Vertical Axis Wind Turbine 1
Total Page:16
File Type:pdf, Size:1020Kb
Aérojoules project: Vertical Axis Wind Turbine 1 Aérojoules project: Vertical Axis Wind Turbine Michael O’Connor Master Thesis presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion” conferred by Ecole Centrale de Nantes developed at l'Institut Catholique d’Arts et Métiers (ICAM), Nantes in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC Supervisor: Mr Jean-François Largeau, l'Institut Catholique d’Arts et Métiers (ICAM), Nantes. Reviewer: Prof. Pierre Ferrant, Ecole Centrale Nantes. Nantes, January 2014 EMSHIP” Erasmus Mundus Master Course, period of study September 2012 – February 2014 2 Michael O'Connor CONTENTS TABLE OF FIGURES: .................................................................................................................... 5 LIST OF TABLES ........................................................................................................................... 9 1. SUMMARY ........................................................................................................................... 13 2. INTRODUCTION .................................................................................................................. 14 3. WIND ENERGY .................................................................................................................... 16 3.1 OVERVIEW WIND TURBINES ................................................................................... 17 3.1.1 Generators ..................................................................................................................... 17 3.1.2 Wind turbine classification ............................................................................................ 17 3.2 DARRIEUS TYPE VAWT ............................................................................................. 20 4. THEORY OF VAWT AERODYNAMICS: .......................................................................... 25 4.1 VAWT FLOW CHARACTERISTICS: .......................................................................... 25 4.2 WIND VELOCITY AND BLADE ANGLE OF ATTACK ........................................... 28 4.3 INTERFERENCE ............................................................................................................ 33 4.4 FORCES OVER THE AIRFOIL ..................................................................................... 35 4.5 TORQUE AND POWER OUTPUT ................................................................................ 37 4.6 CYCLING LOADING .................................................................................................... 39 4.7 DYNAMIC STALL ......................................................................................................... 40 4.8 NOTES ON DESIGN: ..................................................................................................... 44 5. EXPERIMENTAL ANALYSIS ............................................................................................ 45 5.1 ICAM WIND TUNNEL: ................................................................................................. 45 5.2 MEASUREMENT TECHNIQUES AND SENSORS AVAILABLE: ........................... 46 5.2.1 Wall flow visualisation techniques. ......................................................................... 46 5.2.2 Velocity measurements: ........................................................................................... 49 5.2.3 Aerodynamic forces ................................................................................................. 49 Master Thesis developed at l'Institut Catholique d’Arts et Métiers (ICAM), Nantes Aérojoules project: Vertical Axis Wind Turbine 3 5.3 MODELS: ........................................................................................................................ 51 5.4 EXPERIMENTAL RESULTS AND ANALYSIS: ......................................................... 52 5.4.1 Flow visualisation: ................................................................................................... 52 5.4.2 Hot-bulb anemometry .............................................................................................. 55 5.4.3 Aerodynamic forces: ..................................................................................................... 55 5.5 FUTURE WORK: ........................................................................................................... 58 6. CSTB WIND TUNNEL NANTES – FULL SCALE MODEL TESTING. ........................... 59 6.1 TEST 1: SEPT. 2012. ...................................................................................................... 59 6.2 TEST 2: JAN 2014 .......................................................................................................... 61 7. COMPUTATIONAL FLUID DYNAMICS (CFD) ............................................................... 63 7.1 BACKGROUND: ............................................................................................................ 63 7.2 NAVIER STOKES EQUATIONS .................................................................................. 63 7.2.1 Continuity equations: ............................................................................................... 63 7.2.2 Momentum Balance equations: ................................................................................ 63 7.2.3 Energy Balance Equations: ...................................................................................... 64 7.2.4 Navier stokes equations in CFD: .............................................................................. 65 7.3 TURBULENCE MODELING: ....................................................................................... 66 7.4 INITIAL SIMULATIONS: ............................................................................................. 68 7.4.1 Geometry: ................................................................................................................. 68 7.4.2 Boundary Conditions: .............................................................................................. 70 7.4.3 Mesh ......................................................................................................................... 70 7.4.4 Steady simulation: .................................................................................................... 75 7.4.5 Unsteady simulation: ................................................................................................ 75 7.5 LARGE EDDY SIMULATION ...................................................................................... 78 7.5.1 Working with Sub-grid Kinetic Energy ................................................................... 79 EMSHIP” Erasmus Mundus Master Course, period of study September 2012 – February 2014 4 Michael O'Connor 7.5.2 LES & Reynolds numbers: ....................................................................................... 85 7.5.3 VAWT rotation simulation: ..................................................................................... 86 7.6 SUMMARY CFD ............................................................................................................ 89 8. TURBINE MODEL ............................................................................................................... 91 8.1 ANALYSIS ..................................................................................................................... 91 8.1.1 Avoiding stall: .......................................................................................................... 93 8.1.2 Avoiding interference: .............................................................................................. 94 8.2. Q BLADE. ....................................................................................................................... 97 9. ELECTRICAL POWER GENERATION: ........................................................................... 101 9.1 USEABLE POWER: ..................................................................................................... 101 9.2 CONTROLLABLE POWER: ....................................................................................... 103 10. AÉROJOULES DESIGN ..................................................................................................... 105 10.1 COMBINATION SALVONIUS – DARRIEUS TURBINE: .................................... 106 11. PITCH CONTROL: ............................................................................................................. 108 12. WIND ENERGY AVAILABLE: ......................................................................................... 111 13. SHIPPING INDUSTRY: ...................................................................................................... 114 13.1 CONCEPT DESIGN STUDY: .................................................................................. 114 14. SHIPS WIND RESISTANCE: ............................................................................................. 117 14.1 SHIPS WIND RESISTANCE STUDY: .................................................................... 117 14.2 WIND ENERGY RESISTANCE PREDICTION: .................................................... 118 14.3 USING A VAWT TO REDUCE SHIP WIND RESISTANCE ...............................