniques Multitone power ratio, 6.143 (2000), 2.51 Muncy, N., 6.47 MMDT2222A Dual NPN Small Signal Surface Murphy, Mark, 6.187, 6.207 Mount Transistor Data Sheet, 6.207 Murphy, Troy, 7.163 MMDT2907A Dual PNP Small Signal Surface Mutual inductance, 7.16-18 Mount Transistor Data Sheet, 6.207 magnetic fields, 7.18 Mode conversion, and CMR noise, 6.32 Model 3xx series varactor bridge op amps, N H.35 Nagel, L.W., 7.163 Model 44 Fast Settling High Accuracy Op Amp National Semiconductor Corporation, H.46, Data Sheet, H.42 H.49, H.61, H.66 Model 45 Fast Settling FET Operational Negative feedback theory, filter, 5.106 Amplifier Data Sheet, H.42 Negative resistance buffer, 6.185 Model 48 Fast Settling Differential FET Op circuits, 6.185 Amp Data Sheet, H.42 Nelson, David A., 1.29 Model 50: Wideband, Fast Settling Op Amp, Neper frequency, 5.5-6 H.43 New Modular Op Amps, H.42 Model 50 Fast Settling 100mA Output Newton, A.R., 7.163 Differential FET Op Amp Data Sheet, H.42 Nexus Research Laboratories, H.33-35 Model 310, 311 Ultra Low Bias Current Nobel Prize: Varactor Bridge Operational Amplifiers for IC, H.29-30 Data Sheet, H.42 for transistor, H.29 Modular op amp, H.30 Noble, Roger R. (Tim), H.33 Moghimi, Reza, H.71 Noise: Monolithic IC electrometer amplifier, H.63- in audio line receiver, 6.30 64 calculation, op amps, 6.150 Monolithic IC op amp, birth, H.45-51 capacitance-coupled, reduction, 7.112 Montrose, Mark, 7.137 common-impedance Website, 7.138 circuitry changes, 7.112 Morrison, Ralph, 7.50, 7.137 reducing, 7.110-111 MOSFET, 1.39, 6.170 solutions, summary, 7.111, 7.111 in over-voltage protection, 7.80 communications, 6.144-152 Motchenbacher, C.D., 6.10, 7.99 components, 6.148 Motor control isolation amplifier, 2.46 coupling, mechanisms, 7.110-111 Motorola Semiconductor, H.49, H.51 inductance, near-field interference, Moving coil, in magnetic phono cartridges, 7.112-113 6.16 magnetically-coupled MPS6521, H.38 reduction, 7.113 MPTR, plots, 6.143 methods, 7.113 Mu-metal, 7.113 model, 1.84 Multi-tone intermodulation distortion, 3.14 op amp circuit, calculation, 6.148 Multiple feedback filter: pole/zero cell impedance reduction, 7.146 bandpass popcorn, 1.80 design, 5.87 referred to input, 1.84 diagram, 5.110 RMS, 1.80-83, 6.148 design, 5.70-71, 5.116 RMS to peak-to-peak ratios, 1.83 distortion, 5.109 source versus output, table, 6.149 highpass, design equations, 5.86 sources lowpass, design equations, 5.85 referred to output op amp limitations, 5.107 second-order system, summary, 1.87 transformation, 5.121 summary, 1.85 Multiplexed data, op amp considerations, sources versus impedances, 1.78 3.26-27 total output, calculations, 1.83-87 Index 23 OP AMP APPLICATIONS

voltage, 6.149 bridge, 4.9 Noise factor: measurement, 4.9 definition, 6.145 Nulling amplifier, 1.98-100 resistive, reactive, and unterminated Nyquist bandwidth, 3.2, 3.10 conditions, definition, 6.146-147 Nyquist shift, H.11 Noise figure: Nyquist, Harry, H.5-7 available power, 6.144 Nyquist's criterion, H.5 communications amplifier, 6.144 comparison at impedance level, 6.147 O definition, 6.145 Och, Henry, H.13 input termination, effect, 6.147 Off-channel isolation, multiplexer, 3.26 op amp, calculation, 6.146 Offenberg, Arne, 6.78 Noise gain, 1.86 Offner, Franklin, H.9, H.11, H.23-24 increase, follower or inverter stability, Offset adjustment: diagrams, 6.84 external methods, 1.56-57 op amp, calculation, 1.118-119 internal method, 1.56 second-order system, plot, 1.87 pins, 1.56 signal gain Offset error: manipulating, 1.63 bridge, 4.22 op amp, manipulation, 1.63 from CMRR, calculation, 1.89 voltage feedback op amp, Bode plot, 1.73 Offset voltage trim processes, 1.47-49 Noise generator, wide bandwidth, 6.165-166 Ohmite Victoreen MAXI-MOX Resistors, 4.67, Noise index, resistors, 7.14 7.22 Noise model, 7.145-147 Ohm's law, 5.5, 7.27 Noise reduction: OMEGA Temperature Measurement Handbook, linear post regulator for supply 4.91 switching, 7.63 On-resistance, multiplexer, 3.26 power supply, 7.64 1/f noise, 1.79 switching, capacitors, 7.64-67 101: using output filtering, 4.55 monolithic IC op amp, second generation, Noise voltage, mode conversion, 6.32 H.46-48 Non-inverting input current noise, 4.54 pole splitting compensation, H.48 Non-inverting op amp external offset trim two-stage voltage amplifier topology, methods, circuit, 1.57 H.48 Non-monotonicity, DAC, 3.9 121, wideband DC op amp, H.36-37 Nonlinear phase, effect on filter, 5.16 180, low drift chopper-less op amp, H.36 Nonlinearity: 183, low drift chopper-less op amp, H.36 definition, 2.17 Op amp: error, resistors, 7.10 accuracy, and filter performance, 5.117 "Nostalgia" vacuum tube input/output as ADC driver, 3.21 composite op amp, 6.206 requirements, 3.21 cascode stage, 6.206 ADSpice model, open-loop gain versus circuit, 6.206 frequency, 7.142 Notch filter, 5.2, 5.10-11 basics, 1.1-128 60Hz, 5.131-132 bias current, 1.4 schematic, 5.132 BiCMOS, 1.96 second-order response, 5.13 BiFET, 1.96, 1.103 width versus frequency, plot, 5.11 output voltage phase-reversal, 7.83-84 Nova Devices, H.54 bipolar, 1.96 Noyce, Robert, H.29-30 bias current compensation, 1.35 Noyce, Robert N., H.41 uncompensated bias current, 1.35 NTSC: versus chopper stabilized, 1.101 color subcarrier frequency, 6.95 voltage noise, 1.77 composite color video line, diagram, bipolar transistor, H.35 6.94-95 breakdown, over-voltage, 7.76 video amplifier, headroom, 6.133 capacitive loading, stability, 6.84 video distortion, 6.116 categories, H.36 Null: CB, 1.103 Index 24 INDEX channel protector, 7.80 developments, H.13-16 advantages, 7.80 device/topology distortions, 6.52-55 chopper stabilized, 1.54, 1.98-100 differential amplifier, 1.9 basic circuit, 1.98 differential input, 1.4 diagram, 1.99 diode leakage, protection network, 7.78 intermodulation, spectra, 1.99 distortion, 1.88 lowest offset and drift performance, drift problem, H.17 1.98 dual front end, H.20 noise, 1.101 dual-supply, 1.17-18 voltage noise spectral density, dynamic range, definitions, 1.88 spectra, 1.100 dynamics, and filter performance, 5.118 chopper-stabilized, H.17-18, H.36 electrometer IC, H.63-64 advantages, H.18 evaluation boards, 7.160-162 limitations, H.18 dedicated, 7.161-162 circuit noise, calculation, 6.148 external feedback elements, 1.3 closed loop feedback, 1.5 feedback capacitance closed loop gain, 1.4 effects, 1.118-120 CM over-voltage protection circuit, 7.76 noise gain stability analysis, 1.118 CMOS, 1.96 FET technology, H.35 CMRR, power supply rejection ratio FET-input, RFI susceptibility, 7.122-123 (PSRR), 89-92 FET-output, phase-reversal, summary, 7.85 common mode dynamic range, 1.15-17 as filter, 1.119-120 input dynamic range, 1.16-17 frequency response, 1.68-75 output dynamic range, 1.15-16 on filter quality, 5.110-111 single-supply system, 1.16 settling time, 1.69-72 common mode over-voltage protection, slew rate and full-power bandwidth, using CMOS channel protectors, 7.80-82 1.68-69 common mode rejection, 1.4 fully differential design, schematic, comparisons between voltage feedback and H.22 current feedback, 1.124-125 gain setting and level shifting, 3.33-34 complementary bipolar, 1.96 circuits, 3.33 composite, high voltage boosted rail- general circuit, feedback, 1.5 rail, circuit, 6.195 general introduction, H.3-8 current feedback, 1.1, 1.23, 1.113-117 general-purpose, DC-coupled, high gain, closed-loop bandwidth, 1.115 inverting feedback amplifier, H.2 current-on-demand, 1.114, 1.116 ground reference, 1.32 in current-to-voltage converter, 1.122 harmonic distortion, 1.88 diagram, 1.23 heat sink, 7.103 error current, 1.114 using TO99 metal can type, 7.103 important features, 1.117 high gain, H.2 input capacitance sensitivity, 1.123 high speed, 1.103-127 low inverting input impedance, 1.123 amplifier bandwidth versus supply model and Bode plot, 1.114 current, plots, 1.103 no slew-rate limitation, 1.114 DC characteristics, 1.125-126 noise calculation, 6.150 noise summary, 1.125 performance summary, 1.117 offset error summary, 1.126 simplified diagram, 1.113 high speed FET, family, H.37-40 simplified two-stage, diagram, 1.116 high speed IC, H.66 solid state, Bell Labs, diagram, 1.28 historical background, H.1-2 summary of characteristics, 1.117 history, H.1-72 current feedback model, 7.147-148 hybrid, H.29-44, H.30 data conversion, 3.1 designs, H.31-40 applications, 3.2 IC, H.30, H.45-72, H.62 characteristics, 3.3-4 monolithic, birth, H.45-51 DC coupling, 3.33-34 ideal, attributes, 1.3-5 decompensated, 1.72 in-circuit over-voltage, protection, decoupling, techniques, 1.92 7.75-77 design points, 7.105-106 in-circuit voltage, 7.75 Index 25 OP AMP APPLICATIONS

