Toxicology Section - 2015

Total Page:16

File Type:pdf, Size:1020Kb

Toxicology Section - 2015 Toxicology Section - 2015 (GHB) in Human Hair Samples Via an Automated Bead Mill as a Precursor to High Resolution-Gas Chromatography/Time-of-Flight (GC/TOF) and 2D Gas Chromatography/Time-of-Flight (GCxGC/TOF) Brittany M. Watt, BA*, 651 Brooke Road, Apt D44, Glenside, PA 19038; David Alonso, PhD, LECO Corporation, 1850 Hilltop Road, St. Joseph, MI 49085; Joe Binkley, PhD, LECO Corporation, 1850 Hilltop Road, St Joseph, MI 49085; Jeff Patrick, PhD, LECO Corporation, 1850 Hilltop Road, St Joseph, MI 49085; Frank Kero, PhD, Biotage, 10430 Harris Oaks Boulevard, Ste C, Charlotte, NC 28269; Victor Vandell, PhD, Biotage, 10430 Harris Oaks Boulevard, Charlotte, NC 28269; Elena Gairloch, BS, Biotage, 10430 Harris Oaks Boulevard, Charlotte, NC 28269; M. Brad Nolt, MS, Biotage, 10430 Harris Oaks Boulevard, Ste C, Charlotte, NC 28269; Tom Enzweiler, BS, Biotage, 10430 Harris Oaks Boulevard, Charlotte, NC 28269; Rhys Jones, PhD, Biotage GB Limited, Dyffryn Business Park, Ystrad Mynach, Cardiff CF82 7TS, UNITED KINGDOM; Lee Williams, PhD, Biotage GB Limited, Dyffryn Business Park, Ystrad Mynach, Cardiff CF82 7TS, UNITED KINGDOM; and Karen S. Scott, PhD, Arcadia University, 450 S Easton Road, Glenside, PA 19038 After attending this presentation, attendees will be able to describe the usefulness of improved automated instrumentation for the of forensic samples. This creates a challenge when testing hair samples due to interference from other endogenous compounds. One approach to cleaning up the samples is the use of mass spectrometric deconvolution software and multidimensional GC. In addition, it is critical to extract as much of a drug from the hair matrix as possible so this study has investigated the use of a Biotage® Bead Ruptor This presentation will impact the forensic science community by increasing awareness of alternative instrumental techniques that Techniques to interrogate hair samples have proven valuable in detecting human host exposure to drugs of abuse over a long using the laboratory’s standard preparation procedure (cutting the hair into 1mm-2mm segments using scissors) versus automation in the bead mill at the Center for Forensic Science Research and Education in Willow Grove, PA, using a Biotage® Bead Ruptor 24. The interferences. GHB, Bead Ruptor, GCxGC/TOF Copyright 2015 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. 1058 * Presenting Author Toxicology Section - 2015 K2 A Novel Extraction Methodology for the Analysis of Lorazepam and Oxazepam Glucuronide Hydrolysis in Meconium Kaylee R. McDonald, BS*, 631 Sumter Street, Columbia, SC 29208; William E. Brewer, PhD, University of South Carolina, Dept of Chem & Biochem, 631 Sumter Street, Columbia, SC 29208; and Stephen L. Morgan, PhD, University of South Carolina, Dept of Chemistry & Biochemistry, 631 Sumter Street, Columbia, SC 29208 in situ This presentation will impact the forensic science community by illustrating how the proposed analytical methodology provides practical advantages over existing methods in terms of rapid sample clean-up and the removal of biological matrix effects that could for cases of suspected drug abuse. 1 2 the use of meconium as a biological matrix to monitor drug use by liquid chromatography/mass spectrometry is problematic because of the potential for large matrix effects.1,3 Reducing matrix effects requires extracting target analytes from the endogenous biological matrix effects and sample preparation time by a hydrolysis step in situ was vortexed and centrifuged. The supernatant was removed and placed into a clean sample vial (~950ul solution). The solution was transfer of the analytes into the cleaner acetonitrile supernatant. The top acetonitrile layer (~500-600ul) was then transferred to a vial suitable for solvent evaporation. This step separates the acetonitrile and water layers and facilitates removal of the analytes in the acetonitrile supernatant. After evaporation in a fresh vial, the residue was reconstituted in 100mL of 10:90 methanol:water. All analyses were performed using a triple quadrupole system with an Agilent® 