Canada Thistle

Total Page:16

File Type:pdf, Size:1020Kb

Canada Thistle In: Van Driesche, R., et al., 2002, Biological Control of Invasive Plants in the Eastern United States, USDA Forest Service Publication FHTET-2002-04, 413 p. 17 CANADA THISTLE A. S. McClay Alberta Research Council, Vegreville, Alberta, Canada PEST STATUS OF WEED Canada thistle, Cirsium arvense (L.) Scop. (Fig. 1), is a vigorous, competitive weed that occurs in a wide range of habitats and is difficult to control due to its ability to regrow from its extensive, deep creeping root system (Nadeau and Vanden Born, 1989). Figure 2. Canada thistle [Cirsium arvense (L.) Scopoli] infestation in canola (Brassica rapa L.). (Photograph by A. S. McClay.) state weed control legislation in Delaware, Illinois, Indiana, Iowa, Kansas, Kentucky, Maryland, Min- nesota, Missouri, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, and Wisconsin (USDA, NRCS, 1999). Ecological damage. Canada thistle can be an invasive species in some natural communities, includ- ing prairie potholes and wet or wet-mesic grasslands in the Great Plains and sedge meadows in the upper Midwest (Nuzzo, 1997). It usually is a problem in Figure 1. Canada thistle [Cirsium disturbed areas and moister sites. Canada thistle was arvense (L.) Scopoli]. among the most prevalent weeds on Conservation (Photograph by L. M. Dietz.) Reserve Program (CRP) land in Minnesota, occur- ring in 65 to 75% of CRP fields throughout the state. Nature of Damage Canada thistle ground cover in these fields frequently Economic damage. Canada thistle causes extensive reached 50 to 75%, giving rise to concern about seed crop yield losses through competition and, perhaps, dispersal into neighboring agricultural land (Jewett allelopathy (Stachon and Zimdahl, 1980) (Fig. 2). The et al., 1996). It was ranked as “urgent” for control in prickly mature foliage also is thought to reduce pro- a review of exotic plants at Pipestone National Monu- ductivity of pastures by deterring livestock from graz- ment, Minnesota (Hiebert and Stubbendieck, 1993). ing. Canada thistle is the species most frequently de- Extent of losses. A density of 20 Canada thistle clared noxious under state or provincial weed con- shoots per m2 caused estimated yield losses of 34% trol legislation in the United States and Canada (Skin- in barley (O’Sullivan et al., 1982), 26% in canola ner et al., 2000). It is listed as a noxious weed under (O’Sullivan et al., 1985), 36% in winter wheat 217 Biological Control of Invasive Plants in the Eastern United States (McLennan et al., 1991), and 48% in alfalfa seed Analysis of Related Native Plants in the Eastern (Moyer et al., 1991). Densities of Canada thistle in United States field infestations can reach 173 shoots per m2 (Donald and Khan, 1996). The genus Cirsium is a large one, with 92 native spe- cies in North America, of which 20 occur in the U.S. Geographical Distribution states that fall wholly or in part east of the 100th me- ridian (USDA, NRCS, 1999). One of these, Cirsium Canada thistle occurs in all eastern U.S. states south pitcheri (Torrey) Torrey and Gray, is listed as threat- to Kansas, Arkansas, Tennessee, and North Carolina, ened under the Endangered Species Act. This species but it is sparsely distributed south of latitude 37° N occurs in sand dunes along the shores of the Great (USDA, NRCS, 1999). The main areas of occurrence Lakes in Illinois, Indiana, Michigan, Wisconsin, and are the northeastern, mid-Atlantic, Great Lakes, and Ontario. Phylogenetic studies of North American northern Great Plains states. In a survey in Mary- and Eurasian Cirsium species are needed to elucidate land, Canada thistle was found in about 17% of suit- relationships among species in the genus and to pro- able sites in the eastern and central part of the state, vide a basis for planning host-specificity tests and but only 10% of sites further west (Tipping, 1992). interpreting resulting data. Studies have been initi- ated using the external transcribed spacer (ETS) re- gion of ribosomal DNA to develop a phylogeny for BACKGROUND INFORMATION North American and selected Eurasian Cirsium spe- ON PEST PLANT cies (D. Kelch, pers. comm.). Taxonomy Canada thistle is a member of the genus Cirsium, HISTORY OF BIOLOGICAL CONTROL subtribe Carduinae, tribe Cardueae, and family EFFORTS IN THE EASTERN Asteraceae (Bremer, 1994). It differs from most other Cirsium species by its dioecious flowers, and from UNITED STATES most native North American members of the genus Canada thistle was among the first 19 weed species by its extensive creeping roots and small, numerous selected as targets for biological control when the flower heads borne on branched stems. Several vari- USDA Rome Laboratory was established in 1959 eties have been described based on variations in leaf (Schroeder, 1980). However, most host specificity shape and degree of spininess. testing of agents for Canada thistle was conducted Biology from 1961 to 1984 by staff of Agriculture Canada or by the International Institute of Biological Control The biology