input common mode limits, 7.75-77 RMS noise, 1.80-83 input differential protection, 7.86-87 total noise calculations, 1.83-87 input and output voltage dynamic ranges, noise figure, 1.79 1.18 noise gain and signal gain, manipulation, input overvoltage, 1.43 1.63 input and RFI rectification, 7.126-127 noise model, 1.84 input stages, 1.34-43 first-order circuit, 3.12 bias current compensated bipolar, RTI and RTO noise, 3.12 1.36-37 second-order system, 1.85-86 bias current compensated super-beta non-IC solid state, H.1 bipolar, 1.38 non-ideal bipolar, 1.34-35 circuit, 1.10 FET, 1.38-39 error multiplier, 1.11 overvoltage considerations, 1.43 gain stability, 1.12 rail-rail, 1.40-43 loop gain, 1.12-13 integrated circuit, H.45-72 frequency dependence, 1.13-15 inverter, 1.8 plots, 1.13 inverting noise gain, 1.11-12 external offset trim methods, circuit, signal gain, 1.11 1.57 static errors from finite amplifier and noninverting, guard techniques, gain, 1.10-15 4.45 voltage feedback, 1.14 protection, 7.82-83 non-inverting, external offset trim summer, 1.9 methods, circuit, 1.57 inverting mode operation, H.2 non-inverting input, H.19-20 JFET normal signals, 7.75 output phase-reversal, 7.90 offset voltage, 1.4 output voltage phase-reversal, 7.83-84 open-loop gain, 1.4 JFET IC, H.65 out-of-circuit voltage, 7.75 Karl Swartzel, H.14-15 output noise, calculation, 3.12-13 limitations in filters, 5.106-107 output stages, 1.44-49 load immunity, 1.18 offset voltage trim processes, 1.47-49 long-term stability, 1.58 surge protection, 1.46 low noise, filtering, noise performance, output voltage phase-reversal, 7.83-84 3.45 over-voltage protection, clamping diode low noise JFET IC, H.65 leakage, 7.77-78 low source impedance, 1.4 overall loop feedback, H.3 low-drift, high gain, H.20-21 packaging, H.59 low-leakage input clamping, 7.78 passive components, 7.1-24 macromodel performance, JFET versus bipolar, 4.65-66 accuracy checking, 7.149 power supply current feedback, input and gain conditioning techniques, summary, 7.72 stages, 7.147 and decoupling, 1.92 metal migration, 7.76 and power dissipation, 1.92 model 3xx series varactor bridge, H.35 regulation, 7.51 modern IC packages, scale, H.59 systems, 7.51-74 modular, H.30 precision, 1.18, 1.95-102 designs, H.31-40 characteristics, 1.96 multiplexed data acquisition, DC error budget analysis, 1.96-97 applications, 3.26-27 open-loop gain, 1.95 multistage, 1.26 resolution error, 1.96-97 naming, H.16 selection, 1.95 by Ragazinni, 1.3 single-supply, performance noise, 1.76-87 characteristics, compared to components, 6.148 OP177F, 1.97 frequency characteristic, diagram, precision bipolar IC, H.55-59 1.79 precision JFET IC, H.60-66 popcorn noise, 1.80 process technologies, 1.50 Index 26 INDEX protection, 7.75-100 chopper stabilized, H.17-19 quiescent current, and biasing, 6.195 declining years, H.22 reverse junction breakdown, 7.86 evolution, H.17-22 RFI rectification, sensitivity tests, varactor bridge design, H.63 7.122-123 versus in-amp, 2.1 sampled data system, diagram, 3.1 video driver, power dissipation, graph, selection criteria, for data converters, 7.106 3.4 virtual ground, 1.8 selection drivers, table, 1.19 voltage and current output, 1.18 settling time, 3.27 voltage feedback, 1.1, 1.23, 1.104-112 signal conditioning, 3.1 all NPN process, circuit, 1.105 single-ended to differential conversion, bandwidth and slew rate calculations, circuit, 3.37 1.108 single-supply, 1.17-18, 1.31-33 closed-loop relationship, 1.106-107 design issues, summary, 1.33 complementary bipolar design, 1.109- gain accuracy, 1.31 111 guarding, 7.44 in current-to-voltage converter, and input stage, characteristics, 1.32-33 input capacitance, 1.121 solid state device families, 6.106 schematic, H.31 diagram, 1.23 varactor bridge, H.33-34 folded cascode, 1.110 solid-state modular, H.29-44 full-power bandwidth, 1.107-108 and source impedances, plots, 1.78 high speed, table, 1.112 specifications, 1.53-93 long-tailed pair, 1.104 for ADC applications, 3.22-24 model and Bode plot, 1.106 SS bipolar, output phase-reversal, 7.90 noise calculation, 6.150 standard feedback circuits, 1.6-10 "Quad-Core" stage, diagram, 1.111 differential stage, 1.9-10 slew rate, 1.107 inverting stage, 1.8-9 two gain stages, diagram, 1.109 non-inverting stage, 1.6-7 two stage, model, 1.109 standard value resistors, and filter unity gain-bandwidth frequency, 1.106 performance, 5.118 voltage follower, 1.6 structures, 1.31-51 XFCB, 1.104 subtractor, 1.9 Op amp integrator, versus grounded summing amplifier, 1.9 capacitor integrator, plots, 6.180 summing point, 1.8 Op amp noise, 1.76-87 super-beta IC, H.51-54 input voltage, circuit, 1.76 super-beta input stage transistors, bias Op Amp Settles to 0.01% in 300 ns, H.42 current compensation, circuit, 1.38 Op Amps Combine Superb DC Precision and supply voltage limitations, 1.18 Fast Settling, H.70, 1.29 THD+N, 1.88 OP07: THD, 1.88 monolithic IC op amp thermal considerations, 7.101-108 schematic, H.57 thermal management, 7.101-108 single-supply and micro-packaged thermal rating curves, 7.103 compatibles, H.59 thermal relationships, chart, 7.102 ultralow offset voltage bipolar op amp, thermal resistance, 7.101 4.42 topologies, 1.23-29 OP27: total dynamic range, 1.18 bias compensated op amp, 1.36-37 total offset voltage, model, 1.61 bipolar op amp, 4.65 traditional output stages, diagrams, 1.44 low noise op amp, 7.86 two signal inputs, H.17 monolithic IC op amp, schematic, H.59 two-chip hybrid IC, bias current multiple stage, pole-zero compensated specification, H.61 amplifier, 6.166 two-tube design, H.16 OP37, monolithic IC op amp, schematic, H.59 unity gain inverter, 1.9 OP42, FET input op amp, for high speed use, with data converters, 3.31-54 photodiode preamps, 4.59 vacuum tube, H.9-28 OP90: Index 27 OP AMP APPLICATIONS