2.7µm). Sample injections of 20µL were made using an injection valve incorporated on an autosampler. The mobile phase used 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The initial gradient was 70% A for 0.25min, which ramped to 5% A glucuronides. Post-hydrolysis, a decrease of the glucuronides and concurrent increase in the parent compounds demonstrated that the method was viable. To test the validity of this method further, a blind study was performed with a collaborative laboratory including 35 92%. In conclusion, the combination of fast hydrolysis, coupled with a simple clean-up scheme, offers an effective analytical approach Copyright 2015 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. 1059 * Presenting Author Toxicology Section - 2015 References: 1. Toxicology, 2008, 32, 492-498. 2. 3. Fetal and Neonatal Edition, 2006, 91, F291-F292. Meconium, Benzodiazepines, Chromatography Copyright 2015 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. 1060 * Presenting Author Toxicology Section - 2015 K3 Analysis of Promethazine, Chlorpromazine, and Selected Metabolites in Decomposed Skeletal Tissues by Microwave-Assisted Extraction/Microplate Solid Phase Extraction/Ultra High-Performance Liquid Chromatography (MAE/ MPSPE/UHPLC) Courtney A. Campbell, BS*, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, CANADA; James Watterson, PhD, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, CANADA; and Caroline C. Betit, MSc, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, CANADA After attending this presentation, attendees will understand how to develop a microwave-assisted extraction methodology using bone tissue. An example of this methodology’s practical application using vertebral bone will be presented. 2 ™ 6 microwave oven for a total of 60min, with extraction solvent recovered and replaced with fresh solvent at 15min and 30min. All solvent extracts were recovered, evaporated to then underwent protein precipitation by adding 1mL of PBS along with 3mL of acetonitrile-methanol (1:1) followed by storage at -20oC plates. Wells were conditioned by sequential addition of 3mL methanol, water, and PBS. Samples were loaded by gravity. Wells were 4 were evaporated to dryness and reconstituted in 500µL of mobile phase A (0.1 % formic acid in 90:10 water:acetonitrile). Samples were used was a Raptor™ biphenyl column (150mm x 2.1mm, 1.7µm) with a column temperature set to 50oC. The mobile phase gradient began with 95:5 A:B (B: 0.1%formic acid in 90:10 acetonitrile:water) held for 1min, then increased to 70:30 A:B over 4min, held for sulphoxide metabolites and 250nm for the remaining analytes. was linear from 10ng/mL to 5,000ng/mL (R2 for each analyte. The majority of analytes were recovered after 30min extraction interval. Analytes were stable under the microwave extraction for at least 60min. Promethazine, Chlorpromazine, Bone Copyright 2015 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. 1061 * Presenting Author Toxicology Section - 2015 K4 Detection of Trace Buprenorphine and Norbuprenorphine in Human Hair Using Enzyme-Linked Immuno-Sorbent Assay (ELISA) Irene Shu*, 1700 S Mt Prospect Road, Des Plaines, IL 60018; Valencia Sagnia, BS, 1700 S Mount Prospect Road, Des Plaines, IL 60018; and Joseph Jones, MS, 1700 S Mount Prospect Road, Des Plaines, IL 60018 After attending this presentation, attendees will be able to develop, validate, and implement an ELISA method in their forensic toxicology laboratories for detecting buprenorphine and its metabolite, norbuprenorphine, in human hair. This presentation will impact the forensic science community by introducing a sensitive, robust, and short turn-around-time method to detect both the parent drug and the metabolite to support surveillance of compliance with opioid dependence treatments. months. implemented to quantitate both BUP and norBUP in human hair with a Lower Limit Of Quantitation (LLOQ) of 8pg/mg for each analyte. Only ~30% of the hair samples in the laboratory reported out with quantitated results had BUP/norBUP ratio greater than 1.0 (BUP 8 — 1,517pg/mg, norBUP none-detectable — 1,295pg/mg), and the rest had norBUP as the predominant analyte, including those in which only norBUP was quantitated (BUP none-detectable — 775pg/mg, norBUP 19 — 2,192pg/mg). metabolite at the desired analytical sensitivity. and then sonicated with heat in 1.5mL methanol for two hours. The methanol mixture was centrifuged and 1.0mL of the resulting
