A History of Fruits on the SE Asian Mainland

Total Page:16

File Type:pdf, Size:1020Kb

A History of Fruits on the SE Asian Mainland A history of fruits on the SE Asian mainland See Webshow at; http://www.rogerblench.info/Ethnoscience%20data/History%20of%20fruits%20on%20mainland%20SE%20Asia.mht Paper presented at the; EURASEAA, Bougon, 26th September, 2006 and now revised for the proceedings DRAFT FOR COMMENT Roger Blench Mallam Dendo 8, Guest Road Cambridge CB1 2AL United Kingdom Voice/ Fax. 0044-(0)1223-560687 Mobile worldwide (00-44)-(0)7967-696804 E-mail [email protected] http://www.rogerblench.info/RBOP.htm This printout: Cambridge April 25, 2007 Roger Blench. History of fruits in the East Asia/ Pacific region TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................... 1 2. NOTES ON INDIVIDUAL SPECIES....................................................................................................... 2 Bael (Aegle marmelos Correa) ...................................................................................................................... 2 Cashew (Anacardium occidentale L.)........................................................................................................... 2 Pineapple (Ananas comosus (L.) Merr.)........................................................................................................ 2 Soursop (Annona muricata L.)...................................................................................................................... 3 Sweetsop (Annona squamosa L.).................................................................................................................. 3 Bullock heart (Annona reticulata L.) ............................................................................................................ 3 Bignay, Chinese laurel, currant tree, salamander tree (Antidesma bunius Spreng.)...................................... 3 Luk-nieng (Archidendron jiringa (Jack) I. C. Nielsen)................................................................................. 3 Areca nut (Areca catechu L.) ........................................................................................................................ 3 Breadfruit (Artocarpus altilis (Parkinson) Fosberg.) .................................................................................... 4 Jackfruit (Artocarpus heterophyllus, Lam.) .................................................................................................. 4 Chempedak (Artocarpus integer Merr.)........................................................................................................ 4 Bilimbi (Averrhoa bilimbi, L.) ...................................................................................................................... 5 Carambola, star-fruit (Averrhoa carambola Linn.) ....................................................................................... 5 Rambai (Baccaurea motleyana Muell. Arg) ................................................................................................. 5 Burmese grape (Baccaurea ramiflora Lour.) ................................................................................................ 5 Sugar palm, Palmyra palm, Toddy palm (Borassus flabellifer L.) ............................................................... 5 Gandaria, Marian plum (Bouea macrophylla Griff.) .................................................................................... 6 Papaya (Carica papaya L.) ........................................................................................................................... 6 Star-apple (Chrysophyllum cainito L.).......................................................................................................... 6 Lime (Citrus aurantifolia Swingle)............................................................................................................... 6 Kaffir lime (Citrus hystrix D.C.)................................................................................................................... 7 Pomelo (Citrus maxima Merr.)...................................................................................................................... 7 Mandarin (Citrus reticulata Blanco)............................................................................................................. 7 Sweet orange, Citrus sinensis ....................................................................................................................... 7 Wampee, (Clausena lansium Skeels)............................................................................................................ 7 Water banyan (Cleistocalyx operculatus var. paniala)................................................................................. 7 Coconut (Cocos nucifera L.)......................................................................................................................... 8 Longan (Dimocarpus longan Lour.).............................................................................................................. 8 Mabolo (Diospyros blancoi A. DC.)............................................................................................................. 8 Argus pheasant tree (Dracontomelon dao (Blanco) Merr. & Rolfe)............................................................. 8 Durian (Durio zibethinus L.)......................................................................................................................... 8 Indian gooseberry (Emblica officinalis Gaertner) (= Phyllanthus emblica L.)............................................. 9 Indian plum (Flacourtia rukam Zoll. & A. Mortizi)..................................................................................... 9 Mundu (Garcinia dulcis Kurz)...................................................................................................................... 