Bode plot, 5.111 OP4177, quad op amp, H.59 DC precision amplifier, 5.110 OPA111, monolithic IC electrometer OP97: amplifier, H.63 composite op amp, gain versus frequency, Opamp Labs Inc., H.27 plots, 6.194 Open-loop gain, 1.64 super-beta bipolar op amp, 1.35, 1.38, measurement, circuit, 1.66 4.42 nonlinearity, 1.64-67 OP97/297/497, super-beta input monolithic calculation, 1.67 IC op amp, schematic, H.53 Operational amplifier, named by Ragazzini, OP113, low-drift low-noise amplifier, 2.37 H.16 OP177: Optimum turns ratio, transformer, CMR, plot, 1.89 calculation, 6.6 gain nonlinearity, plots, 1.67 Optional noise reduction post filter, 2.46 input voltage noise, plot, 1.81 Optocoupler, 2.48 power supply rejection, 1.91 Optoelectronics Data Book, 4.67 precision bipolar op amp, 1.101, 4.22, Optoisolator, 2.43, 2.48 4.33 Order, filter, 5.3 OP177F, precision op amp, DC error budget OS-CON Aluminum Electrolytic Capacitor analysis, table, 1.97 Technical Book, 7.73 OP213: Oscon capacitor, 6.73 dual precision op amp, in bridge circuit, Ott, Henry, 6.47, 7.137 4.16 Website, 7.138 peak-to-peak noise, spectrum, 1.81 Ott, Henry W., 7.23, 7.50, 7.73 OP275, 2.6 Out-of-band SFDR, 6.143 bipolar/JFET input op amp, 3.52, 6.53-54, Output compliance voltage, 3.48 6.65 Output impedance, in FDNR filter, 5.107 THD+N versus frequency, plots, 6.53-54 Output offset voltage, in-amp, 2.18 inverter, 6.38-39 Output stage surge protection, 1.46 microphone preamplifier, 6.7 Output voltage phase-reversal, 7.83-84 OP284, true rail-rail input op amp, fixes, 7.85-87 schematic, 1.43 test procedure, 7.84 OP297: Overvoltage, 3.40 dual op amp, H.54 in-circuit points, summary, 7.90 high performance super-beta bipolar op in-circuit protection, 7.90-95 amp, 1.35, 1.38 protection for in-amp input, 2.24 OP497: high performance super-beta bipolar op P amp, 1.35, 1.38 PADS Software, 7.164 quad op amp, H.54 PAL, color subcarrier frequency, 6.95 OP727, dual op amp, H.59 "Palimpsest," H.21 OP747, quad op amp, H.59 Pallas-Areny, Ramon, 4.25, 4.37, 4.67, 4.91 OP777: Palmer, Wyn, H.66, 1.29 precision bipolar op amp, 4.76 Paralleled amplifiers: precision op amp buffer, 7.80 quiet load driving, 6.168-169 single op amp, H.59 circuits, 6.168 OP777/OP727/OP747 Precision Micropower Paralleled output line driver, 6.57 Single-Supply Operational Amplifiers dual op amp, circuit, 6.57 Data Sheet, 1.102 THD+N versus frequency, plots, 6.57 OP1177: , 7.10-11 precision amplifier, 4.22 Parasitic inductance, 7.10-11 single op amp, H.59 Parasitic leakage, reduction, 4.45 OP1177/OP2177/OP4177 Precision Low Noise, Parasitic pole, 6.84 Low Input Bias Current Operational Parasitic thermocouple, 4.22, 7.11 Amplifiers Data Sheet, 1.102 Parasitic thermocouple effects, 1.100 OP2177: Parasitics, 5.103, 7.150-151 dual op amp, H.59 and pin sockets, 7.158 dual precision op amp, in bridge circuit, resistor, 7.10-11 4.16 Parkinson, David, H.13 Index 28 INDEX

Parks, Steve, H.71 design issues, 2.32-33 Parnum, D.H., H.11-12, H.24 differential input, 2.38-40 Pass device, 7.54 location in circuit, 2.32 inverting mode, 7.54 low noise, 2.35-36 Passband filter, 5.2 poor design, circuit, 2.33 Passband ripple, filter, 5.3 single supply instrumentation, circuit, Passive capacitance, 5.103 2.39 Passive component: pH monitor, 4.39 analysis, 7.21 pH probe buffer amplifier, 4.66 and EMI, 7.114-115 Phase characteristic, composite amplifier, filter problems, 5.101-105 6.202 Passive filter: "Phase funnies," 6.203 design, 5.115 Phase response: normalized, 5.114 change with frequency, 5.16 Passive LC section, design, 5.60-63 filter, 5.14-16 Passively equalized RIAA preamp: notch filter, 5.15 optimization, 6.25 versus frequency, 5.15 topology, 6.24-26 Phase specifications, 6.96 circuit, 6.24 Philbrick Solid-State Operational Patterson, Omar, H.20 Amplifiers, H.41 Patterson, Omar L., H.27 Philbrick, George, H.31, H.33-34, H.43 Paynter, Henry, H.27, H.34, H.41 Philbrick, George A., H.13, H.16, H.20-21, PCB: H.24, H.41 design issues, 7.25-50 Phonograph, audio preamplifier, 6.11-27 dielectric absorption, 7.45 Photoconductive photodiode, 4.40 dynamic effects, 7.44-45 Photocurrent, 4.39 effects, 7.25 Photodiode 1991 Catalog, 4.67 grounding, 7.25 Photodiode: guarding, 7.41 circuit noise performance, summary, 4.55 using SOIC surface mount "R" package, circuit tradeoffs, 4.56 7.44 current, in picoamperes, 4.43 microstrip transmission line, 7.36 current generation, 4.39 MINIDIP op amp guard layout, 7.43-44 current noise density, 4.52 resistance, calculation, 7.26 current-to-voltage converter, 4.41 see also Printed circuit board dark current, 4.59 signal transmission, optimization equivalent circuit, 4.40 techniques, 7.39-40 equivalent noise bandwidth, 4.61 skin effect, 7.35 high speed ground plane, 7.35 I/V converter, compensation, 4.57-58 SOIC op amp guard layout, 7.43-44 preamp design, 4.59-60 static effects, 7.40-42 preamp noise analysis, 4.61-62 stray capacitance, 7.44 high speed preamp, FET input op amp, surface coating, 7.41 selection, 4.59 surface leakage, 7.41 with JFET op amp, 4.42 trace resistance, 7.27 operating modes, 4.40 Peak spectral spur, 3.19 parasitic currents, 4.43 Pearlman, Alan, H.31, H.33 photoconductive, 4.40, 4.59 Pease, Bob, H.26, H.34, H.41, H.43, H.72, photosensitivity, 4.41 7.99 photovoltaic, 4.40 Pease, Robert A., H.41, 7.22, 7.164 preamplifier, 4.39 Pederson, D.O., 7.163 critical leakage paths, 4.44 , H.10 design, 4.39-48 Pfister, C., H.25 noise, 4.51-53 PGA, 2.31-42 sensitivity, 4.39 alternate configuration, 2.33 sensor, 4.3 applications, 2.31, 2.34-41 SNR, 4.42 DAC programmed, 2.36-37 voltage noise density, 4.52 in data acquisition systems, 2.32 wideband, I/V converter, op amp Index 29 OP AMP APPLICATIONS

selection, 4.58-59 microphone, 6.1-10 Photovoltaic photodiode, 4.40 electret interface, 6.4 Pi-network, 7.114 single-ended, single-supply high- Piecewise linear amplifier: impedance, 6.2-3 with AD8037 clamped amplifier, 6.177-178 circuit, 6.2 circuit, 6.177 noise model, 4.53 Piezoelectric sensor, 4.3, 4.39, 4.62 offset voltage, drift analysis, 4.48-49 output conditioning, 4.30 RIAA phone, 6.11-26 Piezoelectric transducer, 4.27, 4.30 signal frequency response, 6.1 circuit, 4.64 Precision bipolar IC op amps, H.55-59 pressure, use, 4.32 Precision bipolar op amp, noise, 1.101 reduced supply voltage, lower bias Precision Bipolar Op Amp Has Lowest Offset, current, 4.64 Drift, H.68 Piezoresistive effect, in semiconductor Precision bridge amplifier, using in-amp, strain gage, 4.29 circuit, 2.25 Pin-programmable-gain in-amp, 2.17 Precision in-amp: Pinchoff voltage, H.65 data, 2.23 Pippenger, Dale, H.69 remote load driver, circuit, 2.28 Pitot tube, 4.32 Precision JFET IC op amp, H.60-66 Pixel, definition, 6.97 Precision Low Noise Low Input Bias Current Planar IC process, invention, H.29-30 Operational Amplifiers OP1177/OP2177 Plastic film capacitor, 5.103 Data Sheet, H.69 Plate , H.1 Precision Micropower Single-Supply Op Amps Plug-in breadboard system, 7.153 Have 100-µV max Offset, H.69 PM1008, super-beta op amp, H.53 Precision Monolithics Incorporated, H.53-54, PM1012, super-beta op amp, H.53 H.55-56, H.61 Polycarbonate capacitor, 5.102, 5.104 Precision Op Amp, H.68 Polyester capacitor, 5.102, 5.104 Precision Resistor Co., Inc., 4.67, 7.22 Polypropylene dielectric, 5.102, 5.104 Precision single-supply composite in-amp, Polystyrene dielectric, 5.102, 5.104 2.13-15 Pontis, George, 6.77 gain expression, calculation, 2.14 Popcorn noise, 1.80 rail-to-rail output, circuit, 2.14 Posthumus, K., H.3 Precision voltage controlled current source, , 7.8-10 in-amp, 2.26-27 digitally addressable (RDAC), 7.14 Pressure: Power Consideration Discussions, 7.108 measurement, 4.27-37 Power dissipation, power supplies, 1.92 differential, 4.32 Power line decoupling, resonant circuit, Pressure transducer: 7.19 liquid and gas pressure measurement, 4.32 Power supply: piezoelectric, use, 4.32 conditioning techniques, summary, 7.72 The Pressure, Strain, and Force Handbook, and decoupling, 1.92 4.37 noise reduction and filtering, 7.64 Printed circuit board: tools, 7.64 controlled impedance traces, 7.131-132 op amp, 7.51-74 design, and EMI/RFI, 7.130-136 power dissipation, 1.92 embedding traces, 7.135-136 regulation, 7.51 microstrip transmission lines, 7.131-132 Power supply rejection, see PSR parasitics, 7.150 Power-down sequencing circuit, multiple see also PCB supply applications, 6.170-171 symmetric stripline transmission lines, Practical Analog Design Techniques, 7.134-135 Chapters 1, 2, and 4, 6.137 transmission line termination, 7.136 Practical Design Techniques for Sensor Programmable gain amplifier, 2.31-42 Signal Conditioning, 2.29, 2.41, 2.51 with arbitrary attenuation step size, Preamplifier: 6.182-183 AC design, bandwidth, and stability, circuit, 6.182 4.50-51 see also PGA audio, 6.1-27 using AD813 current feedback video op Index 30 INDEX

