Cooling of Anionic Metal Clusters Stored in an Electrostatic Ion Beam Trap

Total Page:16

File Type:pdf, Size:1020Kb

Cooling of Anionic Metal Clusters Stored in an Electrostatic Ion Beam Trap Cooling of anionic metal clusters stored in an electrostatic ion beam trap Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakult¨at der Ernst-Moritz-Arndt-Universit¨atGreifswald vorgelegt von Christian Breitenfeldt geboren am 22.10.1986 in Greifswald Greifswald, den 7. Dezember 2016 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Lutz Schweikhard 2. Gutachter: Prof. Dr. Karl-Heinz Meiwes-Broer Tag der Promotion: 24.04.2017 Contents List of Figures iii List of Tables iii Nomenclature v 1 Introduction 1 2 Experimental Setup 3 2.1 The electrostatic ion-beam trap . .3 2.2 The cryogenic trap for fast ion beams . .4 2.2.1 Metal Ion Sputter Source (MISS) . .6 2.2.2 Laser VAPorization ion source (LVAP) . .6 2.3 Operation . .8 2.3.1 Experimental control system . .8 2.3.2 Room temperature operation . .9 2.3.3 Cryogenic operation . .9 2.4 Data evaluation . 10 3 Beam dynamics of an electrostatic ion-beam trap 11 3.1 Beam losses . 11 3.2 Self-synchronization and self-bunching . 11 3.3 Thesis article I . 12 4 Anionic clusters 13 4.1 Decay of highly excited clusters . 13 4.1.1 Electron emission . 13 4.1.2 Fragmentation . 16 4.2 Radiative cooling of excited clusters . 19 4.3 Geometric cluster structure . 20 4.4 Thesis article II . 21 4.5 Thesis article III . 22 5 Summary and Outlook 23 6 Cummulative thesis articles 33 6.1 Author contribution . 33 6.2 Spreading times of ion-bunches in the Cryogenic Trap for Fast ion beams 35 6.3 Decay processes and radiative cooling of small anionic copper clusters . 41 6.4 Long-term monitoring of the internal energy distribution of isolated clus- ter systems . 53 7 Eigenst¨andigkeitserkl¨arung 67 i List of Figures 2.1 Schematic view of the EIBT at the CTF . .4 2.2 Schematic view of the CTF setup . .5 2.3 Photograph of the pick-up electrodes . .6 2.4 Schematic view of the MISS . .7 2.5 Schematic view of the LVAP . .7 2.6 Schematic experimental cycle . .8 4.1 Calculated electron emission rate constants for Co4− ........... 15 4.2 Decay curves for Co4− ............................ 17 List of Tables 2.1 Applied voltages at the EIBT . .5 iii Nomenclature CSR cryogenic storage ring CTF cryogenic trap for fast ion beams EIBT electrostatic ion-beam trap LVAP laser-vaporization source MCP micro-channel plate detector MISS metal-ion sputter source MR-ToF multi-reflection time of flight OPO optical parametric oscillator 1 A2 Einstein coefficient for spontaneous emission Bd rotational constant of the daughter cluster Bp rotational constant of the parent cluster 2 B1 Einstein coefficient for absorption D0 binding energy of the most weakly bound atom in a cluster E energy EA adiabatic electron affinity Eph photon energy Ei energy of level i E0 kinetic energy of the reference particle Jd rotational moment of the daughter cluster max Jd maximum rotational momentum of the daughter cluster Jp rotational moment of the parent cluster L orbital angular momentum of the fragments Lmax maximum orbital angular momentum of the fragments Lmin minimum orbital angular momentum of the fragments L0 orbital length for the reference particle M total number of states for an electron in a box N internal energy distribution of an ion ensemble R rate of decaying ions R electron emission rate An− An+e− R ! electron attachment rate An+e− An− R ! single atom emission rate A− A− +A n ! n 1 R − single atom attachment rate A− +A A− n 1 ! n U − potential between the fragments T temperature V volume c speed of light e elemental charge f spin degeneracy f0 revolution frequency of the reference particle g reaction path degeneracy h Planck constant ~ reduced Planck constant v Nomenclature kat rate constant for electron attachment kcomplex rate constant for forming a collision complex kem rate constant for electron emission kfrag fragmentation rate constant krad photon emission rate constant m electron mass n number of atoms in a cluster nx;y;z quantum numbers of an electron in a box r distance of the fragments v relative velocity of the electron and the cluster or the daughter cluster and the atom v0 mean velocity of the reference particle Γ total number of orbital angular momentum states ∆E energy difference between the ion of interest and the reference ion ∆f frequency difference between the ion of interest and the reference ion ∆L difference of the orbit length between the ion of interest and the reference ion ∆v difference of the mean velocity between the ion of interest and the reference ion Λ constant describing the height of the rotational barrier α polarizability d relativ translational energy of the fragments max d maximum relative kinetic energy of the fragments min d minimum relative kinetic energy of the fragments d;ges sum of rotational and kinetic energy of the fragments electron kinetic energy