Classification of Wheat Varieties Grown in the United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge. -
Wheat Landraces from Oman: a Botanical Analysis
Emir. J. Food Agric. 2014. 26 (2): 119-136 doi: 10.9755/ejfa.v26i2.16760 http://www.ejfa.info/ REGULAR ARTICLE Wheat landraces from Oman: A botanical analysis A. A. Filatenko1* and K. Hammer2 1N. I. Vavilov Research Institute of Plant Industry, Veteran Council, St. Petersburg, Russia 2University of Kassel, Faculty of Agriculture, International Rural Development and Environmental Protection, Witzenhausen, Germany Abstract The wheat landraces of Oman are chacterized. Their main constituents are Triticum aestivum L. ssp. aestivum, T. aestivum ssp. hadropyrum (Flaksb.) Tzvel., T. compactum Host, T. aethiopicum Jakubz.ssp. aethiopicum, T. aethiopicum ssp. vavilovianum Jakubz. et A. Filat. and T. dicoccon Schrank. The classification of the landraces was performed using the morphological method developed by Dorofeev, Filatenko et al. (1979), considering species, subspecies, convarieties and a great number of botanical varieties. Single landraces contained up to three different species (“Sareeaa”) and up to 17 different botanical varieties (“Missani”). T. aethiopicum var. hajirense A. Filat. et K. Hammer is newly described. Keys for the determination of important Omani wheat races are proposed. 15 wheat landraces of Oman are characterized morphologically. A detailed list describing origin, local names, and infraspecific taxa of the material is provided. Transformation processes of the oasis settlements lead to a replacement of the traditional agricultural systems and the landraces are threatened by genetic erosion. Additional measures are necessary -
The Canadian Wheat Board, Warburtons, and the Creative
The Canadian Wheat Board and the creative re- constitution of the Canada-UK wheat trade: wheat and bread in food regime history by André J. R. Magnan A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Sociology University of Toronto © Copyright by André Magnan 2010. Abstract Title: The Canadian Wheat Board and the creative re-constitution of the Canada-UK wheat trade: wheat and bread in food regime history Author: André J. R. Magnan Submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Sociology University of Toronto, 2010. This dissertation traces the historical transformation of the Canada-UK commodity chain for wheat-bread as a lens on processes of local and global change in agrofood relations. During the 1990s, the Canadian Wheat Board (Canada‟s monopoly wheat seller) and Warburtons, a British bakery, pioneered an innovative identity- preserved sourcing relationship that ties contracted prairie farmers to consumers of premium bread in the UK. Emblematic of the increasing importance of quality claims, traceability, and private standards in the reorganization of agrifood supply chains, I argue that the changes of the 1990s cannot be understood outside of historical legacies giving shape to unique institutions for regulating agrofood relations on the Canadian prairies and in the UK food sector. I trace the rise, fall, and re-invention of the Canada-UK commodity chain across successive food regimes, examining the changing significance of wheat- bread, inter-state relations between Canada, the UK, and the US, and public and private forms of agrofood regulation over time. -
RNA-Seq and Itraq Reveal the Dwarfing Mechanism of Dwarf
Int. J. Biol. Sci. 2016, Vol. 12 653 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(6): 653-666. doi: 10.7150/ijbs.14577 Research Paper RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.) Yi Wang1*, Xue Xiao1*, Xiaolu Wang1*, Jian Zeng2, Houyang Kang1, Xing Fan1, Lina Sha1, Haiqin Zhang1, Yonghong Zhou1 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China. 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China. *The authors contributed equally to this work. Corresponding author: Yonghong Zhou, Fax: +86 028 826 503 50, E-mail address: [email protected]. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.12.02; Accepted: 2016.02.15; Published: 2016.04.08 Abstract The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. -
Ode to David Fife