amp, 6.126 Received signal strength indicator, 6.153 Programmable pulse generator: Receiver, audio line stage, 6.28 using clamping amplifier, 6.171-172 Recognition of Harold Black, H.25 circuit, 6.171 Recognition of M9 Designers C.A. Lovell, Prototyping: D.B. Parkinson, and J.J. Kuhn, H.25 analog, key points, 7.153 Rectification, calculations, 7.123-125 deadbug, 7.153-155 Rectifier: digital systems, 7.153 full-wave, using clamping amplifier, DIP packages, 7.159 6.172-173 milled PCB, 7.157-158 single-supply half and full-wave, 6.167 and multilayer PCBs, 7.159 two-element vacuum tube-based, H.1 op amp functions, 7.139-164 Reeves Instrument Corporation, H.17-18 solder-mount, 7.155-156 Reference terminal, non-inverting input, 1.7 techniques, 7.153-162 Referred-to-input, see RTI Pseudo differential circuit, 6.66 Referred-to-output, see RTO Pseudorandom chopping frequency, 1.99 Reflectance, shielding, 7.116-117 PSpice diode, 7.77 Regulated output charge-pump voltage PSpice Simulation software, 7.164 converter, 7.62 PSRR: Regulated voltage, calculation, 7.54 op amp, 1.89-92 Regulation, linear IC, 7.52 specification;, 1.91 Regulator: test setup, 1.91 linear, op amp power supply, 7.51 switching, op amp power supply, 7.51 Q Reichenbacher, P., 7.22, 7.50 Quad JFET, Single-Supply Op Amp, H.70 Reine, Steve, 7.163 Quad Op Amp, H.68 Resistance: Quad-core op amp stage, 1.111-112 conductor, 7.26-27 Quality factor: measurement, 4.8 definition, 7.20 Resistance bridge, 4.8 , 7.20 Resistance temperature detector, 4.70, 4.78- Quantization: 81 error signal, 3.10 configuration, 4.80 noise, in data converters, 3.10-11 as passive sensor, 4.78 size of LSB, table, 3.7 temperature and Seebeck coefficients, plot, 4.78 R voltage drop in lead , 4.79 , automatic gain control, Resistor, 7.8-10 6.153 absolute temperature characteristic, 7.9 Ragazzini, John, H.16, H.26, 1.20 aging, 7.13 Rail bypass/distribution filter, 7.70 carbon composition, 7.9 Rail-rail input op amp, 1.40-43 comparison chart, 5.105 bipolar transistor in difference amplifier, 2.3 diagram, 1.41 excess noise, 7.13-14 offsets, 1.41-42 failure mechanisms, 7.13 RAMDACs, 6.97 filter problem, 5.101-105 Randall, Robert H., H.26, 1.20 high input/output ratio, and CMR, 6.32 Rappaport, Andy, 7.22 interconnection stability, 7.10 Raster scan, definition, 6.97 Johnson noise, 1.76 Ratiometric drive, bridge, 4.12 mismatching, 7.8 Ratiometric reference, 4.23 noise index, 7.14 Kelvin sensing, diagram, 4.24 nonlinearity errors, 7.9 Ratiometric voltage output temperature parasitics, 7.10-11 sensor, 4.89-90 selection criteria, 7.15 RCA, H.61 in subtractor amplifier, 2.3 RCD Components, Inc., 7.22 temperature retrace, 7.10 RDAC, digitally addressable potentiometer, thermal EMF, 7.11 7.14 thermal turbulence, 7.13 REAC, H.17 thermocouples, in construction, 7.12 Index 31 OP AMP APPLICATIONS

thermoelectric effect, 7.11-13 Ross, Ian M., H.41 types, noise minimization, 7.14 Rostky, George, H.26 voltage sensitivity, 7.13 RS-232 device, ESD testing, 7.97 wirewound, parasitics, 7.10-11 RS-485 device, ESD testing, 7.97 Resistor Johnson noise, 4.52-53 RTD, see also Resistance temperature Response curves, filters, 5.26-49 detector RFI rectification: RTI noise, op amp, 3.12 input devices, sensitivity, 7.123 RTO noise, op amp, 3.12 input-stage sensitivity, 7.122 Rudin, Marv, H.53 reduction, in op amp and in-amp circuits, Russell, Frederick A., H.26, 1.20 7.126 Russell, Rod, H.61 relation to interfering signal, 7.125 Russell, Ronald, H.49, H.67 RFI Rectification Test Configuration, 7.122 Russell, Ronald W., H.69 RFI/EMI, see EMI/RFI RGB, color signals, control system, diagram, S 6.96 S-plane, filter, 5.5-6 RIAA: S/N+D, see SINAD basics, 6.11-13 Sallen-Key bandpass filter, design idealized frequency response, table, 6.13 equations, 5.84 preamp, ideal, 6.12 Sallen-Key filter: time constants, ascending frequency, 6.12 configuration, 1.119 RIAA equalizer: design, 5.67-69, 5.115-117 active feedback, circuit, 6.17 distortion, 5.107-109 capacitors, tolerances, 6.15 op amp limitations, 5.106 equalization curve, 6.11 to lowpass, 5.119 equalization networks, 6.14-16 transformation, 5.119-120 manufacturing tolerance, 6.14-15 Sallen-Key highpass filter, design network comparison, 6.14 equations, 5.83 resistors, 6.15-16 Sallen-Key lowpass filter, design equations, selection tolerance, 6.14 5.82 topologies, 6.16-26 Sallen, R.P., 5.133 topology-related parasitics, 6.15 Sample-and-hold, see SHA RIAA preamp: Sample-to-hold mode transition, 3.31 moving coil, DC-coupled active feedback, Saturation, color, 6.96 error versus frequency, 6.23 Sawtooth waveform, 3.10 moving magnet Schade, Otto Jr., H.69 AC-coupled active feedback, circuit, Scharf, Brad, H.65 6.21 Scharf, Brad W., H.70 DC-coupled active feedback Schmitt, O.H., H.23 circuit, 6.18 Schmitt, Otto, H.10-11 error versus frequency, 6.19 , 1.70-71, 2.24, 3.40, 6.122, passively equalized, error versus 7.76-77, 7.85 frequency, 6.26 Schottky noise, 1.77 phono, 6.11-26 Schultz, Donald G., 1.93, 1.127, 4.67 topology Schwartz, Tom, H.68 actively equalized, 17-23 Schweber, Bill, H.68 passively equalized, 6.24-26 Scouten, Charlie, H.43 RIAA, Standard Recording and Reproducing SD-020-12-001, photodiode, 4.41 Characteristic, Bulletin E1, 6.27 SECAM, color subcarrier frequency, 6.95 Rich, Alan, 6.77, 7.50, 7.137 Second order allpass filter: Richter, Walther, H.11, H.23 design, 5.80 Ringing, 6.89, 7.19, 7.150 design equations, 5.100 macromodel, 7.145 Second-order filter, responses, 5.13 Riskin, Jeff, 2.29, 6.47 Second-order system, 4.57-58 RMS noise, 1.80-83 Seebeck coefficient: calculation, 1.81 of RTD, plot, 4.78 Robege, J.K., 1.93 thermocouple, versus temperature, 4.72 Roedel, Jerry, H.27 Type S thermocouple, 4.78 Index 32 INDEX