ηE slip factor µ reduced mass ν photon frequency ρ density of states ρd density of states in the daughter cluster ρelectron electron density of states ρp density of states in the parent cluster ρproduct density of states after electron emission ρreactant density of states before electron emission ρrot rotational density of states ρtrans density of translational states σ electron-attachment cross section σP h photon-absorption cross section vi 1 Introduction Already early mankind recognized the potential application of thermal radiation. A simple example is warming in the sun or at a fire. But even more complex applica- tions such as monitoring the annealing temperature of a metal workpiece for forging are common since thousands of years. With the formulation of the Maxwell's equa- tions [MAX65] and the related understanding of light being an electro-magnetic wave, increasing interest in the question about the nature of thermal radiation arose. Slightly earlier it was discovered that the spectrum of an atom is composed of discrete lines [KIR60]. Along with the development of the atomic model these lines were later interpreted as the energy difference between electronic levels [BOH13]. Then it took more than 40 years finding a description for the thermal radiation of bulk material. At the beginning of the 20th century Max Planck published his law of thermal radiation [PLA00, PLA01]. Planck's famous formula solved the problem of the so called ultraviolet catastrophe, a result of the Rayleigh-Jeans law [RAY00, JEA05], which reproduces the radiation spectrum at low photon energies. His formula merged the Rayleigh-Jeans law with the Wien approximation [WIE97], the latter one describing the short-wavelength spectrum of thermal radiation. Planck's formula marks the beginning of quantum physics. Clusters bridge the gap between single atoms and bulk material. Mie theory [MIE08] describes successfully the thermal radiation of large cluster systems containing hun- dreds of atoms. For small clusters consisting of only a few atoms Mie theory fails and experimental data are sparsely available. Thermal radiation is one of the basic observables of clusters. Studying its depen- dence on the cluster size allows a deeper understanding of the general evolution from single atoms to the bulk material. The experimental environment is crucial for the reliability of the gathered information. Due to the high reactivity and the large sur- face to volume ratio, storage and accumulation of clusters on surfaces or embedded in matrices often lead to faulty results. Thus, measurements in the gas phase are desired. Nowadays ion storage on timescales comparable to thermalization processes of many species is possible. But low production yields and limits of storage capabilities often prohibit direct measurements of the thermal radiation. Hence, indirect measurements are required. Here electrostatic ion-storage devices are suitable setups. These devices offer the possibility to store ions over long times and have field-free regions in order to perform experiments without perturbation of electric or magnetic fields. Due to the purely electrostatic nature the absence of any mass limitation offers unique experimen- tal conditions covering a wide range of different cluster sizes. In this thesis the cooling of small anionic cobalt and copper clusters is addressed. First the experimental setup, based on an electrostatic ion-beam trap, is presented. Here, studies on basic trap characteristics are discussed. These sections are followed by a discussion on the decay of anionic clusters. Measurements on anionic copper clusters consisting of four to seven atoms are discussed. Here, the decay of hot clusters is observed in order to draw conclusions on the internal temperature and the cooling process itself. In the last part of this thesis measurements on Co4− are discussed. A measurement scheme is presented enabling to monitor the internal energy distribution 1 1 Introduction of the clusters over storage time in a temperature-controlled environment. The cooling of initially hot clusters as well as the heating of initially cold clusters were observed. 2 2 Experimental Setup 2.1 The electrostatic ion-beam trap Almost 50 years ago electrostatic ion mirrors were introduced to the field of time- of-flight mass spectrometry [MAM73]. Ions with higher kinetic energy can penetrate deeper into the ion mirror and thus travel a longer path. The basic idea is tuning the ion mirror in such a way that the longer traveled path compensates for the higher velocity. Thus, the mass resolution can be improved compared to a simple, so called linear, time- of-flight mass spectrometer. To further increase the resolving power a more advanced mirror setup including several stacks of reflection plates has been developed. The refined ion potential creates a closed ion orbit between the mirrors and thus increases the flight time dramatically [WOL90].
