A Study of Multiprocessor Systems Using the Picoblaze 8-Bit Microcontroller Implemented on Field Programmable Gate Arrays Venkata Mandala

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Multiprocessor Systems Using the Picoblaze 8-Bit Microcontroller Implemented on Field Programmable Gate Arrays Venkata Mandala University of Texas at Tyler Scholar Works at UT Tyler Electrical Engineering Theses Electrical Engineering Fall 8-2011 A Study of Multiprocessor Systems using the Picoblaze 8-bit Microcontroller Implemented on Field Programmable Gate Arrays Venkata Mandala Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad Part of the Electrical and Computer Engineering Commons Recommended Citation Mandala, Venkata, "A Study of Multiprocessor Systems using the Picoblaze 8-bit Microcontroller Implemented on Field Programmable Gate Arrays" (2011). Electrical Engineering Theses. Paper 21. http://hdl.handle.net/10950/59 This Thesis is brought to you for free and open access by the Electrical Engineering at Scholar Works at UT Tyler. It has been accepted for inclusion in Electrical Engineering Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. A STUDY OF MULTIPROCESSOR SYSTEMS USING THE PICOBLAZE 8-BIT MICROCONTROLLER IMPLEMENTED ON FIELD PROGRAMMABLE GATE ARRAYS by VENKATA CHANDRA SEKHAR MANDALA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering David H. K. Hoe, Ph.D., Committee Chair College of Engineering and Computer Science The University of Texas at Tyler August 2011 Acknowledgements First of all, I am thankful to my father Mandala Maheswara Rao and mother Suguna Kumari and sister Geetha Devi for making my dream come true. I would like to thank Dr. David Hoe, my thesis advisor, for his support in my research in different areas of Electrical Engineering. I would also thank him for his encouragement, patience and supervision from the preliminary stages to the concluding level in my thesis. Without his guidance and persistent help this thesis would not have been possible. I would like to thank my committee members, Dr. Hector A. Ochoa and Dr. Mukul V. Shirvaikar for taking the time to review my work. I am thankful to Dr. Mukul Shirvaikar for supporting and guiding me throughout my Master’s degree. I would like to thank the entire Electrical Engineering department and the University of Texas at Tyler for supporting me throughout my Master’s degree. Also, I would like to thank Chris Martinez, an undergraduate student in Electrical Engineering, for helping me in my thesis. Finally, I would like to thank all those who supported me in any respect during the completion of the thesis. Table of Contents List of Figures .................................................................................................................... iv List of Tables ..................................................................................................................... vi Abstract ............................................................................................................................. vii Chapter One: Introduction .................................................................................................. 1 1.1 Soft Processor Cores on FPGA ............................................................................ 1 1.2 Research Objectives ............................................................................................. 2 1.3 Research Method .................................................................................................. 3 1.4 Thesis Outline ....................................................................................................... 3 Chapter Two: Background .................................................................................................. 4 2.1 Trend Towards Multicore Processors ................................................................... 4 2.1.1 Power Wall Problem ..................................................................................... 4 2.2 Multicore Processor .............................................................................................. 7 2.2.1 Array of Processors ....................................................................................... 8 2.2.2 Array of Functional Units ............................................................................. 9 2.3 Reconfigurable Computing ................................................................................ 11 2.3.1 Advantages of Reconfigurable Computing ................................................ 11 2.3.2 FPGAs......................................................................................................... 11 2.3.2.1 Microcontroller within an FPGA ......................................................... 11 2.3.3 Array of Soft Processors ............................................................................. 12 2.3.4 PicoBlaze Microcontroller .......................................................................... 13 2.4 Interprocessor Communication .......................................................................... 15 2.5 Summary ............................................................................................................. 16 Chapter Three: FIFO Style Interprocessor Communication ............................................. 17 3.1 FIFO Style Communication ............................................................................... 17 3.1.1 FIFO ............................................................................................................ 17 3.1.2 PicoBlazes with a FIFO Buffer ................................................................... 19 3.1.3 Experimental Verification of the FIFO with Two PicoBlazes ................... 