SEL resistors, H.31 effectiveness, calculation, 7.117 Selection guide for digital , EMI/RFI, reduction, 7.115-121 7.22 impedance mismatch, 7.116 Selection Handbook and Catalog Guide to principles, 7.116-118 Operational Amplifiers, H.42 review, 7.115-121 Semiconductor strain gage, 4.29-32 Shockley, W., H.29, H.41 piezoresistive effect, 4.29 Shot noise, 1.77 Semiconductor temperature sensor, 4.70, spectral density, 1.77 4.84-90 voltage, 6.149 BJT-based, relationships, 4.84 Sigma-delta ADC, high resolution, driving, cold junction compensation, 4.75 3.24-25 Sensor: Signal amplifier, applications, 6.1-207 active, 4.1-2 Signal bandwidth, 4.51 applications, 4.4 Signal cabling, mutual inductance and characteristics, 4.2 coupling, 7.18 classification, 4.1-2 Signal conditioning, sensors, 4.1-91 high impedance, 4.39-67 Signal gain, 6.84 output, 4.2-3 Signal leads, voltage drop, 7.27-28 passive, 4.1 Signal return currents, 7.27-45 resistive elements, 4.7 Signal-to-noise ratio, see SNR self-generating, 4.1 Signal-to-noise-and-distortion ratio, see signal conditioning, 4.1-91 SINAD temperature, 4.69-92 Silicon bandgap voltage reference, Brokaw Brokaw cell, 4.85 cell, 4.85 current output, 4.86-88 Silicon Detector Corporation, 4.67 characteristics, 4.87 Silicon Detector photodiode, 4.41 driving resistive load, 4.87 Silicon transistor, invention, H.29 Kelvin-scaled, 4.87 Siliconix PAD/JPAD/SSTPAD series Low ratiometric voltage output, 4.89-90 Leakage Pico-Amp , 7.99 semiconductor, 4.84-90 Simons, Elliott, 6.187 voltage output, 4.86-88 Simple line receiver: uses, 4.1 audio, 6.33-34 Settling time: diagram, 6.33 definition, 1.69 function implementation, 6.35 diagram, 1.69 load balance, 6.35 measurement, using "false summing mode," topology, diagram, 6.36 1.70 Simulation: thermal effects, 1.70 analog circuit, 7.139-140 702, first monolithic IC op amp, H.45 caveats, 7.149 709, monolithic IC op amp, H.45-46 and CMRR, 7.149 741, monolithic IC op amp, H.48-49 effectiveness, 7.151-152 SFDR, 3.14, 3.19 op amp functions, 7.139-164 definition and plot, 3.19 versus breadboarding, 7.148-149 multi-tone, 3.19 SINAD, 3.14, 3.15-16 out-of-band, versus upstream line power, definition, 3.15 plots, 6.160 and ENOB, 3.15 plots, 6.143 and THD+N, 3.15 SHA: Single pole filter, design equations, 5.81 CMOS, switched capacitor input, circuit, Single pole RC, design, 5.60 3.30 Single-chip thermocouple signal conditioner, hold mode, 3.30 4.77-78 track mode, 3.30 Single-ended current-to-voltage conversion, Shannon, Claude, H.15 3.50-51 Sheingold, Dan, H.7, H.21, H.27, H.35, H.37, Single-ended line driver, 6.55-64 H.42, H.43, H.71, 1.20, 1.93, 4.25, 4.37, consumer equipment, 6.55-56 4.67, 4.91 Single-ended, single-supply high-impedance Shielding: microphone preamp, 6.2-3 and cables, 7.118-121 Single-supply AC-coupled composite video Index 33 OP AMP APPLICATIONS

line driver, 6.134-135 simulation, useful points, 7.152 circuit, 6.134 support, 7.152 Single-supply AC-coupled differential SPICE evaluation, in-amp with 290MHz gain- driver, circuit, 6.136 bandwidth, 6.181 Single-supply AC-coupled single-ended-to Spurious free dynamic range, 6.143 differential driver, 6.136 see also SFDR Single-supply data acquisition system, SS bipolar op amp, output phase-reversal, circuit, 2.26 7.90 Single-Supply FET, H.70 SSM2141: Single-supply in-amp, data, 2.23 active line receiver circuit, 6.42 Single-supply instrumentation PGA, circuit, audio line receiver, 2.5-6 2.39 difference amplifier, 2.4-5 Single-supply RGB buffer, circuit, 6.130 line receiver, 6.108 Single-supply video: low distortion, high CMR audio line AC-coupled, headroom considerations, receiver, 6.35 6.133 SSM2142: applications, 6.130-136 balanced line driver, 6.108 line driver, low distortion, zero-volt cross-coupled differential line driver, output, 6.132 6.67-68 sync stripper, circuit, 6.131 THD+N versus frequency, plots, 6.68 Skin effect, 7.34-35 SSM2143: Slattery, W., 5.134 active line receiver circuit, 6.42 Slew limiting, 1.68 audio line receiver, 2.5 Slew rate, 1.68-69 difference amplifier, 2.4-5 summary, 1.69 line receiver, 6.108 SM3087, H.31 low distortion, high CMR audio line Small, James S., H.13, H.24 receiver, 6.35 Smart sensor, 4.4 SSS725, precision bipolar op amp, H.53, Smith, Lewis, 1.93, 4.67 H.55-56 Smith, Lewis R., H.35, H.42 Standard IPC-2141, "Controlled Impedance Smoke detector, 4.39 Circuit Boards and High Speed Logic SNR, 3.14, 3.15-16 Design," 7.137 calculation, 3.10 Staniforth, Alan, 7.137 definition, 3.15 Star ground, 7.31 Soakage, 7.2-3 Stata, Ray, H.35, H.37, H.42, 1.20-21 Socket, disadvantages, 7.158 State variable filter: Sockolov, Steve, 7.22 design, 5.72-73, 5.116 Soderquist, Donn, H.68, 1.51 equations, 5.88-90 SOIC, surface mount package, 4.45-46 op amp limitations, 5.106 Solder, low thermal EMF, 4.49 Step response: Solder-Mount, prototyping system, 7.155-156 filter, 5.18 Solid state current feedback op amp, Bell curves, 5.28-38 Labs, diagram, 1.28 Stephens, M., 6.10 Solomon, James, H.49, H.67 Stopband filter, 5.2-3 Solomon, James E., H.72 Storch, L., 5.133 Solomon, Jim, H.51 Stout, D., 1.93, 6.27 Southern and F-Dyne film capacitors, 7.22 Strain, measurement, 4.27-37 Specialty amplifier, 2.1-51 Strain gage, 4.8, 4.27 Specification MIL-PRF-123B, Capacitors, bonded, 4.28 Fixed, Ceramic Dielectric..., 7.22 advantages, 4.28 Specification MIL-PRF-19978G, Capacitors, bridge, in beam force sensor, diagram, Fixed, Plastic..., 7.22 4.30 SPICE: comparison of metal and semiconductor, analog circuit simulation program, 7.139- 4.30 140 foil-type, 4.29 and breadboarding, 7.148-149 low-impedance device, 4.31 model authors, 7.152 semiconductor, 4.29-32 noise generator, diagram, 7.146 sensor, 4.3 Index 34 INDEX

sensor amplifier, circuit, 4.33 Temperature control loop, diagram, 4.4 unbonded, 4.27 Temperature differential, calculation, 7.102 operating principles, 4.28 Temperature retrace, resistors, 7.10 uses, 4.30 Temperature sensor, 4.69-92 wire sensing elements, 4.29 current output, 4.86-88 Stray capacitance, 7.46-49 ratiometric voltage output, 4.89-90 PCB, 7.45 semiconductor, cold junction Strip inductance, 7.16 compensation, 4.75 Stripline: voltage output, 4.86-88 symmetric Temperature transducer, types, 4.69 for PCB transmission, 7.134-135 Terman, F.E., H.7 propagation delay, 7.135 Terman, Frederick, H.5 Subtractor amplifier, 2.3-6 Terman, Frederick E., 1.20, 1.29 Sullivan, Doug, H.69 Texas Instruments, H.29, H.31, H.61-62 Sullivan, Douglas, H.60 Thandi, Gurgit, 7.73 Summing Amplifier, H.14 THD+N, 3.14, 3.17-18 Summing point, 1.8 definition, 1.88, 3.17-18 Super-beta bipolar input bias current and SINAD, 3.15 compensated op amp, circuit, 1.38 THD, 3.14, 3.17-18 Super-beta bipolar transistor technique, definition, 1.88, 3.17 H.51 Thenevin equivalent, 4.89 Surface microstrip, 7.131-132 Thermal EMF, resistors, 7.11 Suttler, Goodloe, 4.92 Thermal management, op amps, 7.101-108 Swartzel M9 design, H.17 Thermal noise, resistors, 7.13 Swartzel op amp, diagram, H.14 Thermal relationships, chart, 7.102 Swartzel, Karl, op amp, H.14-15 Thermal resistance, 7.101 Swartzel, Karl D. Jr., 1.20 junction to ambient air, measurement, Swartzel, K.D. Jr., H.25 7.102 Switch, buffered video crosspoint, 6.129 Thermal voltage, 1.105 Switching regulator, 7.64 Thermalloy 2227, 6.49 op amp power supply, 7.51 , 4.81-83 Switching time, multiplexer, 3.26 definition, 4.81 Sync inserter, with AD8037 clamping fixed shunt resistors, 4.82-83 amplifier, 6.176-177 high sensitivity, 4.82 System offset minimization, 4.22-24 linearization, 4.82-83 resistance characteristics, plot, 4.81 T sensor, 4.3 T-Tech, Inc., 7.164 Thermocouple: T10 prototype gun director, H.13 basic operating principles, 4.73 Tadewald, T., 7.22, 7.50 characteristics, 4.70 Tantalum and Ceramic Surface Mount cold junction reference system, 4.74 Capacitor Catalog, 7.22 EMF, effects, 7.12 Tantalum electrolytic capacitor, 7.7-8, 7.65 metals, 4.71 for EMI/RFI protection, 4.88 output voltage definition, 4.74-75 Tantalum Electrolytic and Ceramic Capacitor output voltage versus temperature, 4.71 Families, 7.73 parasitic, 4.22, 7.11 TDN: Temperature Drift Nonlinearity--A New principles, cold-junction compensation, Dual-FET Specification, 6.207 4.70-76 Teal, Gordon, H.29 Seebeck coefficient, 4.72 Teflon dielectric, 5.102, 5.104 sensor, 4.2, 4.3 Teflon standoff, 4.47-48 single-chip, signal conditioner, 4.77-78 Teledyne Corporation, H.34 termination, circuit, 4.75 Television: thermoelectric EMF, 4.73 monochrome, standard, 6.94 Type J, 4.71-72 picture frame, fields, 6.93 Type K, 4.71-72, 4.76 standard broadcast interface format, 6.93 amplifier and cold junction Tellegen, B.D.H., H.3, H.6 compensator, 4.76 Temperature coefficient, capacitor, 7.6 Type S, 4.71-72 Index 35 OP AMP APPLICATIONS