of Canada thistle was extensively re- (now CABI Bioscience) working with Canadian viewed by Moore (1975), Donald (1994), and Nuzzo funding. The agents released in the United States have (1997). It is a perennial herb with an extensive creep- been those that became available as a result of the ing root system that can give rise to new shoots from Canadian program, the results of which were re- adventitious root buds. The stems usually die back viewed by Schroeder (1980), Peschken (1984a), and over winter and new shoots are produced each spring McClay et al. (2001). Most releases in the eastern from old stem bases or root buds. Canada thistle is United States were made by USDA, ARS staff at the almost perfectly dioecious and can produce abundant Beltsville Agricultural Research Center; some stud- seeds, which are dispersed by wind (Lloyd and Myall, ies also were carried out by staff of the Maryland 1976). It is a long-day plant, requiring a photoperiod Department of Agriculture. Biological control of of at least 14 to 16 hours (depending on ecotype) for Canada thistle in New Zealand has been reviewed by flowering to be induced (Hunter and Smith, 1972). It Jessep (1989). occurs in a wide range of habitats and soil types. 218 Canada Thistle Area of Origin of Weed ruficauda (F.) (=Orellia ruficauda F.) (Diptera: Canada thistle is native to Europe, parts of North Tephritidae) is distributed across Canada, and pre- Africa, and Asia south to Afghanistan, Iran and Pa- sumably also occurs widely in the eastern United kistan, and east to China. Its exact center of origin States. A survey showed it to be present in South within the native range is not known, although it is Dakota (R. Moehringer, S. Dakota Dept. of Agricul- suggested by Moore (1975) to be in southeastern ture, pers. comm.), and specimens are known from Europe and the eastern Mediterranean area. Michigan. The root-feeding weevil Cleonis pigra (Scopoli) (Coleoptera: Curculionidae) occurs in New Areas Surveyed for Natural Enemies York, Pennsylvania, Michigan, Indiana, Ontario, and Extensive surveys of natural enemies of Canada Quebec (O’Brien and Wibmer, 1982; Anderson, 1987; thistle and other Cardueae species in western Europe C. W. O’Brien, per. comm.). The rust Puccinia were carried out starting in 1959. Other surveys have punctiformis (Strauss) Röhling is widespread in North been carried out in Japan, Iran, and northern Paki- America. stan (Schroeder, 1980), and in China (Wan and Har- A phytopathogenic bacterium, Pseudomonas ris, unpub. data). Further surveys in southern Rus- syringae pv. tagetis (Hellmers 1955) Young, Dye and sia, central Asia, and China are currently under way Wilkie 1978, causing apical chlorosis, has been iso- (Gassmann, unpub. data). In addition to surveys spe- lated from Canada thistle. Field tests of applications cifically carried out for biocontrol purposes, the gen- of this bacterium in a commercial corn field resulted eral European entomological literature contains much in 57% mortality of Canada thistle as well as damage information on insects associated with Canada thistle to several other weedy Asteraceae species. A surfac- (e.g., Redfern, 1983; Stary, 1986; Volkl, 1989; Freese, tant is required to allow penetration of the Canada 1994; Berestetsky, 1997; Frenzel et al., 2000). The thistle cuticle by the bacterium. Further work on for- phytophagous insects associated with Canada thistle mulation of this agent is under way (Johnson et al., in Poland are listed by Winiarska (1986). 1996). The bacterium occurs in Maryland (P. Tipping, pers. comm.). Natural Enemies Found One species which was introduced as a biologi- Surveys by Zwölfer (1965a) in Europe found 78 spe- cal control agent for Carduus species, the seed-head cies of phytophagous insects feeding on Canada weevil Rhinocyllus conicus (Frölich) (Coleoptera: thistle. Of these, six are reportedly monophagous, five Curculionidae), also is recorded attacking Canada are found on Canada thistle and a few related spe- thistle (Rees, 1977; Youssef and Evans, 1994). This cies, 26 are oligophagous on plants in the same species is widespread in the eastern United States, and subtribe, and the remaining 42 are less specific and has been found attacking Canada thistle in Maryland of no interest for biological control (Schroeder, 1980). (P. Tipping, pers. comm.). A number of European insects and pathogens Host Range Tests and Results attacking Canada thistle have been accidentally in- troduced into North America, and some of these have In the earlier part of the period 1961 to 1984, host been studied as potential biological control agents. specificity testing for agents attacking Canada thistle The leaf-feeding tortoise beetle Cassida rubiginosa was focused on assessing potential risks to economic Müller (Coleoptera: Chrysomelidae) occurs widely species of Cardueae, of which the two most impor- in the eastern United States, south to Virginia and tant are safflower (Carthamus tinctorius L.) and globe west to southern Michigan and Ohio, and in Canada artichoke (Cynara scolymus L.).
