Common Burdock Arctium Minus

Total Page:16

File Type:pdf, Size:1020Kb

Common Burdock Arctium Minus Common Burdock Arctium minus Name: Arctium minus Common name(s): Wild Rhubarb, Burweed, Beggar’s Buttons, Cocklebur Family: Asteraceae (Aster/Sunflower Family) Native: Europe United States Distribution Map native(adapted fromintroduced data available at https://plants.usda.gov)both absent/unreported native, no county data introduced, no county data both, no county data Arctium minus in bloom. Plant Profile: Habitat: Waste areas, disturbed areas, gardens, open fields, ditches. Loves full sun. Leaf Shape: Ovate (egg-shaped, oval). Extremely large basal leaves—up to 20 inches long by 12 inches wide. Leaf Margins: Entire, lobed, or sometimes toothed. Mature basal leaves extremely wavy. Leaf Alternate along flower stalk. Arrangement: Flower: ¾-inch round flower heads are made up of many hooked barbs (bracts) on the bottom (that form the burr) and a cluster of erect purplish tubular flowers (disk flowers) on top that give the flower head a thistle-like shaving brush appearance. Height: Second year flower stalk can grow up to 5 feet tall. Life cycle: Biennial. Basal rosette of large leaves first year, then branched flower stalk in year two. Distinct “shaving brush” purple flower with many hooked bracts underneath. This product is authorized for private use only. All other rights are reserved. Unless expressly authorized by law or in writing by copyright owner, any copying distribution or Common Burdock 1 any other use of this product or any part of it is strictly prohibited. Unauthorized distribution or reproduction may result in severe criminal and civil penalties. Common Burdock Arctium minus Creek’s Commentary The bane of all wool producers is Burdock’s hallmark parts of Burdock get bitter fairly quickly as the plant identifying feature, the small circular cockleburs matures. Anytime after mid-Spring, you’re probably made from the numerous modified bracts on the better off focusing on the very substantial root. flowerhead. It truly is one of the most masterfully designed methods of seed dispersal in the natural world. An ideal Burdock size for harvest- A classic first-year Common ing young leaf stems. Burdock. Notice the extremely wavy leaf margins. (Perfect specimen for harvesting root) Macro photo of hooked bracts that cling to clothing and animal fur for seed dispersal. I’ll warn you, digging the root is a chore. Burdock A slightly larger species of Burdock (Arctium lappa) is likes to grow in compacted soil, which doesn’t help. a cultivated crop in Japan, known in that language as But regardless, the root grows straight down and will “Gobo.” It’s the thick, fleshy taproot that is harvested. require a shovel. My impatience rarely allows me to It is used in soups, stews, sushi, stir-fries, and even excavate the entire root. consumed pickled. It has an earthy, slightly sweet Every fall, I must get flavor that is rather unique in the root world. In fact, in at least one good Burdock root is available in the produce section of game of Burdock my local Whole Foods store. This is a great way to Darts. I hang up an ease into eating Burdock root if it’s out of season in old wool blanket, use your area and you feel intimidated by digging your chalk to draw a target, own the first time. take 5 long backward paces, and throw I’ve eaten all of Burdock’s Burdock burrs, which choice edible parts. The stick with ease. young leaves can be boiled in a couple chang- es of water (to reduce bitterness) and eaten as A beautiful second-year Common Burdock with flower stalk at sunny a pot herb. The younger forest edge. leaf stems can be pre- pared like green beans and have a celery-like In 1941, a French inventor by the name of George de Mestral texture and appear- was on a hunting trip and noticed his pants and his dog’s fur were covered in Burdock burs. This gave him the idea for a way Freshly dug and washed ance. These can also be to fasten things together, an alternate to button and zippers. first-year roots of Common candied with sugar or Burdock. Notice the thick rind He would ultimately invent Velcro using this same concept even pickled using your is peeled away from root on he discovered in nature. Read the entire fascinating story at right to reveal cream-colored favorite pickling recipe. https://bit.ly/2FBQBMn. interior. Pretty much all the green 2 Common Burdock This product is authorized for private use only. All other rights are reserved. Unless expressly authorized by law or in writing by copyright owner, any copying distribution or any other use of this product or any part of it is strictly prohibited. Unauthorized distribution or reproduction may result in severe criminal and civil penalties. Common Burdock Arctium minus Unique Identifying Features 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 Massive basal rosette of large oval to heart-shaped leaves with wavy margins. 