Barbier-Grignard: Explosive Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Barbier-Grignard: Explosive Reaction Barbier-Grignard: explosive reaction Tadeusz Urbański The early paper by P. Barbier (1898) and the thesis of V. Grignard 1. The statement of Barbier on (1901) led to the foundation of the 'Grignard reaction'. It follows, his prior use of magnesium for syn­ however, from existing documents, the discussion between Barbier thesis is well documented by his paper—Comptes Rendus, 1 899,128, and Grignard (1910) and a letter of Grignard (1912) that the reaction 110. Here hedescribed a modification should more correctly be called 'Barbier-Grignard reaction' but that of reaction of Saytzeff (as he pointed the reagent should be named the familiar 'Grignard reagent.' out) by replacing zinc with mag­ nesium. Starting from methyl- heptenone he obtained dimethyl- There is no doubt that Grignard is Grignard studied chemistry under heptenol: one of the best known names of Barbier and received in 1901 his great chemist-founders of present degree of Docteur ès sciences on the CH day chemistry. It obviously is due basis of his thesis where he investi­ 3 to the fact that every organic chemist gated the use of magnesium for \ has carried out the Grignard-reaction organic synthesis on the suggestion С = СН CH2CH2CO CH3 + at least once in their lifetime. For a of Barbier. A few days later Barbier long time the use of the reaction was sent a letter to the editor of Salut / limited to laboratory /'e small scale Public. The letter contains some CH3 work. However, in the late 30s and statements important to the history An ether CH I + Mg > after World War 2 it penetrated into of the reaction. Here are main 3 chemical factories thanks to С H 3 С H 3 parts of the text: \ I (/) improvement in the design of С = СН CH2 CH2-C-0-Mg I air-tight reactors and (//*) introduc­ / I Monsieur le rédacteur en chef du tion of less volatile and relatively CH3 CH3 high boiling point solvents with an Salut Public H20 + H2S04 ether function such as tetrahydro- J'ai lu un peu tardivement dans le Salut Public du lundi 9 décembre l'article furane and dioxane. intitulé: 'L'oevre d'un savant.' Cet article The Grignard reaction is now used relatif aux travaux de M, Grignard, exact CH3 CH3 dans son ensemble, renferme néanmoins in chemical industry in the pro­ \ I une affirmation erronée évidemment in• duction of some fine chemicals, С = СН CH CH -C-0H + volontaire qu'il m'est impossible de ne pas 2 2 drugs, scents etc. / I vous signaler. Je fais allusion à la phrase: The increasing importance of the 'La méthode nouvelle découverte par le СН 3 С H з reaction compels us to look into the jeune docteur . .' qui attribue à M, history of this remarkable achieve­ Grignard un travail qui ne lui appartient Mg (ОН) I ment which in 1912 brought the aucunement. In his paper he gives a detailed Nobel Prize to Victor Grignard, C'est moi qui, dans le courant de l'année description of the procedure which professor at the University of Nancy. 1899. ai institué cette nouvelle méthode is the same as the classical procedure He shared it with another French de synthèse des matières organiques basée of the Grignard reaction. chemist—Paul Sabatier, professor at sur l'emploi du magnesium ainsi que le Barbier ends his paper with a the University of Toulouse who prouve mon mémoire aux Comptes rendus remark that he was able to carry out received the Nobel Prize for his de l'Académie des Sciences, tome CXXXVIII, a number of synthesis by this method page 110 année 1899. catalytic hydrogénation of organic and he intends to report them in the L'oeuvre de Grignard a consisté à compounds which he developed future. with Senderens. développer les conséquences normales de cette découverte qui m'appartient intégrale• Two more papers of a polemic On 9 December 1912 the French ment. Ce travail exécuté très brillamment character are pertinent to the history journal Salut Public published a note a value à son auteur les récompenses et les of the reaction. L'oevre d'un savant giving informa­ faveurs que vous savez, ce dont j'ai été 2. Barbier published a note tion on Victor Grignard's Nobel très heureux. 