9 Mangosteen (Garcinia mangostana L.) ........................................................................................................ 9 Langsat (Lansium domesticum Corr.) ........................................................................................................... 9 Lychee (Litchi chinensis Sonn.) .................................................................................................................. 10 Mango (Mangifera indica L.)...................................................................................................................... 10 Horse mango (Mangifera foetida Lour.)..................................................................................................... 10 Kuwini (Mangifera odorata Griffith) ......................................................................................................... 11 Sapodilla (Manilkara zapota (L.) van Royen) ............................................................................................ 11 Noni (Morinda citrifolia L.)........................................................................................................................ 11 Mulberry (Morus alba L.) ........................................................................................................................... 11 Jamaica cherry (Muntingia calabura L.)..................................................................................................... 11 Rambutan (Nephelium lappaceum L.) ........................................................................................................ 12 Avocado pear, alligator pear (Persea americana Miller)............................................................................ 12 Star-gooseberry (Phyllanthus acidus (L.) Skeels)....................................................................................... 12 Guamachil, Manila tamarind (Pithecellobium dulce (Roxb.) Benth.)......................................................... 12 Taun tree (Pometia pinnata J.R. Forster & J.G. Forster) ............................................................................ 12 i Roger Blench. History of fruits in the East Asia/ Pacific region Pomegranate (Punica granatum L.)............................................................................................................ 12 Guava (Psidium guajava L.) ....................................................................................................................... 13 Salacca, snake fruit (Salacca zalacca (Gaertner) Voss).............................................................................. 13 Santol (Sandoricum koetjape (Burm. f.) Merr.) .......................................................................................... 13 Ambarella (Spondias dulcis Forst. (syn. S. cytherea Sonn.) ....................................................................... 13 Water apple (Syzygium aqueum (Burm. f.) Alston) .................................................................................... 13 Malay Apple (Syzygium malaccense (L.) Merr. & Perry)........................................................................... 13 Java apple (Syzygium samarangense (Blume) M. & P.) ............................................................................. 13 Jambolan (Syzygium cumini L.) .................................................................................................................. 14 Rose-apple, Malabar plum (Syzygium jambos (L.) Alston) ........................................................................ 14 Tamarind [Indian date] Tamarindus indica Linn. (1753) ..........................................................................
Recommended publications
  • Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis
    molecules Article Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis Muhanna Mohammed Al-Shaibani 1,2, Radin Maya Saphira Radin Mohamed 1,* , Noraziah Mohamad Zin 2,*, Adel Al-Gheethi 1,*, Mohammed Al-Sahari 1 and Hesham Ali El Enshasy 3,4 1 Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Malaysia; [email protected] (M.M.A.-S.); [email protected] (M.A.-S.) 2 Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia 3 Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia; [email protected] 4 City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, 21934 Alexandria, Egypt * Correspondence: [email protected] (R.M.S.R.M.); [email protected] (N.M.Z.); [email protected] (A.A.-G.); Tel.: +607-4564236 (R.M.S.R.M.); +603-92897373 (N.M.Z.); +607-4564346 (A.A.-G.); Fax: +607-4536588(R.M.S.R.M.); +601-93924639 (N.M.Z.); +607-4536588 (A.A.-G.) Citation: Al-Shaibani, M.M.; Radin Abstract: The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) Mohamed, R.M.S.; Zin, N.M.; productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodol- Al-Gheethi, A.; Al-Sahari, M.; El ogy (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against Enshasy, H.A.
    [Show full text]
  • Cadmium Contamination in Orchard Soils and Fruit Trees and Its Potential Health Risk in Guangzhou, China
    ARTICLE IN PRESS + MODEL http://www.paper.edu.cn Environmental Pollution xx (2005) 1e7 Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China J.T. Li a, J.W. Qiu b, X.W. Wang a, Y. Zhong a, C.Y. Lan a,*, W.S. Shu a,* a School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, PR China b Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, PR China Received 6 August 2005; received in revised form 19 September 2005; accepted 14 October 2005 Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans. Abstract This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0e24 times and 4.0e10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04e0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.