20 i 3.2 Array of PicoBlazes ............................................................................................ 20 3.2.1 The Wrapper ............................................................................................... 20 3.2.2 Need for an Array of PicoBlaze Units ........................................................ 24 3.2.3 Details of the Array .................................................................................... 25 3.2.4 Routing/Logic Cell Resources Comparison ............................................... 26 3.3 Experiment with Array of PicoBlazes ................................................................ 26 3.3.1 Counting Numbers Experiment .................................................................. 27 3.3.2 Status Signals and Read/Write Strobe Conditions Setup ........................... 27 3.3.3 Validation and Results ................................................................................ 28 3.4 Application (A 4-tap FIR Filter) ......................................................................... 29 3.4.1 Algorithm and Simulation of FIR ............................................................... 29 3.4.2 Array Structural Flow For FIR ................................................................... 29 3.4.3 Validation and Results ................................................................................ 31 3.5 Summary ............................................................................................................. 33 Chapter Four: Shared Memory Inter-Processor Communication ..................................... 34 4.1 Shared Memory .................................................................................................. 34 4.1.1 Shared Memory Mode of Communication ................................................. 34 4.1.2 Sharing BlockRAM Between Two PicoBlazes .......................................... 35 4.1.3 Shared Memory for Communication Between PicoBlaze Processors ........ 36 4.2 Need for an Arbiter ............................................................................................. 36 4.2.1 Arbitration ................................................................................................... 37 4.3 Round-Robin Arbiter .......................................................................................... 37 4.3.1 Implementation of a Round-Robin Bus Arbiter ......................................... 38 4.3.2 Round-Robin Arbiter with Four Processors ............................................... 39 4.4 PicoBlazes Using Round-Robin Arbiter ............................................................ 40 4.4.1 Four PicoBlazes Using Round-Robin Arbiter ............................................ 40 4.4.2 Implementation Description of Shared Memory with Round-robin Arbiter ............................................................................................................................. 40 4.4.3 Observations ............................................................................................... 42 4.5 Summary ............................................................................................................. 43 Chapter Five: Conclusions and Future Work ................................................................... 44 ii 5.1 Conclusion .......................................................................................................... 44 5.2 Future Work ........................................................................................................ 44 References ......................................................................................................................... 46 Appendix A: Assembly Code for Button Press Experiment ............................................. 50 A.1 PicoBlaze 1 to FIFO Assembly Code for Button Press Experiment ................. 50 A.2 FIFO to PicoBlaze 2
Recommended publications
  • Implementation, Verification and Validation of an Openrisc-1200
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 1, 2019 Implementation, Verification and Validation of an OpenRISC-1200 Soft-core Processor on FPGA Abdul Rafay Khatri Department of Electronic Engineering, QUEST, NawabShah, Pakistan Abstract—An embedded system is a dedicated computer system in which hardware and software are combined to per- form some specific tasks. Recent advancements in the Field Programmable Gate Array (FPGA) technology make it possible to implement the complete embedded system on a single FPGA chip. The fundamental component of an embedded system is a microprocessor. Soft-core processors are written in hardware description languages and functionally equivalent to an ordinary microprocessor. These soft-core processors are synthesized and implemented on the FPGA devices. In this paper, the OpenRISC 1200 processor is used, which is a 32-bit soft-core processor and Fig. 1. General block diagram of embedded systems. written in the Verilog HDL. Xilinx ISE tools perform synthesis, design implementation and configure/program the FPGA. For verification and debugging purpose, a software toolchain from (RISC) processor. This processor consists of all necessary GNU is configured and installed. The software is written in C components which are available in any other microproces- and Assembly languages. The communication between the host computer and FPGA board is carried out through the serial RS- sor. These components are connected through a bus called 232 port. Wishbone bus. In this work, the OR1200 processor is used to implement the system on a chip technology on a Virtex-5 Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open- FPGA board from Xilinx.