Recommended publications
  • Distribution and Dispersal of Urophora Cardui (Diptera, Tephritidae) in Finland in 1985-1991
    © Entomologica Fennica. 8.1.1992 Distribution and dispersal of Urophora cardui (Diptera, Tephritidae) in Finland in 1985-1991 Antti Jansson Jansson, A. 1992: Distribution and dispersal of Urophora cardui (Diptera, Tephritidae) in Finland in 1985- 1991. - Entomol. Fennica 2:211- 216. Urophora cardui (Linnaeus) was reported for the first time from Finland in 1981 , from the city of Helsinki. During the years 1985- 1991 the distribution and dispersal of the species was monitored by searching for galls which the fly larvae cause on stems of the thistle Cirsium arvense. In 1986 gall s were ob­ served at a distance of 18- 36 km from the center of Helsinki, and by 1991 the distance had increased to 37-55 km along the main roads. Annual dispersal of the fly was found to correlate strongly with the warmth of summers: after a cold summer the area occupied by the fly actually decreased, but in a warm summer new galls were fo und up to 16 km further from city center than the year before. Antti Jansson, Zoological Museum, P. Rautatiekatu 13, SF-00100 Helsinki, Finland 1. Introduction grates, and air enters the chamber; the pupal stage lasts about 25 days. Under natural condi­ Urophora cardui (Linnaeus) is a univoltine fly tions developmental time is obviously some­ which is a highly specialized gall-maker in stems what different depending on prevailing tem­ of the creeping thistle, Cirsium arvense (Lin­ peratures. naeus) Scopoli. Under laboratory conditions the In Central Europe maturation of the galls takes life cycle of the fly is as follows (Lalonde & some 60- 70 days, and because the flies emerge Shorthouse 1984 ): The female lays up to 11 eggs in early to mid June (Zwolfer 1979, Schlumprecht per oviposition among the immature leaves of 1989), the galls are mature from mid August on.
    [Show full text]
  • Phylogeny and Evolution of the Arctium-Cousinia Complex (Compositae, Cardueae-Carduinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC TAXON 58 (1) • February 2009: 153–171 López-Vinyallonga & al. • Arctium-Cousinia complex Phylogeny and evolution of the Arctium-Cousinia complex (Compositae, Cardueae-Carduinae) Sara López-Vinyallonga1,4*, Iraj Mehregan2,4, Núria Garcia-Jacas1, Olga Tscherneva3, Alfonso Susanna1 & Joachim W. Kadereit2 1 Botanical Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s. n., 08038 Barcelona, Spain. *slopez@ibb. csic.es (author for correspondence) 2 Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz, Germany 3 Komarov Botanical Institute, Ul. Prof. Popova 2, 197376 St. Petersburg, Russia 4 These authors contributed equally to this publication The phylogeny and evolution of the Arctium-Cousinia complex, including Arctium, Cousinia as one of the largest genera of Asteraceae, Hypacanthium and Schmalhausenia, is investigated. This group of genera has its highest diversity in the Irano-Turanian region and the mountains of Central Asia. We generated ITS and rpS4-trnT-trnL sequences for altogether 138 species, including 129 (of ca. 600) species of Cousinia. As found in previous analyses, Cousinia is not monophyletic. Instead, Cousinia subgg. Cynaroides and Hypacanthodes with together ca. 30 species are more closely related to Arctium, Hypacanthium and Schmalhausenia (Arc- tioid clade) than to subg. Cousinia (Cousinioid clade). The Arctioid and Cousiniod clades are also supported by pollen morphology and chromosome number as reported earlier. In the Arctioid clade, the distribution of morphological characters important for generic delimitation, mainly leaf shape and armature and morphology of involucral bracts, are highly incongruent with phylogenetic relationships as implied by the molecular data.