Ode to David Fife Introduction This is the story of David Fife And how he developed the staff of life Searching for a solution To agricultural pollution Wheat crops ravaged by frost and rust Finding a better grain was a must He searched in Canada and Scotland too He obtained some seeds from a friend he knew A new strain of wheat from a ship docked in Glasgow Save some for the spring, plant the rest now The fall planting did not survive The spring planting did indeed thrive In 1842, David Fife developed Red Fife Wheat For 50 years, Red Fife reigned supreme and could not be beat The wheat known as Red Fife Has a renewed shelf life In 2003, Slow Food Canada nominated Red Fife for the Ark of Taste Renowned for its nutty and robust flavor, it should not go to waste Organic farmers consider it the best heritage wheat Discriminating consumers consider it a nutritious treat Artisan bakers use a slow wild yeast fermentation To develop a richer and fuller wheat taste sensation Chefs discovered its hearty flavor And diners have bread they can savor Red Fife has been rediscovered; it is a revival Red Fife’s place in history is more than archival Red Fife is a story of myth and legend and mystery Who is David Fife and where is his place in history And what about Jane, his wife Who played a key role in developing Red Fife There is much to tell and the tale should be told Children should know it before they grow old Without David Fife, who knows what might have been The story begins with David at age fifteen. -
Wholesale Grains & Flours
Grains and Flours IN OUR REGION Available through Greenmarket’s wholesale distribution arm, Greenmarket Co. Prices and complete product list given upon request. Buckwheat* High in amino acids and vitamins. Best as toasted whole groats, or “kasha.” Flour is best for pan- cakes, crepes, biscuits, soba noodles. Cornmeal & Polenta* Made with flint, or “Indian” corn, and dent corn. Einkorn An “ancient grain,” high in protein content and min- erals. Best for cooking whole and using flour for pancakes and crackers. Emmer (Farro) An “ancient grain,” best as a cooked Wholesale grain and for pasta and flat breads. Freekeh Wheat that is harvested green and roasted. Toasted, mildly sweet flavor. High in protein, minerals and Grains fiber, very low in gluten. Best in soups and stews. Oats* Rolled or cracked, flour upon request. Rye Low gluten, bold, assertive flavor. Blended with wheat Mission Driven Food. & Flours for bread. Grains can be cooked whole or as cracked rye. Spelt An “ancient grain,” low gluten, high protein content. Flour used for bread, pasta, crackers. Triticale A wheat-rye hybrid. High protein, low gluten. Best for breads, pancakes, crackers. Contact us for more information. Wheat flours Whole and sifted, all-purpose & pastry For wholesale inquires: flour, special blends [email protected] % Hard wheat, or “bread flour” Higher protein content, The Greenmarket Regional Grains Project best for baking bread. For more information on grains: is helping re-establish grain production in the Northeast. % Soft wheat, or “pastry flour” Lower protein content, [email protected] Greenmarket’s customers, both wholesale and retail, are best for pastry and flat breads. -
John Percival
THE LINNEAN Wheat Taxonomy: the legacy of John Percival THE LINNEAN SOCIETY OF LONDON BURLINGTON HOUSE, PICCADILLY, LONDON WlJ OBF SPECIAL ISSUE No 3 2001 ACADEMIC PRESS LIMITED 32 Jam.estown Road London NWl 7BY Printed on acid free paper © 2001 The Linnean Society of London All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system without permission in writing from the publisher. The designations of geographic entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the publishers, the Linnean Society, the editors or any other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of The Society, the editors, or other participating organisations. Printed in Great Britain. Wheat Taxonomy: the legacy of John Percival Conference Participants (most of whom are identified by number on the key to the group photograph above). I. M. Ambrose,; 2. J. Bingham, UK; 3. R. Blatter, Switzerland; 4. A. Bomer, Germany; 5. A. Brandolini Italy; 6. R. Brigden, UK; 7. A. H. Bunting, UK; 8. P. Caligari, UK; 9. E.M.L.P. Clauss, USA; 10. P.O. Clauss, USA; 11 . K. Clavel, France; 12. P. Davis, UK; 13. J. Dvohik, USA; 14. !. Faberova, Czech Republic; 15 . A. A. Filatenko, Russia; 16. -
A Study of Dwarfness in Wheat Accompanied