voltage generation, 4.74 as isolation amplifier, 2.43 Thermoelectric effect, resistors, 7.11-13 non-premium core, higher distortion, 6.71 Thermoelectric EMF: optimum turns ratio, calculation, 6.6 and dissimilar metals, 4.74 Transformer Application Notes (various), thermocouple, 4.73 Jensen Transformers, 6.77 Thermoelectric voltage: Transformer-coupled line driver, 6.69-76 generation, 4.49 basic, 6.69-70 as input offset voltage source, 4.49 feedback, 6.71-76 Thin film resistor, for precision Transformer-coupled microphone preamp, 6.5-7 amplifiers, 1.48 THD+N, 6.7 Thomas, L.C., 5.133 Transformer-input line receiver, 6.44-46 Three op amp in-amp: circuit, 6.44 circuit, 2.11-12 CMR errors, plot, 6.45 single supply, restrictions, 2.13 Transient voltage suppressor, 2.24, 7.98 Tim Williams Website, 7.138 Transimpedance, 5.109 Time domain response: Transimpedance op amp, 1.24, 1.114 filter, 5.17-18 Transistor: impulse response, 5.17-18 germanium, limitations, H.29 Timko, Mike, 4.91-92 invention, H.29 TL06x, H.62 packaged dual types, 6.194 TL07x, H.62 Transitional filter, 5.22 TL08x, H.62 Transmission line, 7.36 TMP35: behavior, summary, 6.101 SO-8 packaged voltage output temperature driver, experiments, 6.102-105 sensor, 4.88 microstrip, 7.36 voltage output sensor, 4.76 termination, rule, 7.136 TMP36, TO-92 packaged voltage output TransZorb, 7.98 temperature sensor, 4.88 availability, 7.100 TN56, H.36 clamp, 7.88 TO-99, for ICs, 6.49 Trefleaven, D., 5.134 TO-99 package, diagram, 4.47 Triboelectric effect, 7.91 Todd, C., 6.10 Trietley, Harry L., 4.37 Toennies, J.F., H.10, H.23 Tucker, D.G., H.6 Toomey, P., 5.134 Twin T notch filter: Total harmonic distortion, 1.88 design, 5.75 see also THD design equations, 5.94 Total harmonic distortion plus noise, see schematic, 5.132 THD+N Two op amp in-amp: Total noise, in-amp, calculation, 2.21 circuit, 2.7 Total output error, calculation, 1.61 CMR, 2.7, 2.8 Total output noise: disadvantages, 2.8-9 calculations, 1.83-87 single-supply, restrictions, 2.8-9 in-amp, calculation, 2.21 Two Precision Dual Op Amp Families, H.68 Tow, J., 5.133 Two-tone IMD, see also Two-tone Townsend, Jeff, H.65 intermodulation distortion TQ56, H.36 Two-tone intermodulation distortion, 3.14, Tran, Chau, 6.187 3.19 Transconductance, 1.104 210, chopper op amp, H.36 Transducer, 4.2 211, chopper op amp, H.36 output voltage range, 2.31 220, chopper op amp, H.36 temperature, types, 4.69 232, chopper op amp, H.36 Transformer: 233, chopper op amp, H.36 analog accuracy, 2.44 260, chopper op amp, H.36 in audio line coupling, 6.28-29 Type 5MC Metallized Polycarbonate Capacitor, coupling, 3.36 7.73 driver, galvanic isolation, 6.29 Type EXCEL leaded ferrite bead EMI filter, effective voltage gain, 6.6 and Type EXC L leadless ferrite bead, impedance ranges, 6.6 7.73 Index 36 INDEX

Type HFQ Aluminum Electrolytic Capacitor composite, 6.134-135 and Type V Stacked Polyester Film Video multiplexer: Capacitor, 7.73 dual RGB source, 6.128 with three 2:1 multiplexers, diagram, U 6.128 Understanding Common Mode Noise, 7.137 Video Op Amp, 1.51 Unregulated inverter charge-pump voltage Virtual ground, 1.8 converter, 7.61 Vishay chip resistors and type VTF networks, V 6.137 Vacuum tube: Vishay VTF series part 1005, 6.115 current feedback, 1.26-28 Vishay-Ohmtek firm, resistors, 6.34 feedback circuit Vishay/Dale Resistors, 7.23 CFB gain-bandwidth relationship, Vishay/Dale RNX Resistors, 4.67 plots, 1.27 Vladimirescu, A., 7.163 current feedback, 1.27 Vladimirescu, Andrei, 7.163 Terman designed, 1.26 Voigt, Paul, H.3 Valley-Wallman MIT Radiation Laboratory Voigt, Paul G.A.H., H.6 textbook, H.5 Voltage, regulated, calculation, 7.54 Valley, George E. Jr., H.7, H.26 Voltage controlled amplifier, 6.154-156 Van Valkenberg, M.E., 5.133 circuit, 6.154 Varactor bridge solid state op amp, H.33-35 Voltage converter: block diagram, H.34 charge-pump, 7.59-60 Variable gain amplifier: regulated output charge-pump, 7.62 in automatic gain control, 6.153 Voltage doubler, 7.59-60 digitally controlled, for CATV upstream Voltage drop, signal leads, 7.27-28 data line drivers, 6.157-158 Voltage feedback, in macromodel, 7.141 Vector Electronic Company, 7.164 Voltage feedback op amp, 1.104-112 Vectorboard, prototyping system, 7.153 comparison with current feedback op amp, Venturi effect, 4.32 1.124-125 Verhagen, C.M., H.12, H.24 frequency response, 1.72-74 Vertical sync, 6.94 gain-bandwidth product, 1.72-74 Very low noise transformer-coupled plots, 1.72 microphone preamp, 6.8-9 gain-bandwidth product, 1.72-74 circuit, 6.8 input impedance, diagram, 1.62 THD+N, 6.9 Voltage inverter, 7.59-60 Video: Voltage noise, 6.149 amplifier, 6.93-138 Voltage output temperature sensor, 4.86-88 bandwidth, 6.98-100 Voltage regulator: color signal, matrix unit, 6.95 adjustable, 7.54 composite color signal, 6.95 adjustable voltage LDO, 7.58-59 differential driving/receiving, fixed voltage LDO, 7.57-58 approaches, 6.109 functional diagram, 7.53 distribution amplifier, 6.107 LDO regulator controller, 7.59 formats, 6.96-97 linear high-speed multiplexing, 6.124-126 adjustable regulator ICs, 7.55 line driver, 6.106-107 basics, 7.52-54 NTSC composite color line, diagram, 6.94 negative leg series style, 7.52-53 signal positive leg series style, 7.52-53 analog television lines, 6.94 three terminal, diagram, 7.53 processing method, 6.108 noise reduction, 7.58 and specifications, 6.93-95 pass device, 7.54 transmission, 6.101 Voltage sensing, feedback, 7.27 single-supply Voltage standing wave ratio, filter, 5.24 applications, 6.130-136 Voltage-boosted rail-rail output driver, RGB buffer, 6.130-131 6.193-195 standard broadcast format, 6.93 circuit, 6.193 Video amplifier, 6.93-138 Video line driver, single-supply AC-coupled Index 37 OP AMP APPLICATIONS

W Wire sensing elements, in strain gage, 4.29 Wadell, Brian C., 7.138 Wire-wrap, prototyping system, 7.153 Wagner, Richard, H.68, 1.51 Wong, James, 4.91, 7.22, 7.137 Wainwright Instruments, 7.155 Worst harmonic, 3.14, 3.17-18 Wainwright Instruments GmbH, 7.164 Wurcer, S., 2.29, 6.47, 6.77 Wainwright Instruments Inc., 7.164 Wurcer, Scott, H.62, H.65, H.66, H.70, H.71, Wallman, Henry, H.7, H.26 4.1, 4.39, 6.77, 6.137, 6.207, 7.22, Watkins, Tim, 7.163 7.23, 7.50 Waveform: Wynne, John, 6.187 duty cycle, in AC-coupled single-supply op amp, 6.133 X positive swing portion, 7.84 X-AMP, 6.183 Webster, John G., 4.25, 4.37, 4.67, 4.91 continuous interpolation, current- Weeks, J.R., H.25 controlled stages, circuit, 6.155 Wesco film capacitors, 7.22 exponential amplifier, 6.154 Western Electric Company, H.3-4 xDSL upstream data line driver, 6.158-160 West, Julian M., 1.20 XFCB 1.5, op amp fabrication process, 1.104 Wheatstone bridge, circuit, 4.8 XFCB 2, op amp fabrication process, 1.104 Whitlock, B., 6.47 XFET, 3.43 Whitney, Dave, H.66, H.70, 6.91, 6.137 Wide bandwidth noise generator, circuit, Z 6.165 ZDT651 SM-8 Dual NPN Medium Power Wide dynamic range ultra low distortion Transistors Data Sheet, 6.207 driver, 6.58-59 ZDT751 SM-8 Dual PNP Medium Power Wideband in-amp, 6.184 Transistors Data Sheet, 6.207 Widlar, Bob, H.45-46, H.49, H.51-52, H.67, , H.56, 1.48, 7.79, 7.88, 7.98 H.72 breakdown voltage, 7.79 Widlar, R.J., H.67 Zener zap trimming, 1.36, 1.48 Widlar, Robert J., H.67 advantages, 1.49 Williams, A.B., 5.133 Zener zapping, H.56, H.61 Williamsen, M., 5.134 Zhang, K., 7.163 Williams, Jim, H.67, 7.164 Zicko, Peter, H.42 Williams, Tim, 7.137 Zis, Jerry, H.54, H.71 Wilson, Garth, H.53 Zumbahlen, H., 5.1, 5.134 Wire inductance, 7.16 Zverev, A.I., 5.133