2 Basal leaf stalks (petioles) have maroonish coloring, especially toward base. 3 Leaf petioles (stems) are hollow. 4 Leaves are sparsely hairy on top side, but especially woolly underneath. Underside of leaf is also very pale in comparison to upper. 5 Leaves grow alternate along flower stalk. 6 Purplish flower head with hooked bracts underneath. 7 Leaves often have heart-shaped (cordate) base and pointed tip but are generally egg-shaped (ovate). 8 Leaves become smaller and less heart-shaped the higher you get on the flower stalk. 9 Vertically ridged and sometimes maroon-tinged flower stalk. 10 Leaves have a central gutter (called an adaxial groove) that funnels water to the root of the plant. This product is authorized for private use only. All other rights are reserved. Unless expressly authorized by law or in writing by copyright owner, any copying distribution or Common Burdock 3 any other use of this product or any part of it is strictly prohibited. Unauthorized distribution or reproduction may result in severe criminal and civil penalties. Common Burdock Arctium minus Harvest & Preparation Best Edible Parts: Warnings / Notes / Considerations continued: Taproot (first-year plants all year, second-year plant only As with most biennial plants, the second-year root becomes hard until the flower stalk starts to grow) and woody as the stored nutrients are used to fuel the growing flower stalk for reproduction and seed dispersal. Eat only the Young leaves of first-year rosette roots from first-year plants. Young leaf stalks (petioles) Commonly Cooked/Prepared Like: Great Burdock (Arctium lappa), is Common Burdock’s larger relative. It is edible in the same way. The easiest way to tell them Leaves: Spinach (Spinacia oleracea) (boiled in a couple apart is the size. I’ve seen Great Burdocks close to 10 feet tall changes of water to remove bitterness in more mature with flower heads nearly 2 inches in diameter. The flower heads leaves) are also at the end of much longer stalks than Common Burdock, which oftentimes appear to be sessile (without a stalk).. Leaf stalks: Green beans Roots: Potato Many call the rind on the root My Favorite Ways to Eat It: inedible, and it’s often recom- mended that it be discarded. Stalks from young leaves sautéed with garlic and olive oil I used to do that, but I have for a few minutes. developed an entire root phi- Root from first-year plants in soups, stews, and stir-fries. losophy. Removing the rind does help the flavor (slightly) Warnings / Notes / Considerations: but the cost of the PIA (pain in the a-double-snakes) taxes Photo on right: Notice the rind layer around this Burdock root. I will is greater to me than the remove it before cooking sometimes, depending on my level of patience at the time. reduction in flavor. Hearty Ramen with Burdock I must admit, I’m a sucker for a good bowl of ramen noodles. Directions: These days, I buy the slightly more expensive packs ($3) with the Put a pot of water on to boil (a little more than the ramen pack gluten free noodles made from rice flour. I use these packs as the calls for). Peel and slice your Burdock Root and carrots. Cut all base for creating a fantastic the other vegetables into hearty chunks and toss everything into bowl of ramen by adding the boiling water and simmer for a few minutes. As the veggies in a variety of mixed soften, add in the ramen flavor pack. Simmer on low for a few vegetables, which often more minutes. Finally, add in the ramen noodles and leave on includes wild edibles. heat according to instructions (typically around 4 minutes). Here is an easy recipe for Remove from heat, spoon into bowls, and serve. Add salt and one of these ramen bowls pepper to taste. using Burdock Root. This is a great meal that only takes about 10 minutes to make from start to finish (not including digging the Burdock Root). Ingredients: 1 Ramen Pack 3 Carrots 1 Baby Bok Choy 2 Cloves Garlic 3–6 Green Onions 1 Shallot 1–3 Burdock Roots (depending on size) 1–2 Star Anise A big helping of Hearty Ramen with Burdock 4 Common Burdock This product is authorized for private use only. All other rights are reserved. Unless expressly authorized by law or in writing by copyright owner, any copying distribution or any other use of this product or any part of it is strictly prohibited. Unauthorized distribution or reproduction may result in severe criminal and civil penalties..