    [Show full text]
  • Programmable Logic Design Grzegorz Budzyń Lecture 11: Microcontroller
    ProgrammableProgrammable LogicLogic DesignDesign GrzegorzGrzegorz BudzyBudzy ńń LLectureecture 11:11: MicrocontrollerMicrocontroller corescores inin FPGAFPGA Plan • Introduction • PicoBlaze • MicroBlaze • Cortex-M1 Introduction Introduction • There are dozens of 8-bit microcontroller architectures and instruction sets • Modern FPGAs can efficiently implement practically any 8-bit microcontroller • Available FPGA soft cores support popular instruction sets such as the PIC, 8051, AVR, 6502, 8080, and Z80 microcontrollers • Each significant FPGA producer offers their own soft core solution Introduction • Microcontrollers and FPGAs both successfully implement practically any digital logic function. • Each solution has unique advantages in cost, performance, and ease of use. • Microcontrollers are well suited to control applications, especially with widely changing requirements. • The FPGA resources required to implement the microcontroller are relatively constant. Introduction • The same FPGA logic is re-used by the various microcontroller instructions, conserving resources. • The program memory requirements grow with increasing complexity • Programming control sequences or state machines in assembly code is often easier than creating similar structures in FPGA logic • Microcontrollers are typically limited by performance. Each instruction executes sequentially. Introduction – block diagram Source:[1] FPGA vs Soft Core Microcontroller: – Easy to program, excellent for control and state machine applications – Resource requirements remain constant
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • Implementation of PS2 Keyboard Controller IP Core for on Chip Embedded System Applications
    The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 4 ||Pages|| 48-50||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 Implementation of PS2 Keyboard Controller IP Core for On Chip Embedded System Applications 1, 2, Medempudi Poornima, Kavuri Vijaya Chandra 1,M.Tech Student 2,Associate Proffesor. 1,2,Prakasam Engineering College,Kandukuru(post), Kandukuru(m.d), Prakasam(d.t). -----------------------------------------------------------Abstract----------------------------------------------------- In many case on chip systems are used to reduce the development cycles. Mostly IP (Intellectual property) cores are used for system development. In this paper, the IP core is designed with ALTERA NIOSII soft-core processors as the core and Cyclone III FPGA series as the digital platform, the SOPC technology is used to make the I/O interface controller soft-core such as microprocessors and PS2 keyboard on a chip of FPGA. NIOSII IDE is used to accomplish the software testing of system and the hardware test is completed by ALTERA Cyclone III EP3C16F484C6 FPGA chip experimental platform. The result shows that the functions of this IP core are correct, furthermore it can be reused conveniently in the SOPC system. ---------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 8 April 2013 Date Of Publication: 25, April.2013 ---------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • CDA 4253 FPGA System Design the Picoblaze Microcontroller
    CDA 4253 FPGA System Design The PicoBlaze Microcontroller Hao Zheng Comp Sci & Eng U of South Florida Overview of PicoBlaze • So:-core microcontroller in VHDL: portable to other plaorms. • Small: occupies ~20 CLBs. • Respectable performance: 50 MIPS • Predictable performance: every instrucOon takes 2 cycles. • Suitable for simple data processing and control. 2 Required Reading • P. Chu, FPGA Prototyping by VHDL Examples Chapter 14, PicoBlaze Overview Recommended Reading • PicoBlaxe 8-bit Embedded Microcontroller User Guide (UG129) • K. Chapman, PicoBlaze for Spartan-6, Virtex-6, and 7-Series (KCPSM6) 3 Block diagram of a General-Purpose Processor ctrl 4 Block diagram of a General-Purpose Processor (Microcontroller) 5 PicoBlaze Overview 8-bit data Width, 18-bit instrucOon Width, 10-bit program address 6 Size of PicoBlaze-6 in Spartan 6 1. Resource UOlizaon in CLB Slices • 26 CLB Slices • 1.1% of Spartan-6 used in Nexys3 2. Number of PicoBlaze-6 cores fing inside of the Spartan-6 FPGA (XC6SLX16) used in the Nexys3 FPGA board • 87 PicoBlaze cores Speed of PicoBlaze on Basys-3 1. Maximum Clock Frequency • 100 MHz 2. Maximum number of instrucOons per second • 50 millions of instrucOons per second (MIPS) Fixed Oming: ideal for real-Ome control applicaons, i.e. flight control, manufacturing process control, ... Register File of PicoBlaze-3 8-bit Address 0 7 s0 0 1 7 s1 0 2 7 s2 0 3 7 s3 0 4 7 s4 0 5 7 s5 0 6 7 s6 0 16 Registers 7 7 s7 0 F 7 sF 0 9 DefiniNon of Flags Flags are set or reset after ALU operations Zero flag - Z zero condition Z = 1 if result = 0 0 otherwise Carry flag - C overflow, underflow, or various conditions Example* C = 1 if result > 28-1 (for addition) or result < 0 (for subtraction) 0 otherwise *Applies only to addition or subtraction related instructions, refer to the following slides otherwise 10 Interface of PicoBlaze Inputs Outputs KCPSM = constant (K) coded programmable state machine 11 Interface of PicoBlaze in_port[7:0] – input data port that carries the data for the INPUT instrucOon.