'Sur l'origine de l'introduction du Prize. Il n'entre pas dans mes vues de diminuer magnesium dans la synthèse organi• The note invoked a strong re­ la valeur des recherches d'un de mes que' i n Bulletin de la Société chimique meilleurs élèves, mais la justice et la vérité action from P. Barbier, professor at de France. 1910, 7, 206. exigent qu'il soit rendu à chacun ce que lui the University of Lyon, where appartient. The author draws attention to the . Je tiens à vôtre disposition les pièces wrong tendency, which could be Tadeusz Urbański is emeritus professor qui en justifient la légitimité. seen in the current chemical litera­ in the Chemical Faculty. Technical Veuillez agréer. ture and encyolopaedic publications, University, Warsaw. Poland. A member 1—1 Professeur P. Barbier in which the discovery of using of the Polish Academy of Sciences, he Faculté des Sciences de L yon magnesium in organic synthesis is has written over 500 papers, and one assigned exclusively to Grignard. of his books Chemistry and technology Here are a few facts which should of explosives has been translated into This is not justified as the author several languages. make the Barbier-Grignard problem had introduced magnesium into unambiguously clear. chemical technique for the first time 191 for the synthesis of dimethyl- part which he played in developing l'honneur que m'ont fait les chemists heptenol. After this introduction the new reaction. en attachant mon nom). Barbier repeated nearly a complete Although Barbier himself does Grignard also pointed out that the text of his paper published 1899 in not blame Grignard, it seems worth development of mixed magnesium Comptes Rendus. He adds that by recalling all the documents which organic compounds produced a great this method he also obtained the referred to the problem. impact upon the development of secondary methylated alcohol Grignard pointed out many times mixed zinc organic compounds deriving from citronellal. He explains {eg Thesis, Ann. /'Univ. Lyon, Ann according to Bewad and particularly that he has not published the Chem. Phys. 1901 ; Revue general to Blaise and his school. description of it. as at the time he Science, 1903) the importance, both 4. The last important document is handed the whole problem to Grig- theoretical and practical, of the syn• a hand-written letter of V. Grignard nard of replacing zinc by magnesium thesis by Barbier of dimethylheptenol to his friend Meunier (13 November in order to find whether the reaction (incidentally Sand and Singer as well 1912). with magnesium has a general as Harries and Weil, Chemische character and whether it is advan• Berichte, 1 902 and 1 904 respectively, ... /1 vrai dire et entre nous, j'aurais tageous to replace zinc by mag• described once more this alcohol. préféré, quitte à attendre encore un peu, nesium. A detailed description of Evidently they had no knowledge of voir partager le prix entre Sabatier et Senderens et le partager ensuite—moi the reaction can be found (according the synthesis of Barbier). тете avec Barbier, Mais que puit—je to Barbier) in the excellent thesis of A number of authors describing contre un tel verdict sinon m'en féliciter! Grignard presented to the faculty of the use of magnesium in organic Tu sera bien aimable de me donner science in Lyon. Thanks to his chemistry also gave the true picture, ausitôtque tu le pourras quelques renseigne­ success Grignard became, and is eg: Valeur, Bulletin des Sciences ments sur l'état de la santé et sur l'état still, a co-worker of Barbier. Grig• Pharmaceutiques, 1902; Kiages. d'esprit de M, Barbier, nard fully used the opportunity Chemiker Zeitung. 