Recommended publications
  • Phylogeny and Evolution of the Arctium-Cousinia Complex (Compositae, Cardueae-Carduinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC TAXON 58 (1) • February 2009: 153–171 López-Vinyallonga & al. • Arctium-Cousinia complex Phylogeny and evolution of the Arctium-Cousinia complex (Compositae, Cardueae-Carduinae) Sara López-Vinyallonga1,4*, Iraj Mehregan2,4, Núria Garcia-Jacas1, Olga Tscherneva3, Alfonso Susanna1 & Joachim W. Kadereit2 1 Botanical Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s. n., 08038 Barcelona, Spain. *slopez@ibb. csic.es (author for correspondence) 2 Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz, Germany 3 Komarov Botanical Institute, Ul. Prof. Popova 2, 197376 St. Petersburg, Russia 4 These authors contributed equally to this publication The phylogeny and evolution of the Arctium-Cousinia complex, including Arctium, Cousinia as one of the largest genera of Asteraceae, Hypacanthium and Schmalhausenia, is investigated. This group of genera has its highest diversity in the Irano-Turanian region and the mountains of Central Asia. We generated ITS and rpS4-trnT-trnL sequences for altogether 138 species, including 129 (of ca. 600) species of Cousinia. As found in previous analyses, Cousinia is not monophyletic. Instead, Cousinia subgg. Cynaroides and Hypacanthodes with together ca. 30 species are more closely related to Arctium, Hypacanthium and Schmalhausenia (Arc- tioid clade) than to subg. Cousinia (Cousinioid clade). The Arctioid and Cousiniod clades are also supported by pollen morphology and chromosome number as reported earlier. In the Arctioid clade, the distribution of morphological characters important for generic delimitation, mainly leaf shape and armature and morphology of involucral bracts, are highly incongruent with phylogenetic relationships as implied by the molecular data.
    [Show full text]
  • Animal and Plant Health Inspection Service, USDA § 319.56–2U
    Animal and Plant Health Inspection Service, USDA § 319.56–2u Country/locality Common name Botanical name Plant part(s) Tomato ....................................... (Lycopersicon esculentum) ........ Fruit, only if it is green upon arrival in the United States (pink or red fruit may only be imported from Alme- ria Province and only in accordance with § 319.56–2dd of this subpart). Watermelon ............................... Citrullus vulgaris ........................ Fruit, commercial ship- ments only. Suriname .................................... Amaranth ................................... Amaranthus spp ........................ Leaf and stem. Black palm nut ........................... Astrocaryum spp ........................ Fruit. Jessamine .................................. Cestrum latifolium ...................... Leaf and stem. Malabar spinach ........................ Bassella alba ............................. Leaf and stem. Mung bean ................................. Vigna radiata ............................. Seed sprout. Pak choi ..................................... Brassica chinensis ..................... Leaf and stem. Sweden ...................................... Dill .............................................. Anethum graveolens .................. Above ground parts. Taiwan ........................................ Bamboo ..................................... Bambuseae spp ......................... Edible shoot, free of leaves and roots. Burdock ...................................... Arctium lappa ............................
    [Show full text]
  • Effect of Drying Methods on Volatile Compounds of Burdock (Arctium Lappa L.) Root Tea As Revealed by Gas Chromatography Mass Spectrometry-Based Metabolomics
    foods Article Effect of Drying Methods on Volatile Compounds of Burdock (Arctium lappa L.) Root Tea as Revealed by Gas Chromatography Mass Spectrometry-Based Metabolomics Junjie Xia 1,†, Zili Guo 1,† , Sheng Fang 2 , Jinping Gu 1 and Xianrui Liang 1,* 1 Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] (J.X.); [email protected] (Z.G.); [email protected] (J.G.) 2 School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China; [email protected] * Correspondence: [email protected]; Tel.: +86-571-8832-0420 † These two authors contributed equally to the work. Abstract: Burdock (Arctium lappa L.) is one of the nutritional foods widely planted in many countries. Dried burdock root (BR) is available as a herbal tincture and tea in many Asian countries with good flavor and taste. In this study, the volatile components in dried BR were identified and the effects of different drying methods on the volatile components were investigated by HS-GC-MS method. A total of 49 compounds were identified. Different drying methods including hot-air drying (HD, at 50, ◦ ◦ 60, 70, and 80 C), vacuum drying (VD, at 50, 60, 70, and 80 C), sunlight drying (SD), natural drying (ND), and vacuum freeze drying (VFD) were evaluated by HS-GC-MS-based metabolomics method. Citation: Xia, J.; Guo, Z.; Fang, S.; Results showed that different drying methods produced different effects on the volatile compounds. Gu, J.; Liang, X. Effect of Drying It was observed that 2,3-pentanedione, 1-(1H-pyrrol-2-yl)-ethanone, furfural, and heptanal were Methods on Volatile Compounds of detected at higher concentrations in HD 80 and VD 70.
