Of the Anseriformes (Aves: Charadriomorphae)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Quantifying Crop Damage by Grey Crowned Crane Balearica
QUANTIFYING CROP DAMAGE BY GREY CROWNED CRANE BALEARICA REGULORUM REGULORUM AND EVALUATING CHANGES IN CRANE DISTRIBUTION IN THE NORTH EASTERN CAPE, SOUTH AFRICA. By MARK HARRY VAN NIEKERK Department of the Zoology and Entomology, Rhodes University Submitted in partial fulfilment of the requirements for the Degree of MASTER OF SCIENCE December 2010 Supervisor: Prof. Adrian Craig i TABLE OF CONTENTS List of tables…………………………………………………………………………iv List of figures ………………………………………………………………………...v Abstract………………………………………………………………………………vii I. INTRODUCTION .......................................................................................... 1 Species account......................................................................................... 3 Habits and diet ........................................................................................... 5 Use of agricultural lands by cranes ............................................................ 6 Crop damage by cranes ............................................................................. 7 Evaluating changes in distribution and abundance of Grey Crowned Crane………………………………………………………..9 Objectives of the study………………………………………………………...12 II. STUDY AREA…………………………………………………………………...13 Locality .................................................................................................... 13 Climate ..................................................................................................... 15 Geology and soils ................................................................................... -
Current Perspectives on the Evolution of Birds
Contributions to Zoology, 77 (2) 109-116 (2008) Current perspectives on the evolution of birds Per G.P. Ericson Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden, [email protected] Key words: Aves, phylogeny, systematics, fossils, DNA, genetics, biogeography Contents (cf. Göhlich and Chiappe, 2006), making feathers a plesiomorphy in birds. Indeed, only three synapo- Systematic relationships ........................................................ 109 morphies have been proposed for Aves (Chiappe, Genome characteristics ......................................................... 111 2002), although monophyly is never seriously ques- A comparison with previous classifications ...................... 112 Character evolution ............................................................... 113 tioned: 1) the caudal margin of naris nearly reaching Evolutionary trends ............................................................... 113 or overlapping the rostral border of the antorbital Biogeography and biodiversity ............................................ 113 fossa (in the primitive condition the caudal margin Differentiation and speciation ............................................. 114 of naris is farther rostral than the rostral border of Acknowledgements ................................................................ 115 the antorbital fossa), 2) scapula with a prominent References ................................................................................ 115 acromion, -
Breeding of the Leach's Storm-Petrel Oceanodroma Leucorhoa at Santa Catalina Island, California
Carter et al.: Leach’s Storm-Petrel at Santa Catalina Island 83 BREEDING OF THE LEACH’S STORM-PETREL OCEANODROMA LEUCORHOA AT SANTA CATALINA ISLAND, CALIFORNIA HARRY R. CARTER1,3,4, TYLER M. DVORAK2 & DARRELL L. WHITWORTH1,3 1California Institute of Environmental Studies, 3408 Whaler Avenue, Davis, CA 95616, USA 2Catalina Island Conservancy, 125 Clarissa Avenue, Avalon, CA 90704, USA 3Humboldt State University, Department of Wildlife, 1 Harpst Street, Arcata, CA 95521, USA 4Current address: Carter Biological Consulting, 1015 Hampshire Road, Victoria, BC V8S 4S8, Canada ([email protected]) Received 4 November 2015, accepted 5 January 2016 Among the California Channel Islands (CCI) off southern California, Guadalupe Island, off central-west Baja California (Ainley 1980, the Ashy Storm-Petrel Oceanodroma homochroa (ASSP) is the Power & Ainley 1986, Ainley 2005, Pyle 2008, Howell et al. most numerous and widespread breeding storm-petrel; it is known 2009). Alternatively, these egg specimens may have been from to breed at San Miguel, Santa Cruz, Anacapa, Santa Barbara, and dark-rumped LESP, which are known to breed at the Coronado San Clemente islands (Hunt et al. 1979, 1980; Sowls et al. 1980; and San Benito islands, Baja California (Ainley 1980, Power & Carter et al. 1992, 2008; Harvey et al. 2016; Fig. 1B; Appendix 1, Ainley 1986). available on the website). Low numbers of Black Storm-Petrels O. melania (BLSP) also breed at Santa Barbara Island (Pitman Within this context, we asked the following questions: (1) Were the & Speich 1976; Hunt et al. 1979, 1980; Carter et al. 1992; 1903 egg records the first breeding records of LESP at Catalina and Appendix 1). -