1905; Waters, Je me demande comment il va prendre offered to him by the problem. American Chemical Journal, 1905;la chose. Mais s'il se considère comme Schmidt, Ahrens' Sammlung, 1905; frustré, je ne pense pas qu'il puisse m'en His aim was first to isolate mag• rendre responsable. .' nesium-organic derivatives and then Die organischer Magnesium verbin- let them react further. Thanks to dungen und ihre Anwendung zu Thus speak the documents. his experimental skill he was able Synthesen. vol 2, Stuttgart. 1 905 and It should be pointed out that the to do so. Thus his skill was in 1908; Moissan, Comptes Rendus. case Sabatier—Senderens is not iden• isolating the 'reagents' which can 1906; MacKenzie. Chemical News. tical to this of Grignard-Barbier. bear his name. However, Barbier 1907; Meyer-Jackobson, Lehrbuch Sabatier carried out his work with has the right to consider himself as der organische Chemische, 1907, Senderens and the whole idea and being the author of the principle of and certainly other authors of which trend of the research derived from the reaction. Grignard was not aware. Sabatier. In short—Senderens was Barbier points out that Grignard It would be difficult now to ask experimenting under the guidance of always recalls the part played by chemists to change the name of the Sabatier. In contrast, in the case Barbier in the discovery of the new reaction which has been accepted of Grignard-Barbier, the original reaction. Also a number of authors— for nearly 10 years. idea and first experiments belonged he says—mention Barbier next to Furthermore Grignard draws atten• to Barbier. Subsequently Barbier Grignard and some of them even tion to the fact that a few methods could claim much more rights mention Barbier only (Am.
Recommended publications
  • Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
    Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S.
    [Show full text]
  • Grignard Synthesis of Triphenylmethanol Reactions That Form Carbon-Carbon Bonds Are Among the Most Useful to the Synthetic Organic Chemist
    1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel prize in chemistry for his discovery of a new series of reactions that result in the formation of a carbon-carbon bond. A Grignard synthesis first involves the preparation of an organomagnesium reagent via the reaction of an alkyl bromide with magnesium metal: δ– δ+ R Br + Mg R MgBr The resulting “Grignard reagent” acts as both a good nucleophile and a strong base. Its nucleophilic character allows it to react with the electrophilic carbon in a carbonyl group, thus forming the carbon-carbon bond. Its basic property means that it will react with acidic compounds, such as carboxylic acids, phenols, thiols and even alcohols and water; therefore, reaction conditions must be free from acids and strictly anhydrous. Grignard reagents will also react with oxygen to form hydroperoxides, thus they are highly unstable when exposed to the atmosphere and are generally not isolated from solution. For a variety of reasons, anhydrous diethyl ether is the solvent of choice for carrying out a Grignard synthesis. Vapors from the highly volatile solvent help to prevent oxygen from reaching the reaction solution. In addition, evidence suggests that the ether molecules actually coordinate with and help stabilize the Grignard reagent: Et Et O R Mg Br O Et Et The magnesium metal used in the synthesis contains a layer of oxide on the surface that prevents it from reacting with the alkyl bromide. The pieces of metal must be gently scratched while in the ether solution to expose fresh surface area so that the reaction can commence.