    [Show full text]
  • (Pouteria Sapota, Sapotaceae) from Southeastern Mexico: Its Putative Domestication Center
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 7-6-2019 Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center Jaime Martínez-Castillo Centro de Investigación Científica de ucatánY (CICY), [email protected] Nassib H. Blancarte-Jasso Centro de Investigación Científica de ucatánY (CICY) Gabriel Chepe-Cruz Centro de Investigación Científica de ucatánY (CICY) Noemí G. Nah-Chan Centro de Investigación Científica de ucatánY (CICY) Matilde M. Ortiz-García Centro de Investigación Científica de ucatánY (CICY) See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Martínez-Castillo, Jaime; Blancarte-Jasso, Nassib H.; Chepe-Cruz, Gabriel; Nah-Chan, Noemí G.; Ortiz- García, Matilde M.; and Arias, Renee S., "Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center" (2019). Publications from USDA-ARS / UNL Faculty. 2200. https://digitalcommons.unl.edu/usdaarsfacpub/2200 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jaime Martínez-Castillo, Nassib H.
    [Show full text]
  • ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
    Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food.
    [Show full text]
  • A History of Fruits on the Southeast Asian Mainland
    OFFPRINT A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm Occasional Paper 4 Linguistics, Archaeology and the Human Past Edited by Toshiki OSADA and Akinori UESUGI Indus Project Research Institute for Humanity and Nature, Kyoto, Japan 2008 ISBN 978-4-902325-33-1 A history of Fruits on the Southeast Asian mainland A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm ABSTRACT The paper presents an overview of the history of the principal tree fruits grown on the Southeast Asian mainland, making use of data from biogeography, archaeobotany, iconography and linguistics. Many assertions in the literature about the origins of particular species are found to be without empirical basis. In the absence of other data, comparative linguistics is an important source for tracing the spread of some fruits. Contrary to the Pacific, it seems that many of the fruits we now consider characteristic of the region may well have spread in recent times. INTRODUCTION empirical base for Pacific languages is not matched for mainland phyla such as Austroasiatic, Daic, Sino- This study 1) is intended to complement a previous Tibetan or Hmong-Mien, so accounts based purely paper on the history of tree-fruits in island Southeast on Austronesian tend to give a one-sided picture. Asia and the Pacific (Blench 2005). Arboriculture Although occasional detailed accounts of individual is very neglected in comparison to other types of languages exist (e.g.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia
    J]RCAS International Symposium Series No. 3: 27-38 Session 1-3 27 Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia WONG, Kai Choo' Abstract Fruit tree genetic resources in Malaysia consist of cultivated and wild species. The cul­ tivated fruit trees number more than 100 species of both indigenous and introduced species. Among these fruits, some are popular and are widely cultivated throughout the country while others are less known and grown in small localized areas. The latter are the under-utilized fruit species. Apart from these cultivated fruits, there is also in the Malaysian natural forest a diversity of wild fruit tree species which produce edible fruits but are relatively unknown and unutilized. Many of the under-utilized and unutilized fruit species are known to show economic potential. Collection and evaluation of some of these fruit tree genetic resources have been carried out. These materials are assessed for their potential as new fruit trees, as sources of rootstocks for grafting and also as sources of germplasm for breeding to improve the present cultivated fruit species. Some of these potential fruit tree species within the gen­ era Artocarpus, Baccaurea, Canarium, Dimocarpus, Dialium, Durio, Garcinia, Litsea, Mangif era, Nephelium, Sa/acca, and Syzygium are highlighted. Introduction Malaysian fruit tree genetic resources comprise both cultivated and wild species. There are more than 100 cultivated fruit species of both major and minor fruit crops. Each category includes indigenous as well as introduced species. The major cultivated fruit crops are well known and are commonly grown throughout the country.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Bouea) Based on Morphological Characters in Indonesia
    RESEARCH ARTICLE % SABRAO Journal of Breeding and Genetics 48 (4) 504-517, 2016 DIVERSITY OF GANDARIA (BOUEA) BASED ON MORPHOLOGICAL CHARACTERS IN INDONESIA T. HARSONO1, N. PASARIBU1, SOBIR2 and FITMAWATI3* 1Departement of Biology, North Sumatera University, Medan, Indonesia 2Center for Tropical Horticultural (PKHT), Bogor Agricultural University, Bogor, Indonesia 3Department of Biology, Riau University, Pekanbaru, Indonesia *Corresponding author’s email: [email protected] Email addresses of co-authors: [email protected], [email protected], [email protected] SUMMARY The major distribution of Bouea spp from the family Anacardiaceae is common in Malaysian region. The genus Bouea has three species B. Marcophylla, B. oppositifolia, and B. poilanei. Morphological variations were found in Bouea in various regions of Indonesia. This study aims to review the genetic diversity and grouping of Bouea spp in Indonesia using morphological markers. A total of 75 accessions of B. macrophylla and 30 accessions of B. oppositifolia obtained from 13 provinces in Indonesia observed with variations using 31 and 81 characters, respectively as morphological markers. Result of the observations were then cluster analyzed using the program NTSYS version 2.02 and confirmed using principal component analysis (PCA). Results revealed that morphological markers which can distinguish Bouea from other plants were opposite leaves pattern and purle seeds. Morphological markers that distinguished B. macrophylla with B. oppositifolia were leaf size, fruit size, fruit shape, fruit color, flesh color, and shape of the leaf axillary bud. Cluster analysis showed that B. macrophylla has similarity coefficient of 0.77 to 1.00 which is sub-divided in seven major groups with coefficient of 0.93.