    [Show full text]
  • Arctium Lappa) 'Dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi Ve Optimizasyonu
    Avrupa Bilim ve Teknoloji Dergisi European Journal of Science and Technology Sayı 17, S. 655-662, Aralık 2019 No. 17, pp. 655-662, December 2019 © Telif hakkı EJOSAT’a aittir Copyright © 2019 EJOSAT Araştırma Makalesi www.ejosat.com ISSN:2148-2683 Research Article Yanıt Yüzey Metodolojisi Kullanılarak Dulavratotu (Arctium Lappa) 'dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi ve Optimizasyonu Burcu Bekdeşer1* 1 İstanbul Üniversitesi-Cerrahpaşa, Mühendislik Fakültesi, Kimya Bölümü, İstanbul, Türkiye (ORCID: 0000-0003-4555-2434) (İlk Geliş Tarihi 8 Ekim 2019 ve Kabul Tarihi 6 Kasım 2019) (DOI: 10.31590/ejosat.631016) ATIF/REFERENCE: Bekdeşer B. (2019). Yanıt Yüzey Metodolojisi Kullanılarak Dulavratotu (Arctium Lappa) 'dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi ve Optimizasyonu. Avrupa Bilim ve Teknoloji Dergisi, (17), 655-662. Öz Dulavratotu (Arctium lappa L.), geleneksel tıpta sıklıkla kullanılan ticari olarak önemli bir bitkidir. Mikrodalga destekli ekstraksiyonun (MAE) sıcaklık, ekstraksiyon süresi, katı / solvent oranı ve solvent konsantrasyonunu içeren optimum çalışma koşulları, cevap yüzey metodolojisi (RSM) kullanılarak belirlendi. Dulavratotu yaprağı ekstraktlarının toplam antioksidan kapasitesi ve toplam fenolik içeriği sırasıyla CUPRAC ve Folin yöntemleri ile incelenmiştir. İkinci dereceden bir polinom modelinin TAC ve TPC verimini tanımlayan en iyi model olduğu bulundu ve iki yanıt için hesaplanan tüm modeller anlamlı bulundu (p <0.0001). TAC ve TPC değerlerinin sırasıyla 0.046 - 0.185 mmol TR / g DS, 0.303 - 0.722 mmol TR / g DS arasında değiştiği görülmüştür. En o yüksek TAC ve TPC değerleri, X1 = 90 C, X2 = 6 dak, X3 =% 21.7 ve, X4 = 0.21 g / 20 mL deney koşulları altında elde edildi. Ekstraksiyon sıcaklığının, MAE'nin tüm operasyonel parametreleri arasında en önemli işletim faktörü olduğu bulundu.