    [Show full text]
  • François Auguste Victor Grignard
    DE ANIVERSARIO Hemos invitado al autor de la sección PARA QUITARLE EL POLVO François Auguste “La química en la historia, para la enseñanza” durante los últimos trece números a participar en la sección Victor Grignard DE ANIVERSARIO con una contribución de la misma categoría que las anteriores, dedicada al tema Jaime Wisniak* de QUÍMICA DE FRONTERA, como todavía puede catalogarse el trabajo de Grignard por el que obtuvo el premio Nobel en 1912. Resumen (that would see the inaugura- A Víctor Grignard (1871-1935) le debemos el descubrimien- tion of the Eiffel Tower) no to de la reacción que lleva su nombre, relacionada con la scholarships were offered at síntesis de derivados organometálicos que pueden ser usados the time of Grignard’s gradu- como intermediarios en la preparación sencilla de una am - ation from high school. plia gama de compuestos químicos, en particular, alcoholes Whoever took this decision, secundarios y terciarios. El paso de Grignard de una carrera could have hardly guessed en matemáticas a otra en química fue el resultado de una the tremendous impact it serie de eventos burocráticos que lo llevaron a recibir el would have in the develop- Premio Nobel de Química en 1912. ment of organic chemistry. Grignard was left with no al- ternative but to register at the Abstract École Normale Secundaire To Victor Grignard (1871-1935) we owe the discovery of the Spéciale at Cluny, an institu- reaction that carries his name, involving the synthesis of tion that had been estab- Figure 1. Victor Grignard. organomagnesium derivatives that can be used as interme- lished in 1866 as a training diates for the easy preparation of a wide range of chemicals, school for teachers of modern secondary education, for those in particular, secondary and tertiary alcohols.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 78 Summer 2020 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris ! Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ ! Hertfordshire) [e-mail: [email protected]] !Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson ! Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, !Prof Frank James (University College) TW12 3JG [e-mail: [email protected]] !Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith ! Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, ! Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall, Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 RSC Historical Group Newsletter No. 78 Summer 2020 Contents From the Editor (Anna Simmons) 2 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP NEWS 3 Letter from the Chair (Peter Morris) 3 New “Lockdown” Webinar Series (Peter Morris) 3 RSC 2020 Award for Exceptional Service 3 OBITUARIES 4 Noel G. Coley (1927-2020) (Peter Morris, Jack Betteridge, John Hudson, Anna Simons) 4 Kenneth Schofield (1921-2019), FRSC (W. H. Brock) 5 MEMBERS’ PUBLICATIONS 5 Special Issue of Ambix August 2020 5 PUBLICATIONS OF INTEREST 7 SOCIETY NEWS 8 OTHER NEWS 9 Giessen Celebrates (?) the Centenary of the Liebig Museum (W.
    [Show full text]
  • Organometallic Chemistry and Applications
    Chemistry 462 Fall 2017 MYD Organometallic Chemistry and Applications Note: Organometallic Compounds and Complexes Contain a M-C Bond. Organometallic chemistry timeline 1760 Louis Claude Cadet de Gassicourt investigates inks based on cobalt salts and isolates Cacodyl from cobalt mineral containing arsenic 1827 William Christopher Zeise produces Zeise's salt; the first platinum / olefin complex 1848 Edward Frankland discovers diethylzinc 1863 Charles Friedel and James Crafts prepare organochlorosilanes 1890 Ludwig Mond discovers nickel carbonyl 1899 Introduction of Grignard reaction 1899 John Ulric Nef discovers alkylation using sodium acetylides. 1900 Paul Sabatier works on hydrogenation of organic compounds with metal catalysts. Hydrogenation of fats kicks off advances in food industry; see margarine! 1909 Paul Ehrlich introduces Salvarsan for the treatment of syphilis, an early arsenic based organometallic compound 1912 Nobel Prize Victor Grignard and Paul Sabatier 1930 Henry Gilman works on lithium cuprates, see Gilman reagent 1951 Walter Hieber was awarded the Alfred Stock prize for his work with metal carbonyl chemistry—(but not the Nobel Prize). 1951 Ferrocene is discovered 1963 Nobel prize for Karl Ziegler and Giulio Natta on Ziegler-Natta catalyst: Polymerization of olefins 1965 Discovery of cyclobutadieneiron tricarbonyl 1968 Heck reaction 1973 Nobel prize Geoffrey Wilkinson and Ernst Otto Fischer on sandwich compounds 1981 Nobel prize Roald Hoffmann and Kenichi Fukui for expression of the Woodward-Hoffman Rules 2001 Nobel prize W. S. Knowles, R. Noyori and Karl Barry Sharpless for asymmetric hydrogenation 2005 Nobel prize Yves Chauvin, Robert Grubbs, and Richard Schrock on metal-catalyzed alkene metathesis 2010 Nobel prize Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium catalyzed cross coupling reactions The following slides are meant merely as examples of the catalytic processes we will explore later this semester.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 78 Summer 2020 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris ! Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ ! Hertfordshire) [e-mail: [email protected]] !Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson ! Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, !Prof Frank James (University College) TW12 3JG [e-mail: [email protected]] !Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith ! Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, ! Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall, Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 RSC Historical Group Newsletter No. 78 Summer 2020 Contents From the Editor (Anna Simmons) 2 ROYAL SOCIETY OF CHEMISTRY HISTORICAL GROUP NEWS 3 Letter from the Chair (Peter Morris) 3 New “Lockdown” Webinar Series (Peter Morris) 3 RSC 2020 Award for Exceptional Service 3 OBITUARIES 4 Noel G. Coley (1927-2020) (Peter Morris, Jack Betteridge, John Hudson, Anna Simons) 4 Kenneth Schofield (1921-2019), FRSC (W. H. Brock) 5 MEMBERS’ PUBLICATIONS 5 Special Issue of Ambix August 2020 5 PUBLICATIONS OF INTEREST 7 SOCIETY NEWS 8 OTHER NEWS 9 Giessen Celebrates (?) the Centenary of the Liebig Museum (W.