    [Show full text]
  • 1 Introduction
    Technical report, IDE1055, September 2010 Radar Signal Processing on Ambric Platform Master’s Thesis in Computer Systems Engineering Yadagiri Pyaram & Md Mashiur Rahman firstFFT RealFFT finalFFT B0 B4 B8 D1 A1 8-Point Input B1 B5 B9 Output D0 A0 B2 B6 B10 D2 A2 B3 B7 B11 Assembler Objects Distributor Objects Butterfly Operation School of Information Science, Computer and Electrical Engineering Halmstad University 2 Radar Signal Processing on Ambric Platform Master Thesis in Computer Systems Engineering School of Information Science, Computer and Electrical Engineering Halmstad University Box 823, S-301 18 Halmstad, Sweden September 2010 3 4 Figure on cover page : Design approach for one of algorithm FFT from page no.41, Figure 15: 8-Point FFT Design Approach 5 6 Acknowledgements This Master’s thesis is the part of Master’s Program for the fulfilment of Master’s Degree specialization in Computer Systems Engineering at Halmstad University. In this project the Ambric processor developed by Ambric Inc. has been used. Behalf of completion of thesis, we are glad to our supervisors, Professor Bertil Svensson and Zain-ul-Abdin Ph.D. Student, Dept of IDE, Halmstad University for their valuable guidance and support throughout this thesis project and without them it would be difficult to complete our thesis. And we are very glad to the Jerker Bengtsson Dept of IDE, Halmstad University, who gave valuable suggestions in the meetings, which helped us. And we would like to thank the Library personnel who helped some stuff in documentation and also to Eva Nestius Research Secretary, IDE Division University of Halmstad for providing access to Laboratory.
    [Show full text]
  • Focused on Embedded Systems
    Process Network in Silicon: A High-Productivity, Scalable Platform for High-Performance Embedded Computing Mike Butts [email protected] / [email protected] Chess Seminar, UC Berkeley, 11/25/08 Focused on Embedded Systems Not General-Purpose Systems — Must support huge existing base of apps, which use very large shared memory — They now face severe scaling issues with SMP (symmetric multiprocessing) Not GPU Supercomputers — SIMD architecture for scientific computing — Depends on data parallelism — 170 watts! Embedded Systems — Max performance on one job, strict limits on cost & power, hard real-time determinism — HW/SW developed from scratch by specialist engineers — Able to adopt new programming models UCBerkeley EECS Chess Seminar – 11/25/08 2 1 Scaling Limits: CPU/DSP, ASIC/FPGA MIPS 2008: 5X gap Single CPU & DSP performance 10000 has fallen off Moore’s Law 20%/year 1000 — All the architectural features that turn Moore’s Law area into speed have been used up. 100 Hennessy & 52%/year Patterson, — Now it’s just device speed. Computer 10 Architecture: A CPU/DSP does not scale Quantitative Approach, 4th ed. ASIC project now up to $30M 1986 1990 1994 1998 2002 2006 — NRE, Fab / Design, Validation HW Design Productivity Gap — Stuck at RTL — 21%/yr productivity vs 58%/yr Moore’s Law ASICs limited now, FPGAs soon ASIC/FPGA does not scale Gary Smith, The Crisis of Complexity, Parallel Processing is the Only Choice DAC 2003 UCBerkeley EECS Chess Seminar – 11/25/08 3 Parallel Platforms for Embedded Computing Program processors in software, far more productive than hardware design Massive parallelism is available — A basic pipelined 32-bit integer CPU takes less than 50,000 transistors — Medium-sized chip has over 100 million transistors available.