    [Show full text]
  • Thistles of Colorado
    Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately.
    [Show full text]
  • Best Management Practice for Canada Thistle Matthew P
    Weeding Out a Solution: Best Management Practice for Canada Thistle Matthew P. Stasica, Environmental Studies Senior Thesis October 2009 Collegeville, Minnesota Control methods mentioned in this paper are only examples. They have not been tested unless stated. It is advised that if you are to assimilate any of the control methods discussed in this thesis that you better know what you are doing or understand if the treatment is right for your infestation problem. Also, there are a plethora of other control methods for managing Canada thistle (Cirsium arvense). The methods in this thesis should not be regarded as implying that other methods as inferior. Stasica 1 Weeding Out a Solution: Best Management Practice for Canada Thistle Table of Contents: Page Number Introduction………………………………………………………………………………………………………………………………....3 Biology……………………………………………………………………………………………………………..…………………………..5 Laws and Regulation……………………………………………………………………………………………………………………..8 Interview: County Agricultural Inspector- Greg Senst…………………………………………………….……………..8 Mechanical Control Methods…………………………………………………………………………………………….………..10 Physical Control Methods……………………………...……………………………………………………………………………13 -Hand Pulling…………………………………………………………………………………………………….……..13 -Grazing……………………………………………………………………………………………..………… .……....13 -Fire…………………………………………………………………………………………….…………………..……...15 Chemical Control Methods………………………………………………………………………………………………………….15 Biological Control Methods…………………………………………………………………………………………..…………….18 Integrated Pest Management……………………………………………………………………………………….…………….20
    [Show full text]
  • Superfamilies Tephritoidea and Sciomyzoidea (Dip- Tera: Brachycera) Kaj Winqvist & Jere Kahanpää
    20 © Sahlbergia Vol. 12: 20–32, 2007 Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Dip- tera: Brachycera) Kaj Winqvist & Jere Kahanpää Winqvist, K. & Kahanpää, J. 2007: Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Diptera: Brachycera). — Sahlbergia 12:20-32, Helsinki, Finland, ISSN 1237-3273. Another part of the updated checklist of Finnish flies is presented. This part covers the families Lonchaeidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulididae, Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyii- dae, Sciomyzidae and Sepsidae. Eight species are recorded from Finland for the first time. The following ten species have been erroneously reported from Finland and are here deleted from the Finnish checklist: Chaetolonchaea das- yops (Meigen, 1826), Earomyia crystallophila (Becker, 1895), Lonchaea hirti- ceps Zetterstedt, 1837, Lonchaea laticornis Meigen, 1826, Prochyliza lundbecki (Duda, 1924), Campiglossa achyrophori (Loew, 1869), Campiglossa irrorata (Fallén, 1814), Campiglossa tessellata (Loew, 1844), Dioxyna sororcula (Wie- demann, 1830) and Tephritis nigricauda (Loew, 1856). The Finnish records of Lonchaeidae: Lonchaea bruggeri Morge, Lonchaea contigua Collin, Lonchaea difficilis Hackman and Piophilidae: Allopiophila dudai (Frey) are considered dubious. The total number of species of Tephritoidea and Sciomyzoidea found from Finland is now 262. Kaj Winqvist, Zoological Museum, University of Turku, FI-20014 Turku, Finland. Email: [email protected] Jere Kahanpää, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland. Email: kahanpaa@iki.fi Introduction new millennium there was no concentrated The last complete checklist of Finnish Dipte- Finnish effort to study just these particular ra was published in Hackman (1980a, 1980b). groups. Consequently, before our work the Recent checklists of Finnish species have level of knowledge on Finnish fauna in these been published for ‘lower Brachycera’ i.e.
