(Pouteria Sapota, Sapotaceae) from Southeastern Mexico: Its Putative Domestication Center
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mamey Sapote Seed Oil (Pouteria Sapota). Potential, Composition, Fractionation and Thermal Behavior
GRASAS Y ACEITES 66 (1) January–March 2015, e056 ISSN-L: 0017-3495 doi: http://dx.doi.org/10.3989/gya.0691141 Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior J.A. Solís-Fuentes1,*, R.C. Ayala-Tirado1, A.D. Fernández-Suárez1, and M.C. Durán-de-Bazúa,2,* 1Instituto de Ciencias Básicas, Universidad Veracruzana. Av. Dos Vistas s/n carretera Xalapa-Las Trancas, 91000 Xalapa, Ver., México 2Facultad de Química, UNAM. Conjunto “E”, Labs E301-E302-E303, Ciudad Universitaria, 04510 México, D.F. *Corresponding authors: [email protected]; [email protected] Submitted: 05 June 2014; Accepted: 10 September 2014 SUMMARY: The chemical composition of the waste from mamey sapote (Pouteria sapota) and its oil extracted from the seed (MSSO) of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32%) and fat (44.41% db), respectively. The seed oil contained oleic, stearic, palmitic and linoleic as its main fatty acids. The MSSO showed a simple thermal behavior with a broad fusion range and four maximum temperature peaks. The solid fractions showed maximum melting peaks at higher temperatures than the residual liquid. The MSSO solid fractions showed a potential for use as constituents in mixtures with other natural fats, such as cocoa butter or mango seed fat. KEYWORDS: DSC; Mamey sapote; Oil fractionation; Pouteria sapota; Seed oil RESUMEN: Aceite de semilla de Zapote Mamey (Pouteria sapota). -
Pouteria Sapota
Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana). -
ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food. -
Fruit Bats As Natural Foragers and Potential Pollinators in Fruit Orchard: a Reproductive Phenological Study
Journal of Agricultural Research, Development, Extension and Technology, 25(1), 1-9 (2019) Full Paper Fruit bats as natural foragers and potential pollinators in fruit orchard: a reproductive phenological study Camelle Jane D. Bacordo, Ruffa Mae M. Marfil and John Aries G. Tabora Department of Biological Sciences, College of Arts and Sciences, University of Southern Mindanao, Kabacan, Cotabato, Philippines Received: 27 February 2019 Accepted: 10 June 2019 Abstract Family Pteropodidae could consume either fruit or flower parts to sustain their energy requirement. In some species of fruit bats, population growth is sometimes dependent on the food availability and in return bats could be pollinators of certain species of plants. In this study, 152 female bats captured from the Manilkara zapota orchard of the University of Southern Mindanao were examined for their reproductive stages. Lactation of fruit bat species Ptenochirus jagori and Ptenochirus minor were positively correlated with the fruiting of M. zapota. While the lactation of Cynopterus brachyotis, Eonycteris spelaea and Rousettus amplexicaudatus were positively associated with the flowering of M. zapota. Together, thirty M. zapota trees were observed for their generative stage (fruiting or flowering) in 6 months. Based on the canonical correspondence analysis, only P. jagori was considered as the natural forager as its lactating stage coincides with the fruiting peaks and only C. brachyotis and E. spelaea were the potential pollinators since its lactating stage coincides with the flowering peaks ofM. zapota tree. The method in this study can be used to identify potential pollinators and foragers in other fruit trees. Keywords - agroforest, chiropterophily, frugivore, nocturnal, Sapotaceae Introduction pollination process is called chiropterophily. -
Total Antioxidant Activity and Fiber Content of Select Florida-Grown Tropical Fruits
J. Agric. Food Chem. 2006, 54, 7355−7363 7355 Total Antioxidant Activity and Fiber Content of Select Florida-Grown Tropical Fruits KANJANA MAHATTANATAWEE,†,‡ JOHN A. MANTHEY,† GARY LUZIO,† STEPHEN T. TALCOTT,§ KEVIN GOODNER,† AND ELIZABETH A. BALDWIN*,† Citrus and Subtropical Products Laboratory, South Atlantic Area, Agricultural Research Service, United States Department of Agriculture, 600 Avenue S, Northwest, Winter Haven, Florida 33881, Department of Food Technology, Siam University, 235 Petchkasem Road, Phasi-charoen, Bangkok 10160, Thailand, and Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611-0370 Fourteen tropical fruits from south Florida (red guava, white guava, carambola, red pitaya (red dragon), white pitaya (white dragon), mamey sapote, sapodilla, lychee, longan, green mango, ripe mango, green papaya, and ripe papaya) were evaluated for antioxidant activity, total soluble phenolics (TSP), total ascorbic acid (TAA), total dietary fiber (TDF), and pectin. ORAC (oxygen radical absorbance capacity) and DPPH (1,1-diphenyl-2-picrylhydrazyl, radical scavenging activity) assays were used to determine antioxidant activity. The TSP, ORAC, and DPPH ranged from 205.4 to 2316.7 g gallic acid equiv/g puree, <0.1 to 16.7 µmol Trolox equiv/g puree, and 2.1 to 620.2 µg gallic acid equiv/g puree, respectively. The TAA, TDF, and pectin ranged from 7.5 to 188.8 mg/100 g, 0.9 to 7.2 g/100 g, and 0.20 to 1.04 g/100 g, respectively. The antioxidant activities, TSP, TAA, TDF, and pectin were influenced by cultivar (papaya, guava, and dragon fruit) and ripening stage (papaya and/or mango). -
Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index. -
Wood Anatomy of the Neotropical Sapotaceae Xxxvi. Syzygiopsis
WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE XXXVI. SYZYGIOPSIS RESEARCH PAPER FPL 424 FOREST PRODUCTS LABORATORY FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE MADISON, WIS. OCTOBER 1982 Abstract Syzygiopsis consists of three species, oppositifolia and oblanceolata native to Amazonia and sericea of adjacent Venezuela. Syzygiopsis was first described by Adolpho Ducke in 1925 and consisted of the single species, S. oppositifolia. Later he had some doubts regarding the taxonomic status of his-new genus but did not suggest any possible alternates or alliances. In 1942 Baehni trans ferred Ducke's monotypic genus to Pouteria, producing the new combination Pouteria oppositifolia (Ducke) Baehni; in 1957 van Royen made another new combination, Planchonella oppositifolia (Ducke) van Royen, making it a part of the large Asiatic genus Planchonella. Anatomically, the wood shows little, if any, alliance with Planchonella but shares some features with species of Pouteria. Preface The Sapotaceae form an important part of the ecosystem in the neotropics; for example, limited inventories made in the Amazon Basin indicate that this family makes up about 25 percent of the standing timber volume there. This would represent an astronomical volume of timber but at present only a very small fraction is being utilized. Obviously, better information would help utilization-- especially if that information can result in clear identification of species. The Sapotaceae represent a well-marked and natural family but the homogeneous nature of their floral characters makes generic identification extremely diffi cult. This in turn is responsible for the extensive synonymy. Unfortunately, species continue to be named on the basis of flowering or fruiting material alone and this continues to add to the already confused state of affairs. -
Genetic Variation Among Cultivated Selections of Mamey Sapote (Pouteria Spp
Proc. Fla. State Hort. Soc. 117:195-200. 2004. GENETIC VARIATION AMONG CULTIVATED SELECTIONS OF MAMEY SAPOTE (POUTERIA SPP. [SAPOTACEAE]) SUSAN CARRARA1 ideas about the differentiation between the three closely re- Florida International University lated species which produce the fruit commonly called “ma- Department of Biological Sciences mey sapote” have the potential to enlarge the range of traits 11200 SW 8th Street that should be represented in such a collection. Miami, FL 33158 This paper aims to facilitate mamey sapote germplasm col- lection expansion and management by identifying geograph- RICHARD CAMPBELL ic areas of high genetic diversity for future collection. This is Fairchild Tropical Botanic Garden accomplished by analyzing the genetic diversity of selections 11935 Old Cutler Road held by FTBG and the University of Florida’s Tropical Re- Miami, FL 33156 search and Education Center (TREC) using the Amplified Fragment Length Polymorphism (AFLP) technique. RAYMOND SCHNELL The mamey sapote selections in this study can be grouped United States Department of Agriculture-Agriculture Research Service into three main categories based on the region in which they 13601 Old Cutler Road were collected: Cuba, the Caribbean coast of Central America Miami, FL 33158 (specifically the Yucatán Peninsula, the Petén of Guatemala, and Belize), and the Pacific coast of Central America (Guate- mala, El Salvador, Nicaragua, and Costa Rica at elevations Additional index words. Mamey sapote, Pouteria spp., genetic from sea level to 1000 m) (Fig. 1). Genetic diversity of selec- diversity, AFLP tions from the Yucatán peninsula were hypothesized to be low due to their morphological similarity and to the land clearing Abstract. -
Chec List What Survived from the PLANAFLORO Project
Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al. -
Pouteria Franciscana Baehni (Chrysophylloideae, Sapotaceae) in Amapá State, Eastern Brazilian Amazonia