    [Show full text]
  • Burdock (Arctium Lappa) Leaf Extracts Increase the in Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-Positive and Gram-Negative Bacteria
    Open Chem., 2017; 15: 92–102 Research Article Open Access Lucia Pirvu*, Isabela Nicorescu, Cristina Hlevca, Bujor Albu, Valentin Nicorescu Burdock (Arctium lappa) Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria DOI 10.1515/chem-2017-0012 received January 23, 2017; accepted March 14, 2017. inhibitory) of Arctii folium extracts in combination with typical antibiotics as well as a potential use of the whole Abstract: This work aimed to study the potential effects of ethanol extract/W for restoring the antimicrobial potency four Arctii folium extracts, 5 mg gallic [GAE] acid equivalents of susceptible antibiotics have also been evidenced. per 1 mL sample, on six antibiotics (Ampicillin/AM, Tetracycline/TE, Ciprofloxacin/CIP, Sulfamethoxazole- Keywords: burdock leaves, interaction with usual Trimethoprim/SXT, Chloramphenicol/C and Gentamicin/ antibiotics, stimulatory and inhibitory effects CN) tested on four Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, and Staphylococcus 1 Introduction epidermidis ATCC 12228) and five Gram-negative (Proteus mirabilis ATCC 29245, Escherichia coli ATCC 35218, E. coli Arctium lappa L. (Asteraceae family), commonly greater ATCC 11229, E. coli ATCC 8739, and Bacillus cereus ATCC burdock, is a biennial species found across most of tEurope, 11778) bacteria. Arctii folium extracts were the whole Asia and also America. The root part, Bardanae radix, is ethanol extract/W
    [Show full text]
  • Systematics of the Arctioid Group: Disentangling Arctium and Cousinia (Cardueae, Carduinae)
    TAXON 60 (2) • April 2011: 539–554 López-Vinyallonga & al. • Disentangling Arctium and Cousinia TAXONOMY Systematics of the Arctioid group: Disentangling Arctium and Cousinia (Cardueae, Carduinae) Sara López-Vinyallonga, Kostyantyn Romaschenko, Alfonso Susanna & Núria Garcia-Jacas Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain Author for correspondence: Sara López-Vinyallonga, [email protected] Abstract We investigated the phylogeny of the Arctioid lineage of the Arctium-Cousinia complex in an attempt to clarify the conflictive generic boundaries of Arctium and Cousinia. The study was based on analyses of one nuclear (ITS) and two chlo- roplastic (trnL-trnT-rps4, rpl32-trnL) DNA regions of 37 species and was complemented with morphological evidence where possible. Based on the results, a broadly redefined monophyletic genus Arctium is proposed. The subgenera Hypacanthodes and Cynaroides are not monophyletic and are suppressed. In contrast, the traditional sectional classification of the genus Cousinia is maintained. The genera Anura, Hypacanthium and Schmalhausenia are reduced to sectional level. Keywords Anura ; Arctium ; Cousinia ; Hypacanthium ; ITS; molecular phylogeny; nomenclature; rpl32-trnL; trnL-trnT-rpS4 ; Schmalhausenia Supplementary Material Appendix 2 is available in the free Electronic Supplement to the online version of this article (http:// www.ingentaconnect.com/content/iapt/tax). INTRODUCTION 1988a,b,c; Davis, 1975; Takhtajan, 1978; Knapp, 1987; Tama- nian, 1999), palynological
    [Show full text]
  • Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: in Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary
    nutrients Article Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids 1,2, 2, , 1 1 1 Hiroki Saito y, Yu Toyoda * y , Hiroshi Hirata , Ami Ota-Kontani , Youichi Tsuchiya , Tappei Takada 2 and Hiroshi Suzuki 2 1 Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; [email protected] (H.S.); [email protected] (H.H.); [email protected] (A.O.-K.); [email protected] (Y.T.) 2 Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; [email protected] (T.T.); [email protected] (H.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands—the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S—an ABCC11 substrate).
    [Show full text]
  • Crop Group Tables. Vegetables Group
    Environmental Protection Agency § 180.41 appropriate times, EPA will amend tol- dividual tolerances must be estab- erances for crop groups that have been lished. Miscellaneous commodities in- superseded by revised crop groups to tentionally not included in any group conform the pre-existing crop group to include asparagus, avocado, banana, the revised crop group. Once all of the fig, globe artichoke, hops, mango, pa- tolerances for the pre-existing crop paya, pawpaw, peanut, persimmon, group have been updated, the pre-exist- pineapple, water chestnut, and water- ing crop group will be removed from cress. the CFR. (c) Each group is identified by a (k) Establishment of a tolerance does group name and consists of a list of not substitute for the additional need representative commodities followed to register the pesticide under a com- panion law, the Federal Insecticide, by a list of all commodity members for Fungicide, and Rodenticide Act. The the group. If the group includes sub- Registration Division of the Office of groups, each subgroup lists the sub- Pesticide Programs should be con- group name, the representative com- tacted concerning procedures for reg- modity or commodities, and the mem- istration of new uses of a pesticide. ber commodities for the subgroup. Sub- groups, which are a subset of their as- [60 FR 26635, May 17, 1995, as amended at 70 sociated crop group, are established for FR 33363, June 8, 2005; 72 FR 69155, Dec. 7, 2007; 75 FR 56014, Sept. 15, 2010] some but not all crops groups. (1) Crop Group 1: Root and Tuber § 180.41 Crop group tables.