Ducks, Geese, and Swans of the World by Paul A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 Ducks, Geese, and Swans of the World: Tribe Aythyini (Pochards) Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "Ducks, Geese, and Swans of the World: Tribe Aythyini (Pochards)" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 13. https://digitalcommons.unl.edu/biosciducksgeeseswans/13 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Tribe Aythyini (Pochards) Drawing on preceding page: Canvasback (Schonwetter, 1960) to 1,360 g (Ali & Ripley, Pink-headed Duck 1968). Eggs: 44 x 41 mm, white, 45 g. Rhodonessa caryophyllacea (Latham) 1790 Identification and field marks. Length 24" (60 em). Other vernacular names. None in general English Adult males have a bright pink head, which is use. Rosenkopfente (German); canard a tete rose slightly tufted behind, the color extending down the (French); pato de cabeza rosada (Spanish). hind neck, while the foreneck, breast, underparts, and upperparts are brownish black, except for some Subspecies and range. No subspecies recognized. Ex pale pinkish markings on the mantle, scapulars, and tinct; previously resident in northern India, prob breast. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
Ducks, Geese, and Swans of the World: Sources Cited
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 Ducks, Geese, and Swans of the World: Sources Cited Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "Ducks, Geese, and Swans of the World: Sources Cited" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 17. https://digitalcommons.unl.edu/biosciducksgeeseswans/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Sources Cited Alder, L. P. 1963. The calls and displays of African and In Bellrose, F. C. 1976. Ducks, geese and swans of North dian pygmy geese. In Wildfowl Trust, 14th Annual America. 2d ed. Harrisburg, Pa.: Stackpole. Report, pp. 174-75. Bellrose, F. c., & Hawkins, A. S. 1947. Duck weights in Il Ali, S. 1960. The pink-headed duck Rhodonessa caryo linois. Auk 64:422-30. phyllacea (Latham). Wildfowl Trust, 11th Annual Re Bengtson, S. A. 1966a. [Observation on the sexual be port, pp. 55-60. havior of the common scoter, Melanitta nigra, on the Ali, S., & Ripley, D. 1968. Handbook of the birds of India breeding grounds, with special reference to courting and Pakistan, together with those of Nepal, Sikkim, parties.] Var Fagelvarld 25:202-26. -
Wild Geese in Captivity by Bob Elgas Big Timber, Montana
Wild Geese in Captivity by Bob Elgas Big Timber, Montana Man has always been fascinated by, Wild geese were frequently depicted exists, and wild geese have become and has had a close association with, on ancient structures. Indeed, the increasingly popular with avicul wild geese. As a result of their ten- Swan goose of China, and the Greylag turists. dency to vocalize an objection to of Europe were domesticated eons Throughout the world there are nocturnal disturbances, the early ago, long before the dawn of written some 15 species of wild geese, with Romans utilized them as watchdogs.. history. Even today the fascination numerous sub-species, all of which are native to the northern hemi sphere. Interestingly, there are no true geese in the southern hemisphere. South America is represented by a specialized group known as sheld geese, while Africa and Australia are represented by a number of birds with goose-like characteristics. Sheld geese are actually modified ducks which, through the evolutionary process, have assumed goose-like similarities. One of the more obvious differences is the dimorphism of sexes characterized by sheldgeese males being of completely different plumage than females. In true geese, both sexes are alike. Although the birds from the southern hemisphere are interesting in their own right, the differences are so great that they can not be classified with the true geese. The geese of the northern hemi sphere are divided into two groups the genus Anset; which is representa tive of the true geese, and the genus A representative ofthe genus Anser is thispair ofEmperorgeese (Anser canagicus). -
Insular Vertebrate Evolution: the Palaeontological Approach': Monografies De La Societat D'història Natural De Les Balears, Lz: Z05-118