Index 38 INDEX

ANALOG DEVICES' PARTS INDEX

AD60X X-AMP series, 6.183 AD620B, 4.34 AD82X family, 6.3 AD621, 2.17, 2.22, 4.35, 7.128 AD108, H.52 AD621B, 2.23, 4.34 AD108A, H.52 AD622, 2.23, 7.128 AD210, 2.44-46, 2.46 AD623, 2.16, 2.26, 2.39, 4.14, 6.186, AD215, 2.47 7.39, 7.90, 7.128 AD260, 2.49-50 AD623B, 2.23 AD261, 2.49-50 AD624C, 2.17, 2.23 AD301AL, H.50 AD625, 2.38-39 AD503, H.60-66, H.63 AD625C, 2.23 AD504, H.54 AD626, 2.23 AD506L, H.61 AD626B, 2.23 AD508, H.54 AD627, 2.10-11, 2.39, 4.14, 7.90, 7.128 AD508K, H.54 AD627B, 2.23 AD509, H.66 AD629, 7.39, 7.81-82 AD513, H.61 AD642, H.62 AD515, H.63 AD644, H.62 AD515L, H.63 AD648, H.62 AD516, H.61 AD648KN, H.62 AD517, H.54 AD688, 1.66 AD517L, H.54 AD704, H.54, 1.35 AD518, H.66 AD705, H.54, 1.35, 6.190 AD524, 2.24 AD706, H.54, 1.35 AD524C, 2.23 AD707, H.57, 3.12, 3.25, 4.22 AD526, 2.34-35 AD708, H.57, 4.16 AD542, H.62 AD711, H.62, 6.35, 6.191-192, 6.197, AD542L, H.62 6.199 AD544, H.62 AD711K, H.62 AD545, H.63 AD712, H.62, 1.103, 5.126, 6.35 AD545L, H.63 AD712KN, H.62 AD546, H.64 AD713, H.62 AD547, H.62 AD741, H.50-51 AD547L, H.62 AD741J, H.50 AD548, H.62 AD741L, H.50 AD548k, H.62 AD743, H.65, 1.77, 1.79, 4.59, 4.64-66 AD549, H.64, 1.58, 1.78, 4.43, 4.47 AD743K, 1.54 AD549K, 4.42 AD744, H.66, 4.59, 6.35, 6.62-63 AD549KH, 4.47 AD744JN, 6.62 AD549KN, H.64 AD745, H.65, 1.77, 1.79, 4.59, 4.63-66, AD549L, H.64 6.22, 6.24-25, 6.25 AD588, 4.34-35 AD746, 6.35 AD589, 4.33, 6.197, 6.200 AD768, 3.50 AD590, 4.86, 4.92 AD780, 3.34, 3.44, 6.122-123 AD592, 4.86-87 AD795, H.64, 1.78-79, 4.43, 4.46, 4.51- AD592CN, 4.87 52, 4.56, 4.59, 7.82-83 AD594, 4.77-78 AD795JR, 4.42-43, 4.48-49, 4.54, 4.56, AD595, 4.77-78 4.66 AD600, 6.154-156 AD795K, 4.55 AD602, 6.154, 6.156 AD797, 2.35-36, 3.12, 3.25, 6.8-9, 6.23, AD603, 6.154, 6.156 6.48, 6.58-59, 7.86, 7.122 AD604, 6.154, 6.156 AD797JN, 6.8 AD605, 6.154, 6.156 AD810, 6.48, 6.124 AD620, 2.12-15, 2.17, 2.19, 2.21-22, AD811, H.66, 1.103, 6.48-49, 6.50, 6.51, 2.24, 2.26-28, 2.30, 2.46, 4.14, 4.33, 6.60-64, 6.69, 6.82, 6.85, 6.106, 6.113, 7.87-89, 7.87-90, 7.128 6.171-172, 7.148 Index 39 OP AMP APPLICATIONS

AD812, 6.48, 6.51, 6.60-61, 6.63-64, AD7730, 2.40, 4.23-24, 4.36 6.106, 6.109-110, 6.113 AD7776, 2.26 AD813, 6.106, 6.110, 6.124, 6.126 AD7816, 4.87 AD815, 6.48, 6.63-64 AD7817, 4.87 AD817, 1.103, 6.48, 6.51, 6.54, 6.82, AD7818, 4.87 6.88-89, 6.163, 6.166, 6.182, 6.184, AD7846, 2.36-37 6.199-200, 6.204, 7.106, 7.144 AD7890-10, 3.27 AD818, 6.48, 6.54, 6.106, 6.115-116, AD8001, H.66, 1.103, 1.117, 6.82, 6.86- 6.116 87, 6.99-100, 6.102, 6.105, 6.106, 7.161- AD820, H.60-66, H.65, 1.41, 1.97, 4.45- 162 46, 4.59, 6.3, 6.4, 6.24, 6.26, 6.167, AD8002, 1.117, 6.106, 6.111-113 6.199, 7.78 AD8004, 1.117, 6.100 AD820B, H.65, 4.42 AD8005, 1.117 AD820BN, 4.44, 4.45 AD8009, 1.103, 1.117 AD822, H.60-66, H.65, 1.41, 1.97, 2.14, AD8010, 6.107 6.2-4, 6.167 AD8011, 1.103, 1.115-117, 6.151 AD823, H.60-66, H.65, 1.40-41, 4.59, AD8012, 1.117, 6.106 4.60-61, 6.2-3, 6.42, 6.63-64 AD8013, 1.117, 6.124 AD824, H.60-66, H.65, 1.41, 1.97 AD8014, 1.117 AD825, 5.128-129, 5.131, 6.41-43, 6.55, AD8015, 6.82 6.63-64, 6.179, 6.199 AD8016, 7.104-106 AD826, 6.48, 6.51, 6.82, 6.89, 6.177-178 AD8016ARP, 7.104 AD827, 6.89, 7.122 AD8017, 7.106 AD828, 6.106, 6.116, 6.181 AD8017AR, 7.101 AD829, H.66, 1.34-35, 6.48, 6.83, 6.165- AD8018, 6.159-160 166, 6.168-169 AD8021, 6.83 AD830, 6.117, 6.119, 6.179-181 AD8023, 1.117 AD840, H.66 AD8031, 1.112, 6.82, 6.132 AD843, 4.59, 6.190 AD8032, 1.112, 6.82 AD844, 6.168 AD8036, 6.120-122, 6.171-172 AD845, 4.59, 6.18, 6.19, 6.21, 6.25, AD8037, 6.120-123, 6.171-174, 6.176-178 6.41-43, 6.48, 6.54, 6.60-61, 6.69, 6.72- AD8039, 1.71, 1.112 73, 6.75-76, 6.87, 7.122 AD8041, 1.112, 3.34, 6.82, 6.130-131, AD845, 1.111 6.134-135 AD846, H.66, 1.25, 1.28, 6.168 AD8042, 1.112, 6.82, 6.130, 6.136 AD847, 1.110 AD8044, 1.112, 6.130-131 AD847, H.66, 1.103, 5.110, 6.48, 6.89, AD8047, 1.112, 6.106 7.150 AD8048, 1.112, 1.120, 6.106 AD974, 3.27 AD8055, 3.49-50, 6.106, 6.116 AD976, 3.27 AD8056, 6.106, 6.116 AD977, 3.27 AD8057, 3.22-24, 3.34, 6.106, 7.106 AD8013, 6.110 AD8058, 3.22-24, 3.37, 6.106, 7.106 AD76XX, 3.27 AD8061, 6.106 AD77XX, 2.32, 2.40, 3.24-25, 4.80-81 AD8062, 6.106 AD789X, 3.27 AD8063, 6.106 AD813X, 3.37, 3.51, 6.114 AD8065, 6.55, 6.61 AD855X, 1.32 AD8072, 1.117 AD860X, 1.47 AD8073, 1.117 AD922X, 3.34, 3.36-37 AD8074, 1.112, 6.82, 6.98, 6.124 AD976X, 3.48-49, 3.48-50 AD8075, 1.75, 1.112, 6.82, 6.98, 6.124 AD977X, 3.48-49, 3.48-50 AD8079A/B, 6.82 AD1580, 6.197, 6.200 AD8110, 6.129 AD1853, 3.52 AD8111, 6.129 AD3554, H.40 AD8113, 6.129 AD7416, 4.87 AD8114, 6.129 AD7417, 4.87 AD8115, 6.129 AD7418, 4.87 AD8116, 6.129 AD7528, 5.128-129, 5.131 AD8129, 6.117-118 Index 40 INDEX