    [Show full text]
  • Supercritical Extracts from Arctium Lappa As a Potential Inhibitor for the Activation of Complement System
    Published online: 2019-11-25 Original Papers Thieme Supercritical Extracts from Arctium lappa as a Potential Inhibitor for the Activation of Complement System Authors Pâmela Dias Fontana1, Lorena Bavia1, Fernanda Bovo1, Ariádine Reder C. de Souza2, Marcos Lúcio Corazza2, Iara Jose Messias-Reason1 Affiliations AbsTracT 1 Laboratory of Molecular Immunopathology, Clinical Arctium lappa is a perennial species of the Asteraceae family Hospital, Federal University of Paraná, Curitiba, Brazil originally from Europe and Asia. Considered a weed species in 2 Department of Chemical Engineering, Federal University the southern region of Brazil, it is popularly used as a natural of Paraná, Curitiba, Brazil anti-inflammatory. The complement system is an important component of the innate immune response. However, its ex- Key words acerbated activation can lead to harmful conditions like auto- Arctium lappa, Asteraceae, burdock, supercritical extract, immune and inflammatory disorders. Plants that inhibit the classical pathway, alternative pathway, complement system, activation of complement can be a promising tool in the treat- hemolysis inhibition ment of inflammatory diseases. Here, we evaluated the effect of A. lappa leaves extracts on the activation of the classical and received 10.07.2019 alternative pathways of complement system. Two extracts revised 28.08.2019 were obtained under supercritical conditions using scCO2 with accepted 02.10.2019 ethanol as cosolvent, at 313.15K, 15 MPa (E1) and 25 MPa (E2). Classical and alternative activation were evaluated using com- Bibliography plement fixation test. Different concentrations ofA. lappa ex- DOI https://doi.org/10.1055/a-1025-0085 tracts E1 and E2 showed an inhibitory effect on both comple- Planta Med Int Open 2019; 6: e63–e69 ment pathways, and heparin was used as control.
    [Show full text]
  • Asian Vegetables & Herbs Easy to Grow in Southern California
    Florence Nishida lagreengrounds.org March 2020 Asian Vegetables & Herbs Easy to Grow in Southern California Name Planting Need Pot Comments time support ok Legumes Snow Peas (Pisum sativum, var. macrocarpon Cool y/n y Bush and pole varieties ​ ​ ​ Spr/Fall Pea shoots – various Spr/Fall y y Pick young, not tendrils Soya Bean (Glycine max) Spr n n Pull up plant for dried ​ ​ Yard Long Bean (Vigna unguiculata ssp. Sesquipedalis) Warm y y Long harvest, keep picked ​ ​ ​ ​ spr Lab Lab Beans (Lab Lab purpureus, Dolichos lab lab), Warm y/n n Can be a perennial if no ​ ​ Hyacinth Bean spr, frost. Contains cyanogenic summer glycosides, eat young or boil mature beans. Winged Bean/Pea (Tetragonolobus purpureus) Cool n y Fast maturing, pretty ​ ​ Brassicas, Headed Chinese cabbage, Napa cabbage (Brassica rapa var. Late n n Fresh – mild sweet flavor, ​ ​ pekinensis) summer, sev. cultivars ​ fall Pak choi/ Bok choy (Brassica rapa var. chinensis), Spring n y Fast-grower, good for ​ ​ ​ ​ celery cabbage inter-cropping, harvest whole or lvs Rosette pak choi (Brassica chinensis var. narinosa), Mid n y Neat, compact, harvest ​ ​ ​ ​ ‘Tatsoi’, ‘Taisai’ summer, leaves or whole fall Flowering Stalk Brassicas Chinese broccoli (Brassica oleracea var. alboglabra) Late spr- n n Young flowering stems and ​ ​ ​ ​ ‘Gai lan’ fall buds Komatsuna (Brassica rapa var. komatsuna) Mustard Late n n Flavor bet. cabbage and ​ ​ ​ ​ spinach spr-fall mustard; eat whole or leaves Mustard Greens Mizuna (Brassica rapa var. japonica), green, red Fall- n y Mild flavored, pretty, pick ​ ​ ​ ​ varieties spring leaves Japanese Giant Red Mustard (Brassica juncea), Osaka Fall-Sprin n y/n Gorgeous, very spicy-hot ​ ​ Purple Mustard (B.