    [Show full text]
  • A Sur Hamp Peter 25 Ju Autho Rvey of Th Pton Brow Borough Ne 2015
    A survey of the inverttebrates of the Hampton brownfield study site, Peterborough 25 June 2015 Authors: Buglife and BSG Ecology BLANK PAGE Acknowledgements: Buglife and BSG would like to thank O&H Hampton Ltd for undertaking the habitat creation work and providing access and support Report title A survey of the invertebrates of the Hampton brownfield study site, Peterborough Draft version/final FINAL File reference OH Hampton Draft Report_Final_240715 Buglife - The Invertebrate Conservation Trust is a registered charity at Bug House, Ham Lane, Orton Waterville, Peterborough, PE2 5UU Company no. 4132695, Registered charity no. 1092293, Scottish charity no. SC04004 BSG Ecology - Registered in: England and Wales | No. OC328772 | Registered address: Wyastone Business Park, Monmouth, NP25 3SR Contents 1 Summary ....................................................................................................................................................... 2 2 Introduction .................................................................................................................................................... 3 3 Site Description ............................................................................................................................................. 4 4 Methods ......................................................................................................................................................... 9 5 Results ........................................................................................................................................................
    [Show full text]
  • Bulletin of the Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 56 Affiliated to the British Entomological and Natural History Society Autumn 2003 Scheme Organisers Tipuloidea & Ptychopteridae - Cranefly Dr. R.K.A.Morris Mr A E Stubbs [email protected] 181 Broadway Peterborough PE1 4DS Summer 2003: Please notify Dr Mark Hill of changes: Ivan Perry BRC (CEH) [ ][ ] 27 Mill Road, Lode, Cambridge, CB5 9EN. Monks Wood, Abbots Ripton, Huntingdon, co-organiser: John Kramer Tel: 01223 812438 Cambridgeshire PE28 2LS (Tel. 01487 772413) 31 Ash Tree Road Autumn 2003, Summer 2004: [email protected] Oadby, Leicester, LE2 5TE Peter Chandler Recording Schemes Sciomyzidae - Snail-killing Flies Symposium Graham Rotheray This year will see some substantial changes in the National Museums of Scotland, Chambers Street, Dr I F G McLean ways in which some Recording Scheme Organisers Edinburgh EH1 1JF, 0131.247.4243 109 Miller Way, Brampton, Huntingdon, Cambs archive and exchange records. Whilst all will read- [email protected] ily accept records in written form the following PE28 4TZ Membership symbols are used to indicate some of the known (or [email protected] surmised) methods by which Scheme Organisers [email protected] may currently receive records electronically: Mr A.P. Foster Mr M. Parker 23 The Dawneys, Crudwell, Malmesbury, Wiltshire 9 East Wyld Road, Weymouth, Dorset, DT4 0RP Recorder SN16 9HE Dipterists Digest MapMate [][][] Microsoft Access Darwyn Sumner Peter Chandler 606B Berryfield Lane, Melksham, Wilts SN12 6EL Spreadsheet
    [Show full text]
  • Revision of Western Palaearctic Species of the Oulema Melanopus Group, with Description of Two New Species from Europe (Coleoptera: Chrysomelidae: Criocerinae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 1.vi.2015 Volume 55(1), pp. 273–304 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:597F0FC8-27B7-4A94-ABF4-EA245B6EF06E Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae) Jan BEZDĚK1) & Andrés BASELGA2) 1) Mendel University, Department of Zoology, Zemědělská 1, 613 00 Brno, Czech Republic; e-mail: [email protected] 2) Departamento de Zoología, Facultad de Biología, Universidad de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain; e-mail: [email protected] Abstract. Five species of the Oulema melanopus group are recognized in the western Palaearctic Region: O. melanopus (Linnaeus, 1758), O. rufocyanea (Suffrian, 1847), O. duftschmidi (Redtenbacher, 1874), O. mauroi sp. nov. (nor- thern Italy), and O. verae sp. nov. (Spain and Portugal). The two new species are described and illustrated. The nomenclature of the group is discussed in detail. Oulema rufocyanea is proved to be a validly described species different to O. duftschmidi. To fi x the nomenclatural stability of the whole group and avoid sub- sequent misintepretations, neotypes are designated for Crioceris melanopoda O. F. Müller, 1776; Crioceris hordei Geoffroy, 1785; and Lema cyanella var. atrata Waltl, 1835 (all conspecifi c with O. melanopus). The primary type specimens or their photographs were examined if they exist. The spelling Oulema melanopus is fi xed as correct and explained. Variation in the cytochrome c oxidase (cox1) gene across specimens of all the species has been analysed. All species in the group had extremely similar haplotypes, with interspecifi c sequence similarities between 90.5–99.5 %, compared to intraspecifi c sequence similarities between 91.6–100 %.