A STUDY OF DWARFNESS IN WHEATACCOMPANIED BY UNEXPECTED RATIOS L. R. WALDKON North Dakota Agricultural Experiment Station, Agricultural College, North DaZota Received December 13, 1923 TABLE OF CONTENTS PA G E INTRODUCTION.................................................................. 212 Original work. .................................................................. 216 Offspring of normal plants of family 140.10, .................................... 218 Offspring of dwarf plants of family 140.10. ..................................... 221 Two other dwarf families.. ................................................... 226 Dwarf and normal plants secured in 1922 from phenotypically normal parents. ..... 226 Family 149.78. ............................................................. 230 Family 149.98. ............................................................. 231 Plant 140.11.. .............................................................. 232 Plant 140.17. ............................................................... 234 Results from Red FifeXKota crosses .......................................... 235 GENERALDISCUSSION.. .......................................................... 237 Origin of the factors., ........................................................... 242 SUMMARY....................................................................... 244 LITERATURECITED.. ............................................................. 245 INTRODUCTION Plants markedly deficient in height may suddenly appear and their genetical import -
Heritage Grain & Legume Farmers
Heritage Grain & Legume Farmers – heritage and organic grains for local markets (LM), Farmers Markets (FM), Community Supported Agriculture (CSA), Mail Order (MO), Wholesale (W) Please contact farmer for their latest crop offerings; this list may not include all available crops at a given time. To qualify for this list farmers are using organic practices and are generally certified organic. At least some of the grains, legumes and seeds that they grow are heritage* varieties, that predate 1880 in the case of wheat. At least some of the heritage grain crop is sold locally, within the state in the USA or within the Country. *Heritage wheat includes landrace varieties and post-1880 modern varieties that are nonproprietary, usually these later varieties are crosses released more than 25 years ago. Farm or farmer State in USA County Organic Website /info Heritage Grains Heritage Where / How name or Country certification Legumes and sold Seeds BKW Farms Arizona Pima ASCO www.bkwazgrown.com Sonora wheat MO; W Khorasan wheat Ramona’s Arizona Pinal Organic www.ramonafarms.com Sonora wheat Tepary Beans MO; LM; W American practices Pima Club Indian Foods wheat (Ramona Corn Farms) Rancho Llano California Butte Organic www.llanoseco.com Einkorn wheat Heirloom FM: Chico; Fort Seco practices Sonora wheat beans Mason. MO; W Nevermore California Colusa Organic www.nevermorefarm.com Sonora wheat Black Kabuli CSA Farm practices Chickpeas Frog Hollow California Contra CCOF www.froghollow.com Sonora wheat FM Costa W Lone Willow California Fresno CCOF www.organicheirlooms.com Sonora wheat Beans MO Ranch Ethiopian W Emmer Khorasan wheat Bergman Farm California Kern CCOF Telephone: 661 747 2898 Sonora wheat FM W Tehachapi California Kern CCOF www.tehachapigrainproject. -
Blue Owl Kosher Certificate 2015 Copy.Pages
BSD Certificate THIS IS TO CERTIFY THAT: La Meunerie Milanaise 108, 214 Rte, Milan, Quebec/820 Lucien Beaudin,Saint- Jean-sur-Richelieu, Quebec Has met the Natural Food Certifiers Kosher Standards and is Certified as a Kosher Processor and Handler Kosher Products: List: See attached Kosher Certified Location(s): as above Reuven Flamer NFC Administrator Natural Food Certifiers NFC Certificate Number: K770-04-09-13 PO BOX 990 Monsey, NY 10952 Last Updated: July 9, 2019 888-422-4632 nfccertifi[email protected] Tammuz 5778 Valid for 1 Year BSD Certificate La Meunerie Milanaise Inc, Kosher Product List Last Updated: July 2019 Tammuz 5779 Page 2 Product § Label § Kosher Status Farine à bagel biologique / Organic Bagel Flour La Meunerie Milanaise Inc, Pareve Farine à pâtisserie tamisée biologique - Organic Sifted Wheat Pastry La Meunerie Milanaise Inc, Pareve Flour Farine d'avoine entière biologique- Organic Whole Oat Flour La Meunerie Milanaise Inc, Pareve Farine de blé à pain tamisée #100 biologique - Org. Sifted Wheat #100 La Meunerie Milanaise Inc, Pareve Bread Flour Farine de blé à pain biologique - Org. Sifted Wheat #50 Bread Flour La Meunerie Milanaise Inc, Pareve Farine de blé à pain tamisée #50 PM biologique - Org. Sifted Wheat La Meunerie Milanaise Inc, Pareve #50 Bread Flour PM Farine de blé entier à pain biologique - Organic Whole Wheat Bread La Meunerie Milanaise Inc, Pareve Flour Farine de blé entier à pain biologique -PM Organic Whole Wheat La Meunerie Milanaise Inc, Pareve Bread Flour PM Farine de blé entier à pain Winter biologique -