Recommended publications
  • International Collaborative Exercises (Ice)
    INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Summary Report BIOLOGICAL SPECIMENS 2013/2 INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Table of contents Introduction Page 3 Comments from the International Panel of Forensic Experts Page 3 Codes and Abbreviations Page 4 Sample 1 Analysis Page 5 Identified substances Page 5 Statement of findings Page 6 Identification methods Page 10 Summary Page 12 Z-Scores Page 13 Sample 2 Analysis Page 15 Identified substances Page 15 Statement of findings Page 16 Identification methods Page 20 Summary Page 22 Z-Scores Page 23 Sample 3 Analysis Page 25 Identified substances Page 25 Statement of findings Page 27 Identification methods Page 31 Summary Page 33 Z-Scores Page 34 Sample 4 Analysis Page 36 Identified substances Page 36 Statement of findings Page 38 Identification methods Page 42 Summary Page 44 Test Samples Information Samples Comments on samples Sample 1 To prepare BS-1, urine was spiked with 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) (1590 ng base/ml), as an ethanolic solution. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 2 To prepare BS-2, urine was spiked with Gammahydroxybutyrate (GHB) (14360 ng base/ml), as an aqueous solution. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 3 To prepare BS-3, urine was spiked with Amfetamine sulphate (1570ng/ml, 1150 ng base/ml) and Metamfetamine hydrochloride (4290 ng/ml, 3450 ng base/ml) as aqueous solutions. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 4 BS-4 was a blank test sample containing no substances in the ICE menu Samples Substances Concentrations Comments on substances Sample 1 4-Bromo-2,5-dimethoxyphenethylamine (2C- 1590 ng/ml B) Sample 2 gamma-Hydroxybutyric acid (GHB) 14360 ng/ml Sample 3 Metamfetamine 3450 ng/ml Amfetamine 1150 ng/ml Sample 4 [blank sample] This report contains the data received from laboratories participating in the current exercise.
    [Show full text]
  • Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materialsd
    Recommended methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits:UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2020 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/49/REV.1 Original language: English © United Nations, March 2020. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr.
    [Show full text]
  • WHO Expert Committee on Drug Dependence Thirty-Eighth Report
    WHO Expert Committee on Drug Dependence Thirty-eighth report This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization iii Contents WHO Expert Committee on Drug Dependence vi Abbreviations ix Introduction 1 1. Briefings from International Organizations on their work on the public health element of the world drug problem 4 1.1 Update from the International Narcotics Control Board 4 1.2 Update from the United Nations Office on Drugs and Crime 5 1.3 Update from the Department of Essential Medicines and Health Products, WHO 7 1.4 Update from the Department of Mental Health and Substance Abuse, WHO 9 1.5 Update from the Department of HIV/AIDS, WHO 9 2. Principles for prioritizing and assessing substances as part of ECDD work 11 3. Update from the 1st Informal Working Group of the ECDD 12 4. Follow-up on recommendations made by the ECDD at its thirty-seventh meeting 13 5. Critical review of psychoactive substances 14 5.1 U- 47700 15 5.2 Butyrfentanyl (Butyrylfentanyl) 17 5.3 4-Methylethcathinone (4-MEC) 18 5.4 3-Methylmethcathinone (3-methyl-N-methylcathinone; 3-MMC) 21 iv 5.5 Ethylone (3,4-metheylenedioxy-N-ethylcathinone; bk-MDEA; MEDEC) 23 5.6 Pentedrone (α-Methylaminovalerophenone) 24 5.7 Ethylphenidate (EPH) 26 5.8 Methiopropamine (MPA) 28 5.9 MDMB-CHMICA 30 5.10 5F-APINACA (5F-AKB-48) 32 5.11 JWH-073 34 5.12 XLR-11 36 6. Updates 37 6.1 Cannabis and cannabis resin 37 7.