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Thistle Identification
    Oklahoma Cooperative Extension Service PSS-2776 Thistle Identification January 2021 Laura Goodman Extension Rangeland Ecology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Tom Royer extension.okstate.edu Extension Entomologist Alex Rocateli can often develop. The current Thistle Law includes three of Forage Systems Extension Specialist the five species. However, all introduced thistles should be considered invasive. Oklahoma’s Noxious Weed Law, first enacted in 1994 in four counties in northeastern Oklahoma (Code 35:30-36-13) Thistles Listed in the Noxious Weed Law was amended in 1995, 1998 and 1999. The current law de- Canada thistle (Cirsium arvense) is an introduced peren- clares musk, scotch and Canada thistles to be noxious weeds nial thistle widely distributed in Nebraska and other northern and public nuisances in all counties of the state. states. At present, it does not appear to be a major threat in There are about a dozen purple-flowered spiny thistle Oklahoma. Several plants were collected in the panhandle species that occur in Oklahoma. Oklahoma’s Noxious Weed counties in the 1950s and several more in Bryan County in Law can raise concern among landowners if they do not the 1970s, but currently, no infestations are known to exist in know which thistles on their land they are required to control. the state. In a 1998 survey of noxious weeds in Meade County The purpose of this publication is to describe the introduced Kansas, north of Beaver County, Oklahoma, reported a small thistles, selected common native thistles and provide infor- infestation of Canada thistle.
    [Show full text]
  • Catalogue of Latvian Leaf-Beetles (Coleoptera: Megalopodidae, Orsodacnidae & Chrysomelidae)
    Latvijas Entomologs 2013, 52: 3-57. 3 Catalogue of Latvian leaf-beetles (Coleoptera: Megalopodidae, Orsodacnidae & Chrysomelidae) ANDRIS BUKEJS Vienības iela 42-29, LV-5401, Daugavpils, Latvia; e-mail: [email protected] BUKEjS A. 2013. Catalogue OF Latvian LEAF-BEETLES (COLEOPTERA: MEGALOPODIDAE, ORSODACNIDAE & Chrysomelidae). – Latvijas Entomologs 52: 3-57. Abstract: Critical catalogue of Latvian leaf-beetles (Megalopodidae, Orsodacnidae & Chrysomelidae) is presented. In the current work all available bibliography on Latvian leaf-beetles are reviewed and analyzed. In total, 326 species are confirmed from Latvia till now, although few of them are known from the old records only, and their occurrence in the local fauna should be confirmed by new material. All doubtful species recorded till now from Latvia are commented and removed from the list. Key words: Coleoptera, Megalopodidae, Orsodacnidae, Chrysomelidae, Latvia, fauna, bibliography, catalogue. Introduction Kaliningrad region (Russian enclave in Central Europe) – 280 (Alekseev 2003; Leaf-beetles, represented by 30 000–50 Bukejs, Alekseev 2009, 2012; Alekseev, 000 species, are one of the largest families of Bukejs 2010, 2011; Alekseev et al. 2012). the order Coleoptera worldwide (Bieńkowski The first information on leaf-beetles 2004; Brovdij 1985; jolivet 1988). They (Chrysomelidae s. l.) from the present territory are phytophagous: imagines mostly occur of Latvia was published in the second half of on leaves and flowers, larvae mostly feed the 18th century in the works of j.B. Fischer on leaves and roots, occasionally larvae are (1778, 1784, 1791). In the first edition of saprophagous or carpophagous. Some species his monograph describing nature of Livland of leaf-beetles are considered serious pests (Fischer 1778), three species of leaf-beetles, of agriculture and forestry (Kryzhanovskij Cassida viridis LINNAEUS, 1758, Phratora 1974; Lopatin, Nesterova 2005).
    [Show full text]
  • Cirsium Arvense (L.) Scop
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Cirsium arvense (L.) Scop. (C. setosum, C. incanum, Carduus arvensis, Serratula arvensis & all varieties of C. arvense) USDA Plants Code: CIAR4 Common names: Creeping thistle, Californian thistle, Canada thistle, field thistle Native distribution: Eurasia Date assessed: April 28, 2009 Assessors: Gerry Moore Reviewers: LIISMA SRC Date Approved: May 13, 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Widespread High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 40 ) 20 2 Biological characteristic and dispersal ability 25 ( 25 ) 21 3 Ecological amplitude and distribution 25 ( 25 ) 21 4 Difficulty of control 10 ( 10 ) 9 Outcome score 100 ( 100 )b 71 a † Relative maximum score 71.00 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]