Recommended publications
  • P1-Extreme Amplifier by David Sorlien, Revised and Updated by Stephen Keller
    Introduction to Tube Amplifier Theory: 10.02.15 Featuring the AX84 P1-eXtreme Amplifier by David Sorlien, revised and updated by Stephen Keller The P1-eX amplifier is a simple three-stage vacuum tube electric guitar amplifier. As outlined in Fig. 1, it consists of two preamp stages driving a power amp stage. Depending on the choice of output tube, this amp is can deliver between 7 and 15 watts into a 4-, 8-, or 16-ohm load. Fig. 1: P1-eX block diagram Placed between the two preamp stages is a preamp volume control. In a similar manner, the bass, middle, and treble tone controls and a master volume control are placed between the preamp and the final power amp stage. The guitar amplifier performs two primary functions: One, it amplifies the small voltages and currents produced by the guitar pickup into a signal powerful enough to drive a speaker. Two, it shapes the frequency response, tonality, and distortion characteristics of the raw guitar signal into a form pleasing to the musician. To better grasp how a guitar amplifier accomplishes these functions, let©s take a walk through the inner workings of the AX84 P1-eXtreme amp (P1-eX). For reference, there is copy of revision 06.03.16 of the schematic provided in Appendix 1 at the end of this document. To fully understand how a guitar amp works, even a simple one like the P1-eX, you must know how to read schematic diagrams, and understand what things like resistors and capacitors are. You also need some knowledge of basic algebra and electronic theory.
    [Show full text]
  • The Beginner's Handbook of Amateur Radio
    FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc.
    [Show full text]
  • 6\ M?L/ K7 Gmwy 4 I ' + /‘4 I- E 7 4-‘1 :"I'yl’‘‘‘‘ ‘N I ‘ 7'0 LP 2: J- = ' '
    Oct.’ 8, 1940. s. HUNT £2,217,277 ' ‘ DEGENERATIVE PLATE cmcun: DETECTOR Filed Sept. '28, 19:8 DEGENERAT/VE PLATE __———_C/RCU/T DETECTOR | /2 6\ M?l/ k7 gmwy 4 i ' + /‘4 i- E 7 4-‘1 :"I'Yl’‘‘‘‘ ‘n I ‘ 7'0 LP 2: J- = ' ' a . °~ I ?|__' I ~ 70 A. E AMPLIFIER INVENTOR. Ilse MOUR HUNT BY ATTORNEY. Patented Oct. 8, 1940 2,2l7,277 UNITED STATES F ICE 2,217,277 DEGENERAT'IVE PLATE CIRCUIT DETECTOR Seymour Hunt, Jackson Heights, Long llsland, N. Y., assignor to Radio Corporation of Amer ica, a corporation of Delaware Application September 28, 1938, Serial No. 232,075 6 Claims. (Cl. 256-4237) My present invention relates to detector cir art are fully acquainted with the construction of cuits, and more particularly to degenerative plate superheterodyne receivers, it is not believed nec circuit detectors capable of substantially ampli essary to explain the construction thereof at any fying the audio voltage output thereof. greater length. The output electrode for the 5 One of the main objects of this invention is to detector circuit includes electrode 4. Preferably, provide a detector of the in?nite impedance type this electrode is a wound grid. The latter is con which includes an electronic section having a nected through load resistor 52 to the plus B negative mutual conductance characteristic terminal of any desired direct current source, which functions to amplify the audio output of such as the usual direct current energizing source 10 the detector. of a radio receiver. The coupling condenser l3 Another important object is to provide in a transmits the audio voltage, in ampli?ed form, biased plate circuit detector of the degenerative to the following audio ampli?er for ?nal repro type a negative mutual conductance section duction.