    [Show full text]
  • Structure-Cytotoxicity Relationship Profile of 13 Synthetic Cathinones In
    Neurotoxicology 75 (2019) 158–173 Contents lists available at ScienceDirect Neurotoxicology journal homepage: www.elsevier.com/locate/neuro Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells T ⁎ Jorge Soaresa, , Vera Marisa Costaa, Helena Gasparb,c, Susana Santosd,e, Maria de Lourdes Bastosa, ⁎ Félix Carvalhoa, João Paulo Capelaa,f, a UCIBIO, REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal b BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Portugal c MARE - Centro de Ciências do Mar e do Ambiente, Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Portugal d Centro de Química e Bioquímica (CQB), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal f FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Portugal ARTICLE INFO ABSTRACT Keywords: Synthetic cathinones also known as β-keto amphetamines are a new group of recreational designer drugs. We Synthetic cathinones aimed to evaluate the cytotoxic potential of thirteen cathinones lacking the methylenedioxy ring and establish a Classical amphetamines putative structure-toxicity profile using differentiated SH-SY5Y cells, as well as to compare their toxicity to that Cytotoxicity of amphetamine (AMPH) and methamphetamine (METH). Cytotoxicity assays [mitochondrial 3-(4,5-dimethyl-2- SH-SY5Y cells thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and lysosomal neutral red (NR) uptake] per- Structure-toxicity relationship formed after a 24-h or a 48-h exposure revealed for all tested drugs a concentration-dependent toxicity.
    [Show full text]
  • Booklet 4 Stimulants Preface
    4 STIMULANTS 4 STIMULANTS 2019 2019 © United Nations, June 2019. All rights reserved worldwide. ISBN: 978-92-1-148314-7 eISBN: 978-92-1-004174-4 United Nations publication, Sales No. E.19.XI.8 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. The United Nations Office on Drugs and Crime (UNODC) would appreciate receiving a copy of any publication that uses this publication as a source. Suggested citation: World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from UNODC. Applications for such permission, with a statement of purpose and intent of the reproduction, should be addressed to the Research and Trend Analysis Branch of UNODC. DISCLAIMER The content of this publication does not necessarily reflect the views or policies of UNODC or contributory organizations, nor does it imply any endorsement. Comments on the report are welcome and can be sent to: Division for Policy Analysis and Public Affairs United Nations Office on Drugs and Crime PO Box 500 1400 Vienna Austria Tel: (+43) 1 26060 0 Fax: (+43) 1 26060 5827 E-mail: [email protected] Website: www.unodc.org/wdr2019 PREFACE The findings of this year’s World Drug Report fill in same time clamping down on organized crime and and further complicate the global picture of drug trafficking.
    [Show full text]
  • Toxicology Report Division of Toxicology Daniel D
    Franklin County Forensic Science Center Office of the Coroner Anahi M. Ortiz, M.D. 2090 Frank Road Columbus, Ohio 43223 Toxicology Report Division of Toxicology Daniel D. Baker, Chief Toxicologist Casey Goodson Case # LAB-20-5315 Date report completed: January 28, 2021 A systematic toxicological analysis has been performed and the following agents were detected. Postmortem Blood: Gray Top Thoracic ELISA Screen Acetaminophen Not Detected ELISA Screen Barbiturates Not Detected ELISA Screen Benzodiazepines Not Detected ELISA Screen Benzoylecgonine Not Detected ELISA Screen Buprenorphine Not Detected ELISA Screen Cannabinoids See Confirmation ELISA Screen Fentanyl Not Detected ELISA Screen Methamphetamine Not Detected ELISA Screen Naltrexone/Naloxone Not Detected ELISA Screen Opiates Not Detected ELISA Screen Oxycodone/Oxymorphone Not Detected ELISA Screen Salicylates Not Detected ELISA Screen Tricyclics Not Detected Page 1 of 4 Casey Goodson Case # LAB-20-5315 GC/FID Ethanol Not Detected GC/MS Acidic/Neutral Drugs None Detected GC/MS Nicotine Positive GC/MS Cotinine Positive Reference Lab Delta-9-THC 13 ng/mL Reference Lab 11-Hydroxy-Delta-9-THC 1.2 ng/mL Reference Lab 11-Nor-9-Carboxy-Delta-9-THC 15 ng/mL Postmortem Urine: Gray Top Urine GC/MS Cotinine Positive This report has been verified as accurate and complete by ______________________________________ Daniel D. Baker, M.S., F-ABFT Cannabinoid quantitations in blood were performed by NMS Labs, Horsham, PA. Page 2 of 4 Casey Goodson Case # LAB-20-5315 Postmortem Toxicology Scope of Analysis Franklin County Coroner’s Office Division of Toxicology Enzyme Linked Immunosorbant Assay (ELISA) Blood Screen: Qualitative Presumptive Compounds/Classes: Acetaminophen (cut-off 10 µg/mL), Benzodiazepines (cut-off 20 ng/mL), Benzoylecgonine (cut-off 50 ng/mL), Cannabinoids (cut-off 40 ng/mL), Fentanyl (cut-off 1 ng/mL), Methamphetamine/MDMA (cut-off 50 ng/mL), Opiates (cut-off 40 ng/mL), Oxycodone/Oxymorphone (cut-off 40 ng/mL), Salicylates (50 µg/mL).