    [Show full text]
  • Author's Blurb
    Author’s Blurb TK Lim (Tong Kwee Lim) obtained his bachelor’s and plant products into and out of Australia from and master’s degrees in Agricultural Science and for the Middle East and Asian region. During from the University of Malaya and his PhD his time with ACIAR, he oversaw and managed (Botanical Sciences) from the University of international research and development programs Hawaii. He worked in the Agricultural University in plant protection and horticulture, covering a of Malaysia for 20 years as a Lecturer and wide array of crops that included fruit, plantation Associate Professor; as Principal Horticulturist crops, vegetables, culinary and medicinal herbs for 9 years for the Department of Primary and spices mainly in southeast Asia and the Industries and Fisheries, Darwin, Northern Pacifi c. In the course of his four decades of work- Territory; for 6 years as Manager of the Asia and ing career, he has travelled extensively world- Middle East Team in Plant Biosecurity Australia, wide to many countries in South Asia, East Asia, Department of Agriculture, Fisheries and Southeast Asia, Middle East, Europe, the Pacifi c Forestry, Australia, and for 4 years as Research Islands, USA and England and also throughout Program Manager with the Australian Centre for Malaysia and Australia. Since his tertiary educa- International Agriculture Research (ACIAR), tion days, he always had a strong passion for Department of Foreign Affairs and Trade, crops and took an avid interest in edible and Australia, before he retired from public service. medicinal
    [Show full text]
  • Vegetables and Meals of Daimyo Living in Edo
    Vegetables and the Diet of the Edo Period, Part 1 Vegetables and Meals of Daimyo Living in Edo By Ayako Ehara (Professor Emeritus, Tokyo Kasei-Gakuin University) Introduction in which they were grown. The names given to egg- plant were also varied, including round eggplant, Most of the vegetables currently used in Japan were long eggplant, calabash-shaped eggplant, red egg- introduced from other countries at various points plant, white eggplant and black eggplant. throughout history. Vegetables native to Japan are The primary suppliers of fresh vegetables to the three very limited, and include udo (Japanese spikenard, largest consumer cities of Edo, Kyoto and Osaka Aralia cordata), mitsuba (Japanese wild parsley, were suburban farming villages. Buko Sanbutsu-shi Cryptotaenia japonica), myoga ginger (Zingiber (1824) is a record that lists agricultural products from mioga), fuki (giant butterbur, Petasites japonicus) and the Musashi region that included Edo. Vegetables are yamaimo (Japanese yam, Dioscorea japonica). The listed by the area in which they were grown: daikon domestic turnips, daikon radish, green onions, orien- radish and carrots in Nerima (present-day Nerima tal mustard (Brassica juncea), varieties of squash, ward, Tokyo), mizuna (Japanese mustard, Brassica and eggplant currently used in Japan were introduced rapa var. nipposinica), Chinese celery (Oenanthe from the Chinese mainland and Korean peninsula. javanica), mitsuba and edible chrysanthemum in Eventually, Danish squash, watermelon, chili peppers Senju (present-day Adachi ward, Tokyo), burdock and sweet potatoes came to Japan through trade with (Arctium lappa) in Iwatsuki (present-day Iwatsuki, Portugal during the 16th century, and carrots, celery, Saitama prefecture), taro and sweet potato in Kasai spinach, and edible chrysanthemum (Chrysanthemum (present-day Edogawa ward, Tokyo), eggplant in coronarium) via trade with China during the Ming Komagome (present-day Toshima ward, Tokyo) and dynasty (1368–1644).
    [Show full text]