    [Show full text]
  • List of Nobel Laureates 1
    List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize.
    [Show full text]
  • The Emergence of the Structure of the Molecule and the Art of Its Synthesis
    Total Synthesis DOI: 10.1002/anie.200((will be filled in by the editorial staff)) The Emergence of the Structure of the Molecule and the Art of Its Synthesis K. C. Nicolaou* At the core of the science of chemistry lie the structure of the molecule, the art of its synthesis, and the design of function within it. These attributes elevate chemistry to an essential, indispensable, and powerful discipline whose impact on the life and materials sciences is paramount, undisputed, and expanding. Indeed, today the combination of structure, synthesis, and function is driving many scientific frontiers forward, including drug discovery and development, biology and biotechnology, materials science and nanotechnology, and molecular devices of all kinds. What connects structure and function is synthesis, whose flagship is total synthesis, the art of constructing the molecules of nature and their derivatives. The power of chemical synthesis at any given time is reflected and symbolized by the state of the art of total synthesis, and as such the condition and sophistication of the latter needs to be continuously nourished and advanced. In this review the understanding of the structure of the molecule, the emergence of organic synthesis, and the art of total synthesis are traced from the nineteenth century to the present day. 1. Introduction other sciences, technologies, and engineering, and how did it come to be so advanced and enabling? The power of chemistry is The celebration of Angewandte Chemie’s 125th anniversary in primarily derived from its ability to understand molecular structure, 2013 gives us the opportunity to reflect on both the past and the synthesize it, and build function within it through molecular design future of the central, and yet universal and ubiquitous, science of and synthesis.
    [Show full text]
  • The Impact of Nobel Prize in Chemistry on Fine Chemicals
    MILESTONESFROM THE SCIENTIFIC IN CHEMISTRY ADVISORY BOARD Ian C. Lennon The impact of Nobel Prize in Chemistry on fine chemicals IAN C. LENNON Member of Chimica Oggi/Chemistry Today’s Scientific advisory board s this is the “2011: International Year of Chemistry” it is opportune to reflect on the impact that the Nobel Prize in Chemistry has had on the pharmaceuti- Acal and contract manufacturing industries. Between 1901 and 2010 the Nobel Prize in Chemistry has been awarded 102 times to 160 Nobel Laureates for achieve- ments in a diverse range of chemistry, from polymers to biological chemistry, struc- tural and surface Chemistry, to quantum mechanics. This editorial will focus on those Nobel Prizes that have had the biggest impact in the manufacture of pharmaceuti- cals and fine chemicals. By the start of the 20th Century chemical manufacturing was well establi- shed in Europe and many new reactions and techniques were being developed. The 1902 No- bel Prize in Chemistry awarded to Emil Fischer for his work on purine and sugar synthesis was hi- ghly significant. Fischer has >8 reactions named after him, including the Fischer Indole synthesis and the Fischer reduction. The 1912 prize was shared between Victor Grignard and Paul Sabatier. 2 We can all appreciate the impact of the Grignard reaction to enable the synthesis of alcohols and for- ming new carbon-carbon bonds, but Sabatier’s work on developing methods of hydrogenating organic compounds in the presence of finely disintegrated metals, was an equally important milestone in organic chemistry. A few industrial chemists would dispute the fundamental importance of Fritz Haber’s work on the synthesis of ammonia, which led to the 1918 prize, though awarded in 1919 as no candidate met the criteria to receive the award in 1918, so it was deferred for one year.