    [Show full text]
  • Small Soft Core up Inventory ©2019 James Brakefield Opencore and Other Soft Core Processors Reverse-U16 A.T
    tool pip _uP_all_soft opencores or style / data inst repor com LUTs blk F tool MIPS clks/ KIPS ven src #src fltg max max byte adr # start last secondary web status author FPGA top file chai e note worthy comments doc SOC date LUT? # inst # folder prmary link clone size size ter ents ALUT mults ram max ver /inst inst /LUT dor code files pt Hav'd dat inst adrs mod reg year revis link n len Small soft core uP Inventory ©2019 James Brakefield Opencore and other soft core processors reverse-u16 https://github.com/programmerby/ReVerSE-U16stable A.T. Z80 8 8 cylcone-4 James Brakefield11224 4 60 ## 14.7 0.33 4.0 X Y vhdl 29 zxpoly Y yes N N 64K 64K Y 2015 SOC project using T80, HDMI generatorretro Z80 based on T80 by Daniel Wallner copyblaze https://opencores.org/project,copyblazestable Abdallah ElIbrahimi picoBlaze 8 18 kintex-7-3 James Brakefieldmissing block622 ROM6 217 ## 14.7 0.33 2.0 57.5 IX vhdl 16 cp_copyblazeY asm N 256 2K Y 2011 2016 wishbone extras sap https://opencores.org/project,sapstable Ahmed Shahein accum 8 8 kintex-7-3 James Brakefieldno LUT RAM48 or block6 RAM 200 ## 14.7 0.10 4.0 104.2 X vhdl 15 mp_struct N 16 16 Y 5 2012 2017 https://shirishkoirala.blogspot.com/2017/01/sap-1simple-as-possible-1-computer.htmlSimple as Possible Computer from Malvinohttps://www.youtube.com/watch?v=prpyEFxZCMw & Brown "Digital computer electronics" blue https://opencores.org/project,bluestable Al Williams accum 16 16 spartan-3-5 James Brakefieldremoved clock1025 constraint4 63 ## 14.7 0.67 1.0 41.1 X verilog 16 topbox web N 4K 4K N 16 2 2009
    [Show full text]
  • Xilinx Vivado – „EDK” Embedded Development) 4
    EFOP-3.4.3-16-2016-00009 A fels őfokú oktatás min őségének és hozzáférhet őségének együttes javítása a Pannon Egyetemen EMBEDDED SYSTEM DEVELOPMENT (MISAM154R) Created by Zsolt Voroshazi, PhD [email protected] Updated: 02 March. 2020. 2. FPGAS & PLATFORMS Embedded Systems Topics covered 1. Introduction – Embedded Systems 2. FPGAs, Digilent ZyBo development platform 3. Embedded System - Firmware development environment (Xilinx Vivado – „EDK” Embedded Development) 4. Embedded System - Software development environment (Xilinx VITIS – „SDK”) 5. Embedded Base System Build (and Board Bring-Up) 6. Adding Peripherals (from IP database) to BSB 7. Adding Custom (=own) Peripherals to BSB 8. Design and Development of Complex IP cores and applications (e.g. camera/video/ audio controllers) 3 Further references • XILINX official website: http://www.xilinx.com • EE Journal – Electronic Engineering: http://www.eejournal.com/design/embedded • EE Times - News: http://www.eetimes.com/design/embedded 4 PLD & FPGA CIRCUITS General description PAST … • Before ’80s, designing logic networks for digital circuits, modern development tools were not yet available as today. • The design of high complexity (multi I/O) logical combination and sequential networks was therefore slow and cumbersome, often coupled with paper- based design, multiple manual checks, and calculations. • We could not talk about advanced design and simulation tools (CAD) either, so there was a high probability of error in a prototype design. 6 … AND PRESENT • Today, all of these are available in an automated way (EDA - Electronic Design Automation), which, in addition to the use of Programmable Logic Devices (PLD), is relatively fast for both Printed Circuit Boards (PCB) and Application-specific Integrated Circuits and Processors (ASIC / ASSP).
    [Show full text]
  • Emulate 8051 Microprocessor in Picoblaze IP Core
    EmulateEmulate 80518051 MicroprocessorMicroprocessor inin PicoBlazePicoBlaze IPIP CoreCore Put the functions of a legacy microprocessor into a Xilinx FPGA.FPGA. by Lance Roman President Roman-Jones, Inc. [email protected] Brad Fayette Senior Software Engineer Roman-Jones, Inc. [email protected] 00 Xcell Journal Winter 2004 How do you put a one-dollar Intel™ 8051 • Smaller Size – Traditional 8051 type core. Hook up block RAM or microprocessor into an FPGA without implementations range from 1,100 off-chip program ROM, and you’re using 10 dollars’ worth of FPGA fabric? to 1,600 slices of FPGA logic. The ready to go. The answer is emulation. Using soft- PicoBlaze 8051 processor requires • Low Cost – The PB8051 is $495 ware emulation, Roman-Jones Inc. has just 76 slices. Emulation hardware with an easy Xilinx SignOnce IP developed a new type of 8051 processor requires 77 slices. Add another 158 license. core built on a Xilinx 8-bit, soft-core slices for two timers and a four-mode PicoBlaze™ (PB) processor. This “new” serial port, and you have a total of a Architecture of Emulated 8051 PB8051 is more than 70% smaller than 311 slices. This is a reduction of As shown in Figure 1, the architecture of an competing soft-core implementations – more than two-thirds of the FPGA emulated processor has several elements. without sacrificing any of the performance fabric of competing products. Each element is designed independently, of this legacy part. The PB8051 is a Xilinx • Faster – At 1.3 million instructions but together, they act as a whole. AllianceCORE™ microprocessor built per second (MIPS), the PB8051 is through emulation.