    [Show full text]
  • Download Article (PDF)
    eFood Vol. 1(2); April (2020), pp. 126–139 DOI: https://doi.org/10.2991/efood.k.200406.001; eISSN 2666-3066 https://www.atlantis-press.com/journals/efood Review Emerging Exotic Fruits: New Functional Foods in the European Market Laura Cornara1,*, Jianbo Xiao2, Antonella Smeriglio3, Domenico Trombetta3, Bruno Burlando4,5 1Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, Genova 16132, Italy 2Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy 4Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV 3, Genova 16132, Italy 5Biophysics Institute, National Research Council (CNR), via De Marini 6, Genova 16149, Italy ARTICLE INFO ABSTRACT Article History The consumption of exotic fruits is rapidly increasing in European countries. Some of these products have attracted much interest due to their alleged properties of preventing malnutrition, over-nutrition, and disease, maintaining a healthy body. Received 23 February 2020 Accepted 31 March 2020 Scientific studies on these fruits are multiplying, including chemical characterizations and biological investigations onin vitro and in vivo experimental models. This review concerns four edible fruits:Hylocereus undatus (dragon fruit), Annona cherimola Keywords (cherimoya), Citrus australasica (finger lime), andAverrhoa carambola (carambola or star fruit). By screening biomedical Superfruits databases, viz. Scopus, WOS, and PubMed, a total of 131 papers have been selected. Data reveals a wide series of biological functional food effects that confirm traditional medicinal uses or suggest new therapeutic applications.
    [Show full text]
  • Detailed Final Report
    An urgent conservation call from endemic plants of Mount Salak, West Java, Indonesia I Robiansyah* and S U Rakhmawati Research Center for Plant Conservation and Botanic Gardens - LIPI. Jl.Ir.H. Juanda 13 Bogor 16003, West Java, Indonesia *[email protected] Abstract. Mount Salak is part of Mount Halimun-Salak National Park in West Java, Indonesia. It is home to five endemic plant species that are very susceptible to human interference due to their close proximity to human settlements. The deforestation rate of the area was 1,473 ha or 1.3% of the total area each year. Using eleven line transects with a total length of 44.76 km, the present study aims at providing data on current population and conservation status of these five endemic plant species. The results showed that there was an urgent conservation call from Mount Salak as all five targeted species were unable to be located. Furthermore, two invasive species that might possess serious threat to the endemic plants were observed during the survey: markisa (Passiflora sp.; Passifloraceae) and harendong bulu (Clidemia hirta; Melastomataceae). Based on these results, the present study assigned all the endemic species as Critically Endangered according to the IUCN Red List Category and Criteria. To conserve all the endemic plant species in Mount Salak, several recommendations were given and discussed. 1. Introduction Plants are fundamental part of terrestrial ecosystem and provide support systems for life on earth. For human, plants provide many essential services that underpin human survival and well-being, such as source of food, clothes, timber, medicines, fresh air, clean water, and much more.
    [Show full text]