    [Show full text]
  • Electrostatic Design and Characterization of a 200 Kev Photogun and Wien Spin Rotator
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Spring 2021 Electrostatic Design and Characterization of a 200 keV Photogun and Wien Spin Rotator Gabriel G. Palacios Serrano Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons, and the Physics Commons Recommended Citation Palacios Serrano, Gabriel G.. "Electrostatic Design and Characterization of a 200 keV Photogun and Wien Spin Rotator" (2021). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/mf9f-r453 https://digitalcommons.odu.edu/ece_etds/224 This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. ELECTROSTATIC DESIGN AND CHARACTERIZATION OF A 200 keV PHOTOGUN AND WIEN SPIN ROTATOR by Gabriel G. Palacios Serrano B.S. August 2014, Universidad Autónoma Metropolitana, Mexico M.S. May 2017, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY May 2021 Approved by: Helmut Baumgart (Director) Carlos Hernández (Member) Linda Vahala (Member) Mohammad Obeid (Member) Gon Namkoong (Member) ABSTRACT ELECTROSTATIC DESIGN AND CHARACTERIZATION OF A 200 keV PHOTOGUN AND WIEN SPIN ROTATOR Gabriel G. Palacios Serrano Old Dominion University, 2021 Director: Dr.
    [Show full text]
  • Cre|4|L-Feuhis ATTORNEYS Nov
    Nov. 28, 1961 M. V. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 1 NVENTOR MICHAEL V.SULL VAN cre|4|l-feuHIS ATTORNEYS Nov. 28, 1961 M. W. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 2 aa- ?-s? ? O ???? S I INVENTOR MICHAEL V. SULLIVAN -a?.--77. ? ????? ??? HIS AT TORNEYS Nov. 28, 1961 M. V. SULLIVAN 3,011,018 HIGHLIGHT APERTURE CORRECTION SYSTEM Filed Sept. 26, 1956 3 Sheets-Sheet 3 NVENTOR MiCHAEL V. SULLIVAN Y Cit...!!* His A ?????? la? 3,011,018 United States Patent Office Patented Nov. 28, 1961 3,011,018 FIG. 2 illustrates the waveform of the television pic HIGHLIGHT APERTURE CORRECTION SYSTEM ture signal at various points in the aperture equalization Michael V. Sullivan, Florham Park, N.J., assignor to system shown in FIG. 1; Columbia Broadcasting System, Inc., New York, N.Y., FIG. 3 is a circuit diagram of the input and white a corporation of New York clipper portions of the system shown in FIG. 1; Filed Sept. 26, 1956, Ser. No. 612,221 FIG. 4 is ? circuit diagram of the difference ampli 7 Claims. (Cl. 178-6) fier portion of the system shown in FIG. 1; and FIG. 5 is a circuit diagram of the summing amplifier This invention relates to television, and more particu and output portions of the system shown in FIG.1. larly to a new and improved aperture equalization O Referring first to the block diagram of FIG. 1 and method and means for correcting aperture distortion in the graphic representations of the signal waveform of the highlight regions of the television picture, without FIG.2, a television picture information signal as illus increasing the high frequency noise which is inherent in trated in FIG.