    [Show full text]
  • The Past and Future of FPGA Soft Processors
    The Past and Future of FPGA Soft Processors Jan Gray Gray Research LLC [email protected] ReConFig 2014 Keynote 9 Dec 2014 Copyright © 2014, Gray Research LLC. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) license. http://creativecommons.org/licenses/by/4.0/ In Celebration of Soft Processors • Looking back • Interlude: “old school” soft processor, revisited • Looking ahead 9 Dec 2014 ReConFig 2014 2 New Engines Bring New Design Eras 9 Dec 2014 ReConFig 2014 3 1. EARLY DAYS 9 Dec 2014 ReConFig 2014 4 1985-1990: Prehistory • XC2000, XC3000: not quite up to the job – Early multi-FPGA coprocessors – ~8-bit MISCs 9 Dec 2014 ReConFig 2014 5 1991: XC4000 9 Dec 2014 ReConFig 2014 6 1991: RISC4005 [P. Freidin] • The first monolithic general purpose FPGA CPU • “FPGA Devices: 1 Xilinx XC4005 ... On-board RAM: 64K Words (16 bit words) Notes: A 16 bit RISC processor that requires 75% of an XC4005, 16 general registers, 4 stage pipeline, 20 MHz. Can be integrated with peripherals on 1 FPGA, and ISET can be extended. … Includes a macro assembler, gate level simulator, ANSI C compiler, and a debug monitor.” [Steve Guccione: List of FPGA-based Computing Machines, http://www.cmpware.com/io.com/guccione/HW_list.html] Freidin Photos: Photos: Philip 9 Dec 2014 ReConFig 2014 7 1994-95: Gathering Steam • Communities: FCCM, comp.arch.fpga [http://fpga-faq.org/archives/index.html] • Research, commercial interest – OneChip, V6502 9 Dec 2014 ReConFig 2014 8 1995: J32 • 32-bit RISC + “SoC” • Integer only • 33 MHz ÷ 2φ • 4-stage pipeline •
    [Show full text]
  • Small Soft Core up Inventory ©2014 James Brakefield Opencore and Other Soft Core Processors Only Cores in the "Usable" Category Included
    Small soft core uP Inventory ©2014 James Brakefield Opencore and other soft core processors Only cores in the "usable" category included Most Prolific Authors ©2014 James Brakefield John Kent micro8a, micro16b, system05, system09, system11, system68 6 Daniel Wallner ax8, ppx16, t65, t80 4 Ulrich Riedel 68hc05, 68hc08, tiny64, tiny8 4 Jose Ruiz ion, light52, light8080 3 Lazaridis Dimitris mips_fault_tolerant, mipsr2000, mips_enhanced 3 Shawn Tan ae18, aeMB, k68 3 Most FPGA results (e.g. easy to compile, place & route on any FPGA family) ©2014 James Brakefield eco32 cyclone-4, arria-2, spartan-3, spartan-6, kintex-7 5 navre cyclone-4, arria-2, cyclone-5, spartan-6, kintex-7 5 leros cyclone-4, spartan-3, spartan-6, kintex-7 4 openmsp430 cyclone-4, stratix-3, spartan-6, virtex-6 4 Most Clones ©2014 James Brakefield ion, minimips, mips_fault_tolerant, misp32r1, misp789, mipsr2000, plasma, ucore, yacc, MIPS 10 m1_core 6502 ag_6502, cpu6502_true_cycle, free6502, lattice6502, m65c02, t65, t6507lp, m65 8 PIC16 free_risc8, lwrisc, minirisc, p16c5x, ppx16, recore54, risc16f84, risc5x 8 microblaze aeMB, mblite, microblaze, myblaze, openfire_core, secretblaze 6 6800 hd63701, system68, system05, 68hc05, 68hc08 5 8051 dalton_8051, light52, mc8051, t51, turbo8051 5 avr avr_core, avr_hp, avr8, navre, riscmcu 5 z80 nextz80, t80, tv80, wb_z80, y80e 5 openrisc altor32, minsoc, or1k, or1200_hp 4 6809 6809_6309, system09, mc6809e 3 8080 cpu8080, light8080, t80 3 68000 ao68000, tg68, v1_coldfire 3 PDP-8 pdp8, pdp8l, pdp8verilog 3 picoblaze copyblaze, pacoblaze,
    [Show full text]