AD8130, 6.117-119 ADG509F, 7.81 AD8131, 6.114 ADG511, 2.39 AD8138, 3.37-38, 6.114 ADI Thermal Coastline, 7.55-56 AD8170, 6.127-128 ADLH0032, H.40 AD8174, 6.127-129 ADLH0033, 6.79 AD8180, 6.127 ADM660, 7.61 AD8182, 6.127 ADM8660, 7.61 AD8183, 6.127 ADMXXX-E, 7.97-98 AD8185, 6.127 ADP330X, 7.55-57 AD8323, 6.157-158 ADP1148, 7.63 AD8350, 6.152 ADP3300, 7.57 AD8351, 1.103, 1.104 ADP3300ART-5, 7.57 AD8367, 6.154, 6.156 ADP3300ART-YY, 7.57 AD8531, 1.42, 1.46 ADP3301, 7.57 AD8532, 1.42, 1.46 ADP3301AR-5, 7.57 AD8534, 1.42, 1.46 ADP3310-3.3, 7.63 AD8541, 6.2, 6.192 ADP3331, 7.58-59 AD8551, 1.54, 1.99, 4.22, 4.76, 6.191- ADP3335, 7.58 192, 7.38, 7.44 ADP3603, 7.60, 7.62 AD8552, 1.99, 4.22 ADP3604, 7.60, 7.62 AD8554, 4.22 ADP3605, 7.60, 7.62 AD8571, 1.99-101 ADP3607, 7.60 AD8572, 1.99-101 ADR292E, 3.45 AD8574, 1.99-101 ADV7120, 6.130-131 AD8601, 1.47, 1.97 ADV7121, 6.130 AD8602, 1.47, 1.97 ADV7122, 6.130 AD8604, 1.47, 1.97 AMP01, 2.28 AD8605, 1.54 AMP02, 2.24 AD8610, 2.27, 6.55, 6.74-76, 6.195-196, AMP03, 2.28, 7.39, 7.82 6.203 AMP04, 2.39 AD8620, 6.76 AMP04E, 2.23 AD9002, 6.122 anyCAP LDO regulators, 7.55, 7.57 AD9042, 3.28 BUF03, 6.48-50, 6.80 AD9203, 3.37-38 BUF04, 1.46, 6.9, 6.22, 6.35, 6.48-50, AD9220, 3.16 6.59-61, 6.81-82 AD9225, 3.12-13, 3.31, 3.34-35 HOS-100, 6.79 AD9610, 1.28 MAT02, 6.197, 6.199-200 AD9611, 1.28 OP05, H.55-56 AD9620, 6.81 OP06, H.55-56 AD9630, 6.81 OP07, H.53-54, H.55-59, 1.31, 1.36, 1.48, AD9631, 1.112 1.78, 1.82, 4.42 AD9632, 1.112, 3.12-13 OP08, H.53 AD2210X, 4.89-90 OP12, H.53 AD22100, 4.90 OP15, H.61 AD22103, 4.89-90 OP16, H.61 AD506J, H.60 OP17, H.61 AD506k, H.60 OP27, H.58-59, H.65, 1.36-37, 1.78, 1.82, AD8554, 1.99 4.65, 6.19, 6.166, 7.86, 7.143 ADG46X series, 7.81 OP37, H.58, 6.22, 6.25 ADG408, 6.182 OP42, 4.59, 6.19, 7.122 ADG409, 2.38 OP77, H.57 ADG412, 2.35-36 OP77A, H.57 ADG438, 7.81 OP80, 7.122 ADG439F, 7.81 OP90, 5.110 ADG465, 7.80 OP97, H.53-54, 1.35, 1.38, 2.27, 4.42, ADG466, 7.80, 7.89 6.26, 6.190, 6.193-195 ADG467, 7.80 OP113, 1.32, 1.97, 2.36-37 ADG508, 7.81 OP176, 5.108 Index 41 OP AMP APPLICATIONS

OP177, H.57, 1.66-67, 1.81, 1.89, 1.91, OP413, 1.32, 1.97 1.95, 1.101, 3.12, 3.25, 4.22, 4.33-35, OP470, 6.2 6.199, 7.12 OP482, 1.103 OP177A, H.57 OP484, 1.42, 1.97 OP177F, 1.54, 1.58, 1.96-97 OP491, 1.42, 1.97 OP184, 1.42, 1.97 OP496, 1.97 OP191, 1.42, 1.97 OP497, H.53-54, 1.35, 1.38 OP196, 1.97 OP727, H.59, 1.95 OP200, 7.122 OP747, H.59, 1.95 OP213, 1.32, 1.81, 1.97, 4.16, 4.35, 6.2- OP777, H.59, 1.95, 1.97, 4.76, 7.80 3 OP1177, H.59, 1.95, 4.22 OP249, H.62, 1.103, 6.35, 7.122, 7.145 OP2177, H.59, 1.95, 4.16 OP270, 6.2, 6.19 OP4177, H.59, 1.95 OP275, 3.52, 6.2, 6.7, 6.21, 6.35, 6.38- REF195, 4.35 39, 6.48, 6.53-54, 6.56-57, 6.65, 6.72 SSM2135, 6.2-3, 6.4 OP279, 1.42 SSM2141, 6.35-36, 6.38-39, 6.42, 6.108 OP284, 1.42, 1.97 SSM2142, 6.67-68, 6.108 OP291, 1.42, 1.97 SSM2143, 6.35-36, 6.41-42, 6.44-45, 6.108 OP293, 1.97 TMP35, 4.76, 4.88 OP296, 1.97 TMP36, 4.88 OP297, H.53-54, 1.35, 1.38, 7.122 X-AMP, 6.154-156

Index 42 INDEX

STANDARD DEVICE PARTS LIST

6CS7 dual triode, H.11 2SK389, 6.204 6J6 dual triode long-tailed pair, H.12 6SL7, 6.206 6J7G pentode, H.11 6SL7GTB, 6.206 6L6, H.19 6SN7GTB, 6.206 6SJ7, H.19 709, 1.104, 6.201 6SL7 dual triode, H.16-17, H.19 741, 1.78, 1.103-104, 6.201 12AU7, H.22 743, 1.78 12AX7 dual triode, H.20-21 744, 1.78 12AX7, 6.206 795, 1.78 12SH7 pentode, H.12 7815, 7.54 1N748A, H.38 7915, 7.54 1N914, glass diode, 7.77-78 Aavid 5801, 4.64, 6.49 1N3600, H.39 AMP 5-330808-6, 7.159 1N4148, H.36 CD4001, 6.171 diode, 6.194 CD4011, 6.170-171 glass diode, 7.78 DPAD1, 7.83 low capacitance diode, 7.87 FD333, H.36 1N4448, diode, 6.69 HP5082-4204 PIN Photodiode, 4.59 1N5235, 6.195 J401, 6.201 1N5240B, zener diode, 7.78-79 JT-16A (Jensen), 6.8 1N5711, Schottky type diode, 7.77 LF356, 6.199 1N5712, Schottky diode, 6.122 LH0033, 6.79 2N760, H.31 LM101, 1.104 2N930, H.31 LM301A, 6.199 2N1132, H.31 LM309, 7.54 2N2219A, 4.34 LM317, 7.54-55 2N2222, H.39 LM337, 7.54-55 2N2222A, H.38 Micrel MIC4427, 4.24 2N2907, H.31-32, H.39 Mini-Circuits T16-6T, 3.36 2N2975, H.36-37 MPSA42, 6.206 2N3250, H.38 MPSA92, 6.206 2N3904, H.39 P4250, H.38 emitter follower, 6.132 PAD1, low leakage diode, 7.83 2N3904, 6.132, 6.204, 6.206 PN2222A, 6.194-196, 6.200 2N3906, H.39 PN2907A, 6.194-196 PNP transistor, 6.177 PN4117, JFET diode, 7.77 2N3906, 6.177, 6.206, 7.78 SD-020-12-001, 4.41 2N3954, N-channel JFET dual op amp, 6.201 SM-8, 6.194 2N3958, 6.201 SOT-363, 6.194 2N4117, general purpose JFET diode, 7.78 TO-99, metal can packaging, 7.42 2N4121, H.38 TO92, 6.194 2N4258, H.39 ZDT651, 6.196 2N5210, 6.199 ZTX652, ZDX653 NPN Silicon Planar Medium 2N5457, JFET diode, 7.77 Power Transistors Data Sheet, 6.207 2N5457, 7.77-78 ZDT751, 6.195-196 2N5459, 6.204 ZTX752, ZDX753 PNP Silicon Planar Medium 2N5911, H.38-39 Power Transistors Data Sheet, 6.207 2N5911, 6.79 ZTX653, 6.195-196 2SK389 Dual FET, Silicon Monolithic N- ZTX753, 6.195-196 Channel Junction Type Data Sheet, 6.207

Index 43 OP AMP APPLICATIONS

Index 44