    [Show full text]
  • Copyrighted Material
    1 1 Industrial Milestones in Organometallic Chemistry Ben M. Gardner1, Carin C.C. Johansson Seechurn2, and Thomas J. Colacot3 1Cambridge Display Technology Ltd, Unit 12 Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, UK 2Johnson Matthey, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, UK 3Millipore Sigma (A Business of Merck KGAa Darmstadt, Germany), 6000N Teutonia Avenue, Milwaukee, WI 53209, USA 1.1 Definition of Organometallic and Metal–Organic Compounds Organometallic compounds can be defined as compounds that contain at least one chemical bond between a carbon atom of an organic moiety and a metal. The metal can be alkaline, alkaline earth, transition metal, lanthanide, or a metalloid such as boron, silicon, and phosphorus. Therefore, metal–phosphine complexes are also often included in this category, although they do not contain a typical metal–carbon bond – they are more commonly referred to as “metal–organic compounds.” For the purposes of this book, applications of both organometal- lic and metal–organic compounds are discussed on the basis of “organometallic chemistry.” 1.1.1 Applications and Key Reactivity The three major types of applications of organometallic compounds in industry are in the areas of electronics, polymers, and organic synthesis. In organic synthe- sis, the organometallic compounds are used as either catalysts or stoichiometric reagents. 1.1.1.1 ElectronicCOPYRIGHTED Applications MATERIAL For electronic applications typically, the organometallic complex is subjected to chemical vapor deposition (CVD) to form an appropriate thin layer or subjected to organometallic chemical vapor deposition (OMCVD) where the deposition ultimately occurs via a chemical reaction at the substrate surface to produce a high-quality material.
    [Show full text]
  • History of Organometallic Chemistry 7
    !"#$%&'(%)(%&*+,%-.$+//"0(0!.-"#$&' 1234516447($!.()"&#$(0%-8/.9.# !"#$%&&'$()$&*+,)&'#-,..(/$/"#'(0-*1$&//2**#3$#00#)-(,..1$()$-"#$4)(-#3$5-,-#06 7)+.,)3$,)3$8#*',)1$32*()+$-"#$9*3$:2,*-#*$&;$-"#$<<-"$/#)-2*1=$>-$(0$()$,$'(.(-,*1 ?",*',/1$()$@,*(06$"&A#B#*6$-",-$-"#$3(0/(?.()#$A,0$%&*)$()$CDEF=$G,3#-6$A"&$A,0 A&*H()+$ &)$ /&%,.-I/&)-,()()+$ ()H06$ 20#3$ ,*0#)(/I/&)-,()()+$ /&%,.-$ 0,.-0$ ;&*$ -"#(* ?*#?,*,-(&)=$>)$-"(0$A,16$"#$3(0/&B#*#3$-"#$;2'()+$,)3$(..I0'#..()+$G,3#-J0$.(:2(3 A"(/"$/&'?*(0#0$,$'(K-2*#$&;$/,/,3&1.$&K(3#$,)3$-#-*,'#-"1.3(,*0()#$%1$/,**1()+ &2-$-"#$;&..&A()+$*#,/-(&)L As2O3 + 4 MeCO2K [(AsMe2)2O] + [Me2As-AsMe2] + … M)#$&;$-"#$H#1$#B#)-0$&;$-"#$<><-"$/#)-2*1$A,0$-"#$3(0/&B#*1$&;$-"#$;(*0-$!$/&'?.#K6 R ),'#.1$N#(0#$0,[email protected]" IGRSTUV6$()$CWRD6$,.