    [Show full text]
  • Download Product Insert
    PRODUCT INFORMATION Cathinone Analytical Standards Panel Item No. 31616 Storage: -20°C Stability: ≥2 years Laboratory Procedures Uncap each vial to be used. Add 500 µl of methanol to each vial. This will provide a 200 µg/ml standard solution for each analyte. Re-cap the vials and place plate on a plate mixer or vortexer. Mix for a minimum of 15 minutes to ensure full reconstitution. The plate included in this panel contains a residual amount of glycerol to aid in the reconstitution of the analyte in methanol. Recovery in methanol has been validated for all analytes on the plate. Recovery from other solvents has not been verified. Description The Cathinone Analytical Standards Panel contains 239 analytical reference materials and standards categorized as cathinones and cathinone metabolites. These compounds are supplied at 100 μg/well in a 96-well plate format for rapid screening or cataloging. The plate included in this panel contains a residual amount of glycerol to aid in the reconstitution of the analyte in methanol. Recovery in methanol has been validated for all analytes on the plate. Recovery from other solvents has not been verified. Please review the product insert for a full list of targets. The Cathinone Analytical Standards Panel contains compounds regulated as Schedule I compounds in the United States and is regulated as a Schedule I item. This product is intended for research and forensic applications. Panel Contents Plate Well Contents Item Number Molecular Formula CAS Number 1 A1 Unused 1 A2 (−)-(S)-Cathinone (hydrochloride)
    [Show full text]
  • Article 22 Regulation for Restriction of Synthetic Drugs
    ARTICLE 22 REGULATION FOR RESTRICTION OF SYNTHETIC DRUGS SECTION 22.1 AUTHORITY This regulation is promulgated under the authority granted to the Needham Board of Health under Massachusetts General Laws Chapter 111, Section 31 which states that “boards of health may make reasonable health regulations”. SECTION 22.2 PURPOSE The Needham Board of Health has found that synthetic marijuana, consisting of plant or other material treated with various chemicals or other synthetic substances not approved for human consumption, may be marketed and sold as herbal incense in the greater Boston area, although they are being used in the same manner and for the same purposes as scheduled drugs. In addition, the use of these products has become particularly popular among teens and young adults. Based on information and reports from hospitals, emergency room doctors, and police agencies, individuals who use these products experience dangerous side effects including convulsions, hallucinations, and dangerously elevated heart rates. This is evidence that synthetic marijuana products are harmful if inhaled or consumed, and present a significant public health danger. These synthetic compounds and others have a high potential for abuse and lack of any accepted medical use, these dangerous products, while not approved for human consumption, are marketed and sold in a form that allows for such consumption, putting at risk the individuals who come into contact with them. Therefore, the Needham Board of Health adopts this regulation for the purpose and with the intent to protect the public health and safety of the Town of Needham and its residents from the threat posed by the availability and use of synthetic marijuana, synthetic stimulants, synthetic hallucinogens, and other dangerous products by prohibiting persons from trafficking in, possessing, and using them within the town.