Grain Yield and Rhizosphere Microflora of Alternative Types of Wheat in Organic Production
Romanian Biotechnological Letters Vol. 23, No. 1, 2018 Copyright © 2018 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Grain yield and rhizosphere microflora of alternative types of wheat in organic production Received for publication, November 25, 2016 Accepted, April 30, 2017 S. ROLJEVIĆ NIKOLIĆ*, D. KOVAČEVIƆ, G. CVIJANOVIƇ, Ž. DOLIJANOVIƆ, J. MARINKOVIƧ *Institute of Agricultural Economics, Belgrade, Serbia †Faculty of Agriculture, Department of Crop Science, University of Belgrade, Serbia ‡Faculty of Biopharming, Megatrend University §Institute of Field and Vegetable Crops Novi Sad, Serbia * Address for correspondence to: [email protected] Abstract This study examines the impact of organic growing technologies on the rhizosphere microflora value and grain yield alternative types of wheat. Research is based on three varieties of different alternative types of wheat (Triticum spelta, Triticum compactum and Triticum durum) and one conventional variety of ordinary soft wheat (Triticum vulgare). The experiment was set up on less carbonate-chernozem, according to the random block design with four replicates for each treatment (F1-microbiological fertilizer, F2-the combined use of microbiological fertilizer and organic fertilizer, F0-control (no fertilizer application)). Research results showed that fertilization significantly influenced the increase in the total number of microorganisms to the level of 3.7% and 28%, and the number of Azotobacter to the level of 2.8% and 19.1%, with the proven higher efficiency of mixed application of fertilizers. Analysis of variance of the total number of microorganisms and Azotobacter showed a statistically significant difference between the tested varieties. Grain yield of spelt (4,540 kg ha-1) was significantly higher compared to other varieties. -
Comparative-Genetic Analysis – a Base for Wheat Taxonomy Revision
Czech J. Genet. Plant Breed., 41, 2005 (Special Issue) Comparative-Genetic Analysis – a Base for Wheat Taxonomy Revision N. P. G�������� Institute of Cytology and Genetics of Siberian Branch of Russian Acadeny of Sciences, Novosibirsk 630090, Russia, e-mail: [email protected] Abstract: Comparative-genetic analysis performed at the same time on cultivated wheat species and their wild relatives permits the definition of an introgressive hybridization strategy and reconstruction of the origin of the taxonomy important genes. The analysis also allows clarification of the origin of wheats and their differentiation into species, thereby proving a basis for a successful revision of Triticum L. genus system. Keywords: Triticum genus; comparative-genetic analysis; taxonomy The genus Triticum L. has a diphyletic origin (D��- Random amplified polymorphic DNA analysis ����� & K������� 1979). Its includes di- (2n = 14), was used to assess the phylogenetic relationships tetra- (2n = 28) and hexaploid (2n = 42) species, among these five morphological groups of hexa- with the phylogeny of most of them more or less ploid wheat. These results are in agreement with clarified (T�������� 1968). The main result of the those based on morphological classification (C�� wheat domestication process was the reconstruc- et al. 2000). As to di- and tetraploid wheat species, tion of rachis and glumes, which has converted no such genes controlling taxonomically important fragile spikes of the wild species into non-fragile, traits has been as yet identified and, accordingly naked grain cultivated species. These traits under- taxonomists usually use a species “radical’, in lie L������� (1753) classification of Triticum. His Vavilov’s terms, i.e.