-"&2+"$-"#$/&**#/-$;&*'2.,$%#.&A A,0$?*&?&0#3$'2/"$.,--#*= – Cl Pt K+ Zeise salt, 1827 Cl Cl >)$-"#$'(3ICWXF06$Y*,)H.,)3$01)-"#0(Z#3$0#B#*,.$,(*I0#)0(-(B#$'#-,.I,.H1.$/&'?.#K#0 02/"$,0$N)7-R$QCWT[U6$S+7-R$QCWXRU6$5)7-T$,)3$\]#9$QCWEFU6$-"#$'#*/2*1$,)3$Z()/ /&'?.#K#0$%#()+$(''#3(,-#.1$20#3$-&$01)-"#0(Z#$',)1$&-"#*$',()I+*&2?$&*+,)&'#-I ,..(/$/&'?.#K#0=$Y&*$()0-,)/#6$Y*(#3#.$,)3$G*,;-0$?*#?,*#3$0#B#*,.$&*+,)&/".&*&0(I .,)#0$^)5(G.T_)$;*&'$-"#$*#,/-(&)0$&;$5(G.T$A(-"$N)^R$QCWE9U=$5"&*-.1$,;-#*A,*306 5/"`-Z#)%#*+#*6$,)$a.0,-(,)$/"#'(0-6$01)-"#0(Z#3$-"#$;(*0-$'#-,.I/,*%&)1.$3#*(B,I -(B#[email protected]$,)[email protected]$QCWEWICWDFU=$!A#)-1$1#,*0$.,-#*6$-"#$;(*0-$%(),*1 '#-,.I/,*%&)1.$/&'?&2)30$,??#,*#3L$Pb(QGMUTV$Q]&)36$CW[FU$,)3$PY#QGMUXV$Q]&)3 ,)3$\#*-"#.&-6$CW[CU=$Y*&'$CW[9$&)A,*30$,)3$&B#*$,$?#*(&3$&;$-A#)-1$1#,*06$c#*)#*
    [Show full text]
  • A Powerful Tool for Chemists
    THE NOBEL PRIZE IN CHEMISTRY 2010 INFORMATION FOR THE PUBLIC A Powerful Tool for Chemists There is an increasing need for complex chemicals. Humanity wants new medicines that can cure cancer or halt the devastating effects of deadly viruses in the human body. The electronics industry is searching for substances that can emit light, and the agricultural industry wants substances that can protect crops. The Nobel Prize in Chemistry 2010 rewards a tool that has improved the ability of chemists to satisfy all of these wishes very effciently: palladium-catalyzed cross coupling. At the end of the 1980s, scuba divers in the Caribbean Sea collected the marine sponge Discodermia dis- soluta. At a depth of 33 meters (108 feet) they found a little creature that lacks eyes, a mouth, stomach and bones. At frst sight it appears primitive, but its inability to escape enemies has turned Discodermia dissoluta and other marine sponges into masters of chemistry. They have a remarkable ability to produce large and complex chemical molecules that are poisonous and that prevent other organisms from exploiting them. Researchers have discovered that many of these poisons have therapeutic properties; they can function as antibiotics or as anti-viral or anti-infammatory medicines. In the case of Discodermia dissoluta, the frst laboratory tests revealed that the substance discodermolide could in the future be used as a chemotherapy drug. Among other things, it stopped cancer cells from growing in test tubes. Removes a significant obstacle to progress After more in-depth studies, scientists have been able to demonstrate how discodermolide defeats cancer cells in the same manner as Taxol, one of the most commonly used cancer drugs in the world.
    [Show full text]