19 DESCRIPTION OF THE SKULL OF THE GENUS SYLVIORNIS POPLIN, 1980 (AVES, GALLIFORMES, SYLVIORNITHIDAE NEW FAMILY), A GIANT EXTINCT BIRD FROM THE HOLOCENE OF NEW CALEDONIA Cécile MOURER-CHAUVIRÉ & Jean Christophe BALOUET MOUREH-CHAUVIRÉ, C. & BALOUET, l.C, zoos. Description of the skull of the genus Syluiornis Poplin, 1980 (Aves, Galliformes, Sylviornithidae new family), a giant extinct bird from the Holocene of New Caledonia. In ALCOVER, J.A. & BaVER, P. (eds.): Proceedings of the International Symposium "Insular Vertebrate Evolution: the Palaeontological Approach': Monografies de la Societat d'Història Natural de les Balears, lZ: Z05-118. Resum El crani de Sylviornismostra una articulació craniarostral completament mòbil, amb dos còndils articulars situats sobre el rostrum, el qual s'insereix al crani en dues superfícies articulars allargades. La presència de dos procesos rostropterigoideus sobre el basisfenoide del rostrum i la forma dels palatins permet confirmar que aquest gènere pertany als Galliformes, però les característiques altament derivades del crani justifiquen el seu emplaçament a una nova família, extingida, Sylviornithidae. El crani de Syluiornis està extremadament eixamplat i dorsoventralment aplanat, mentre que el rostrum és massís, lateralment comprimit, dorsoventralment aixecat i mostra unes cristae tomiales molt fondes. El rostrum exhibeix un ornament ossi gran. La mandíbula mostra una símfisi molt allargada, les branques laterals també presenten unes cristae tomiales fondes, i la part posterior de la mandíbula és molt gruixada. Es discuteix el possible origen i l'alimentació de Syluiornis. Paraules clau: Aves, Galliformes, Extinció, Holocè, Nova Caledònia. Abstract The skull of Syluiornis shows a completely mobile craniorostral articulation, with two articular condyles situated on the rostrum, which insert into two elongated articular surfaces on the cranium. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
A Classification of the Rallidae
A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times. -
Recent Introgression Between Taiga Bean Goose and Tundra Bean Goose Results in a Largely Homogeneous Landscape of Genetic Differentiation
Heredity (2020) 125:73–84 https://doi.org/10.1038/s41437-020-0322-z ARTICLE Recent introgression between Taiga Bean Goose and Tundra Bean Goose results in a largely homogeneous landscape of genetic differentiation 1 2 3 1 Jente Ottenburghs ● Johanna Honka ● Gerard J. D. M. Müskens ● Hans Ellegren Received: 12 December 2019 / Revised: 11 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Several studies have uncovered a highly heterogeneous landscape of genetic differentiation across the genomes of closely related species. Specifically, genetic differentiation is often concentrated in particular genomic regions (“islands of differentiation”) that might contain barrier loci contributing to reproductive isolation, whereas the rest of the genome is homogenized by introgression. Alternatively, linked selection can produce differentiation islands in allopatry without introgression. We explored the influence of introgression on the landscape of genetic differentiation in two hybridizing goose taxa: the Taiga Bean Goose (Anser fabalis) and the Tundra Bean Goose (A. serrirostris). We re-sequenced the whole 1234567890();,: 1234567890();,: genomes of 18 individuals (9 of each taxon) and, using a combination of population genomic summary statistics and demographic modeling, we reconstructed the evolutionary history of these birds. Next, we quantified the impact of introgression on the build-up and maintenance of genetic differentiation. We found evidence for a scenario of allopatric divergence (about 2.5 million years ago) followed by recent secondary contact (about 60,000 years ago). Subsequent introgression events led to high levels of gene flow, mainly from the Tundra Bean Goose into the Taiga Bean Goose. -
Canvasback Aythya Valisineria
Canvasback Aythya valisineria Class: Aves Order: Anseriformes Family: Anatidae Characteristics: A large diving duck, in fact the largest in its genus, the canvasback weighs about 2.5-3 pounds. The male has a chestnut-red head, red eyes, light white-grey body and blackish breast and tail. The female has a lighter brown head and neck that gets progressively darker brown toward the back of the body. Both sexes have a blackish bill and bluish-grey legs and feet. Range & Habitat: Behavior: Breeds in prairie potholes and A wary bird that is very swift in flight. They prefer to dive in shallow water winters on ocean bays to feed and will also feed on the water surface (Audubon). Reproduction: Several males will court and display to one female. Once a female chooses the male, they will form a monogamous bond through breeding season. They build a floating nest in stands of dense vegetation above shallow water and lay 7-12 olive-grey eggs. Often redheads will lay their eggs in canvasback nests which will result in canvasbacks laying fewer eggs. The female incubates the eggs which hatch after 23-28 days. The young feed themselves and mom leads them to water within hours of hatching. Lifespan: up to 20 years in Diet: captivity, 10 years in the wild. Wild: Seeds, plant material, snails and insect larvae, they dive to eat the roots and bases of plants Special Adaptations: They go Zoo: Scratch grains, greens, waterfowl pellets from freshwater marshes in summer to saltwater ocean bays in Conservation: winter. Some say the populations are decreasing while others say they are increasing due to habitat restoration and the ban on lead shot.