    [Show full text]
  • BY 7% É Arrórney Patent-Ed Nov
    Nov. 24, 1942. s. HUNT 2,302,867 COMÈINED MIXER AND INTERMEDIATE FREQUENCY STAGE l Filed Oct. 25, 1941 Q/ T - l INVENToR ’ SEYMOUR BY 7% é ArróRNEY Patent-ed Nov. 24, 1942 2,302,867 . UNITED STATES PATENT OFFICE tratas@r COMBINED MIXER AND INTÉRMEDIATE FREQUENCY STAGE Seymour Hunt, Flushing, N. Y., assîgnor to Radio Corporation of America, a corporation of Dela Ware Application october 25, 1941, serial No. 416,438 8 Claims. (>Cl. 250-20) This invention is concerned with an improve ` accelerate the electron stream and to shield elec ment in radio receivers of the superheterodyne trostatically the signal control grid G4 from volt type and more particularly with a combined first age fluctuations on the oscillator anode-grid G2 detector-oscillator or mixer and intermediate fre and the output anode P. quency stage that may be used with advantage in Cl According to my invention the functions of such receivers. the several electrodes and the connections there In the present state of the art it isknown to tol of the circuit elements are modified somewhat use in superheterodyne circuits a multi-electrode ~ as will now be pointed out more particularly. In type of tube designed to perform simultaneously the circuit of Fig. 1 the grid G1 serves as the the functions of a mixer tube and of an oscillator signal control grid as well as the oscillator grid. tube. According to my present invention the ` Connected between the signal grid G1 and cath same or equivalent multi-electrode tube is made ode 'is the circuit L1-C1 which is tuned to the to perform in addition the function of interme received signal oscillations.
    [Show full text]
  • Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
    Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit­ m WIng promise at the beginning of the twentieth century. Peo­ ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com­ munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra­ phy detector& wauid have on elec­ tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless­ telegraphy technology. He demon­ strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ­ Jish Channel. By the end of 1901. Mar­ coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber­ ent flmltations woUld soon disappear, Ships· at sea would no longer be iso­ la1ed. No locatlon on Eorth would. be too remote to send and receive mes­ sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio­ ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band­ width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans­ missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln­ cterlng the development of commer­ () cial wireless-telegraph nefWorks.
    [Show full text]
  • Short Wave Radio
    Short Wave Radio A Working Electronic Sculpture Honoring the History of Radio Please note: This radio picks up short wave stations, but for your best satisfaction it will require a little time and attention, both to learn how to operate it and to appreciate the principles and history that it embodies. You’ll find bare-bones instructions on this page and more details inside the notebook. To turn the radio on, rotate the volume control clockwise until you hear a click, then set its dial to 3 or 4. If the radio was not already turned on, you’ll have to wait about 30 seconds for its vacuum tubes to warm up. •Put on the headphones. •Set the radio’s other controls as follows: •RF Gain: Fully clockwise. •Preselector: 1 •Tuning: 20 •Fine Tuning: 5.0 (This works like a clock, only with ten “hours” instead of 12) •Regeneration: 7 (Or advance slowly clockwise from zero until just after the point you hear a louder hiss in the headphones.) •Volume: Set to a comfortable level, usually about 4. Now, slowly adjust the TUNING control back and forth looking for squeals that indicate signals. (The shortwave broadcast band with 31 meter wavelength is located between about 10 and 30 on the dial.) You’ll should find a few unless ionospheric conditions are particularly poor on this day. Leave the TUNING control set on a loud squeal. Then slowly adjust the FINE TUNING to “zero beat.” (You’ll notice as you move the dial across a signal, it starts with a high-pitched note, moving down to a low-pitched or zero note, then back up to high pitch again.
    [Show full text]
  • Sept. 17, 1935. A. H. TAYLOR 2,04,913 CIRCUIT for PRECISION CONTRO of MASTER OSCILLATORS Filed Feb
    Sept. 17, 1935. A. H. TAYLOR 2,04,913 CIRCUIT FOR PRECISION CONTRO OF MASTER OSCILLATORS Filed Feb. 8, 1933 rvuorvov ALBERT H.TAYLOR &tkow, Patented Sept. 17, 1935 2014,913 UNITED STATES PATENT OFFICE 2,014,913 CIRCUIT FOR PRECISION CONTROL OF MASTER, CSCELLATORS Albert H. Taylor, Washington, D. C., assignor to Wired Radio, Inc., New York, N. Y., a corpora tion of Belaware Application February 8, 1933, Serial No. 655,829 4 Claims. (C. 250-36) My invention relates broadly to high frequency oscillation systems and more particularly to a screen grid electrode of the tetrode Oscillator and circuit for the precision control of master Oscil another of the taps at higher potential leading to lators in a high frequency OScillation System. the plate electrode. A high frequency inductance One of the objects of my invention is to pro system is connected in circuit between the control vide a simplified circuit for a high frequency grid and the anode. A pair of balancing con Oscillation system which is constructed to deliver densers is connected in series across the induc Oscillations of high frequency and efficiency. tance and a connection taken from a midpoint Another object of my invention is to provide between the condensers to a return circuit lead 0. a circuit arrangement for a high frequency OScil ing to the Cathode. Provision is made for con lator and amplifier System having a high degree necting a balance condenser between the Screen O of freedom from variation in frequency brought grid and any point in the coil system.