16 1 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 16 (1): 27–35 https://doi.org/10.15560/16.1.27 First record of Pouteria franciscana Baehni (Chrysophylloideae, Sapotaceae) in Amapá state, eastern Brazilian Amazonia Caroline da Cruz Vasconcelos1, Mário Henrique Terra-Araujo1, Ana Cláudia Lira-Guedes2, Marcelino Carneiro Guedes2, Janaina Barbosa Pedrosa Costa2 1 Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de Pós-Graduação em Botânica (PPG-BOT), Av. André Araújo 2936, Manaus, Amazonas, 69067-375, Brazil. 2 Empresa Brasileira de Pesquisa Agropecuária (Embrapa Amapá), Núcleo de Recursos Florestais, Rod. Juscelino Kubitschek Km 5 2600, Macapá, Amapá, 68903-419, Brazil. Corresponding author: Caroline da Cruz Vasconcelos, [email protected] Abstract This is the first record of Pouteria franciscana Baehni (Chrysophylloideae, Sapotaceae) in Amapá state, Brazil. We provide a brief description as well as a distribution map, illustrations, and a table with useful features to distinguish P. franciscana from its morphologically related Amazonian species. Using geographic data and applying IUCN criteria, we assign the status as Least Concern for P. franciscana. Keywords “Abiurana”, Amazonian floodplain forest, flora, new occurrence, taxonomy. Academic editor: Adriano Stinca | Received 14 July 2019 | Accepted 20 December 2019 | Published 10 January 2020 Citation: Vasconcelos CC, Terra-Araujo MH, Lira-Guedes AC, Guedes MC, Costa JBP (2020) First record of Pouteria franciscana Baehni (Chrysophylloideae, Sapotaceae) in Amapá state, eastern Brazilian Amazonia. Check List 16 (1): 27–35. https://doi.org/10.15560/16.1.27 Introduction the Cerrado, Caatinga, Amazonia, and Atlantic Forest biomes; the last two are considered the major centers Sapotaceae Juss. is a pantropical woody family divided of diversity for some genera of Sapotaceae (Pennington into three subfamilies: Chrysophylloideae Luerss., Sapo- 1990, 2006; Terra-Araujo et al. -
Rare Plants of Louisiana
Rare Plants of Louisiana Agalinis filicaulis - purple false-foxglove Figwort Family (Scrophulariaceae) Rarity Rank: S2/G3G4 Range: AL, FL, LA, MS Recognition: Photo by John Hays • Short annual, 10 to 50 cm tall, with stems finely wiry, spindly • Stems simple to few-branched • Leaves opposite, scale-like, about 1mm long, barely perceptible to the unaided eye • Flowers few in number, mostly born singly or in pairs from the highest node of a branchlet • Pedicels filiform, 5 to 10 mm long, subtending bracts minute • Calyx 2 mm long, lobes short-deltoid, with broad shallow sinuses between lobes • Corolla lavender-pink, without lines or spots within, 10 to 13 mm long, exterior glabrous • Capsule globe-like, nearly half exerted from calyx Flowering Time: September to November Light Requirement: Full sun to partial shade Wetland Indicator Status: FAC – similar likelihood of occurring in both wetlands and non-wetlands Habitat: Wet longleaf pine flatwoods savannahs and hillside seepage bogs. Threats: • Conversion of habitat to pine plantations (bedding, dense tree spacing, etc.) • Residential and commercial development • Fire exclusion, allowing invasion of habitat by woody species • Hydrologic alteration directly (e.g. ditching) and indirectly (fire suppression allowing higher tree density and more large-diameter trees) Beneficial Management Practices: • Thinning (during very dry periods), targeting off-site species such as loblolly and slash pines for removal • Prescribed burning, establishing a regime consisting of mostly growing season (May-June) burns Rare Plants of Louisiana LA River Basins: Pearl, Pontchartrain, Mermentau, Calcasieu, Sabine Side view of flower. Photo by John Hays References: Godfrey, R. K. and J. W. Wooten. -
Collecting Sapotes ( Pouteria Spp.), Sapodilla (Manilkara Zapota ) And
Collecting Sapotes (Pouteria spp.), Sapodilla (Manilkara zapota) and Caimito (Chrysophyllum cainito) on the Pacific Coast of Costa Rica and Nicaragua Richard J. Campbell, Ph.D. Senior Curator of Tropical Fruit Gary Zill, Juan Carlos Herrera Campo Verde de la Familia, Costa Rica Caimito, Chrysophyllum cainito Sapodilla, Manilkara zapota Sapotes, Pouteria spp. Local markets, subsistence and small farmers, key in local economies and regional stability. Potential: Fresh fruit, products, local to international appeal, novel new markets. Obstacles: Genetic confusion, horticultural improvement, clonal material. Primary collections along Pacific Coast of Central America. Collections in home gardens with local collaborators working closely within the community. P.fossicola P.viridis P.sapota Tropical Fruit Program of the Center for Tropical Plant Conservation Core Genetic Collections Williams Grove, The Redland, Florida, USA October, 2005 Mamey sapote Pouteria sapota Selection Origin Alejas Yucatan Amarillo Guapiles Costa Rica Anaranjado Dominican Republic Arbolito Dominican Republic Buena Vista Belize Celso 2 Yucatan Celso 3 Yucatan Cepeda Especial Yucatan Chico Guapiles Costa Rica Danny Belize Don Vicente Yucatan Felipe Mayo Yucatan Gilberto Costa Rica Kampong (P. viridis) Florida Grande (P. viridis) Guatemala K40 Costa Rica Lara Florida Lobo Costa Rica Lopez Florida Poamoho (P. viridis) Hawaii Lopez 2 Florida Redondo Antigua (P. viridis) Guatemala Lorito Yucatan Tazumal Florida Magana El Salvador Christmas Florida Marin Yucatan Vidal Yucatan