    [Show full text]
  • A/72-7Ey/ Sept
    Sept. 6, 1955 P. POURET METHOD OF DETECTION AND ELECTRIC DETECTOR 2,716,979 OF ACUPUNCTURE AND IGNIPUNCTURE POINTS Filed July 31, l95l 2. Sheets-Sheet l I-1 v-era 72 Aerre A2u re? A/72-7ey/ Sept. 6, 1955 P. POURET 2,716,979 METHOD OF DETECTION AND ELECTRIC DETECTOR OF ACUPUNCTURE AND IGNIPUNCTURE POINTS Filed July 31, l95l 2 Sheets-Sheet 2 J.7 ye-Z/2 - Aerre All ey 2-azé2--- 47/2/12ey United States Patent Office 2,716,979 Patented Sept. 6, 1955 2 drop between the two resistances. 105 and 106 with a 2,716,979. resulting variation in voltage between the plate 101 and the fluorescent screen 102. This variation causes a sector METHOD OF DETECTION ANE).ELECTRIC DE of shadow to appear on the screen, the extent of the dark TECTOR OF ACUPUNCTURE ANE). IGNIPUNC. 5 surface being determined by the difference in potential TURE POINTS occurring between the plate 101 and screen 102. For Pierre Pouret, Chatellerault, France each discharge of the condenser 5, the cathodic eye blinks once only. The sensitivity of the cathodic eye 12 is regu Application July 31, 1951, Serial No. 239,515 lated by potentiometer 14. It should be understood that Claims priority, application France August 3, 1959 0. any equivalent indicating means can be used instead of 13 Claims. (C. 128-e-2.1) electronthe cathode ray eye,indicator. which is also known as a magic eye or In the assembly heretofore described a compromise. between the adjustment of voltage divider 4 and potenti The object of the present invention is the electrical 5 ometer 14 allows contact with the patient in the best detection of particular cutaneous points the location of conditions of sensitivity.
    [Show full text]
  • The Plate Electrode Is What Type of Grounding Electrode? A) Manufactured Grounding Electrode B) Field Assembled Grounding Electr
    A) manufactured grounding B) field assembled grounding The plate electrode is what type of grounding electrode? C) in-situ grounding electrode D) artificial grounding electrode electrode electrode When installing an electrical system using Rigid PVC Conduit, what characteristic must be A) has a higher coefficient of B) has a lower coefficient of C) has a lower coefficient of D) has approximately the same considered? expansion than steel expansion than aluminum expansion than steel coefficient of expansion as steel A single dwelling is supplied with electrical power from the local supply authority. The owner of the single dwelling wishes to interconnect his own electrical renewable power system with the local supply authority's system. The owner also wants to use the energy from the renewable A) 120 V B) 80 V C) 50 V D) 46 V system to charge storage batteries for standby power. What is the maximum operating voltage rating of the storage batteries to be used for the standby power system? Which type of enclosure can be used to house a panelboard inside a building that has circulating A) Type 1 B) Type 2 C) Type 4 D) Type 5 metal dust from grinding metal castings? What is the minimum size of RW90XLPE copper conductor that can be installed in a run of EMT that is used to feed the primary of a 75 kVA, dry-type, 600-120/208 V transformer protected by a A) No. 1 AWG B) No. 2 AWG C) No. 3 AWG D) No. 4 AWG moulded case circuit breaker? What is the maximum distance that the disconnecting means for a roof top air make up unit can A) 1 m B) 3 m C)
    [Show full text]
  • Photosensitive Camera Tubes and Devices Handbook
    11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal.
    [Show full text]