    [Show full text]
  • 4F-Pentedrone
    NMS Labs 2300 Stratford Ave Willow Grove, PA 19090 4F-Pentedrone Sample Type: Seized Material Latest Revision: December 3, 2019 Date Received: August 16, 2019 Date of Report: December 3, 2019 1. GENERAL INFORMATION IUPAC Name: 1-(4-fluorophenyl)-2-(methylamino)pentan-1-one InChI String: InChI=1S/C12H16FNO/c1-3-4-11(14-2)12(15)9-5-7-10(13)8-6- 9/h5-8,11,14H,3-4H2,1-2H3 CFR: Not Scheduled (12/2019) CAS# Not Available Synonyms: 4-Fluoro Pentedrone, 4-Fluoro-α-Methylamino-Valerophenone, 4-FPD Source: Department of Homeland Security Appearance: Tan Solid Material Important Note: All identifications were made based on evaluation of analytical data (GC-MS and LC- QTOF-MS) in comparison to analysis of acquired reference material. Prepared By: Alex J. Krotulski, PhD; Melissa F. Fogarty, MSFS, D-ABFT-FT; and Barry K. Logan, PhD, F-ABFT 2. CHEMICAL AND PHYSICAL DATA 2.1 CHEMICAL DATA Chemical Molecular Molecular Ion Exact Mass Form Formula Weight [M+] [M+H]+ Base C12H16FNO 209.3 209 210.1289 3. BRIEF DESCRIPTION 4F-Pentedrone is classified as a novel stimulant and substituted cathinone. Substituted cathinones are modified based on the structure of cathinone, an alkaloid found in the Khat plant. Novel stimulants have been reported to cause stimulant-like effects, similar to amphetamines. Novel stimulants have also caused adverse events, including deaths, as described in the literature. Structurally similar compounds include pentedrone, hexedrone, and N-ethyl hexedrone. Pentedrone is a Schedule I substance in the United States while 4F-pentedrone is not explicitly scheduled.
    [Show full text]
  • AGENDA Friday, September 9, 2016 7:00 A.M
    Needham Board of Health AGENDA Friday, September 9, 2016 7:00 a.m. – 9:00 a.m. Charles River Room – Public Services Administration Building 500 Dedham Avenue, Needham MA 02492 • 7:00 to 7:05 - Welcome & Review of Minutes (July 29 & August 29) • 7:05 to 7:30 - Director and Staff Reports (July & August) • 7:30 to 7:45 - Discussion about Proposed Plastic Bag Ban Christopher Thomas, Needham Resident • 7:45 to 7:50 - Off-Street Drainage Bond Discussion & Vote • 7:50 to 8:00 - Update on Wingate Pool Variance Application * * * * * * * * * * * * * Board of Health Public Hearing • 8:00 to 8:40 - Hearing for Proposed New or Amended BOH Regulations o Body Art o Synthetic Marijuana o Drug Paraphernalia • 8:40 to 8:50 - Board Discussion of Policy Positions • Other Items (Healthy Aging, Water Quality) • Next Meeting Scheduled for Friday October 14, 2016 • Adjournment (Please note that all times are approximate) 1471 Highland Avenue, Needham, MA 02492 781-455-7500 ext 511 (tel); 781-455-0892 (fax) E-mail: [email protected] Web: www.needhamma.gov/health NEEDHAM BOARD OF HEALTH July 29, 2016 MEETING MINUTES PRESENT: Edward V. Cosgrove, PhD, Chair, Jane Fogg, Vice-Chair, M.D., and Stephen Epstein, M.D STAFF: Timothy McDonald, Director, Donna Carmichael, Catherine Delano, Maryanne Dinell, Tara Gurge GUEST: Kevin Mulkern, Aquaknot Pools, Inc., Keith Mulkern, Aquaknot Pools, Inc., David Friedman, Wingate, Paul Humphreys, Michael Tomasello, Callahan, Inc. CONVENE: 7:00 a.m. – Public Services Administration Building (PSAB), 500 Dedham Avenue, Needham MA 02492 DISCUSSION: Call To Order – 7:06 a.m. – Dr. Cosgrove, Chairman APPROVE MINUTES: Upon motion duly made and seconded, the minutes of the BOH meeting of June 17, 2016 were approved as submitted.
    [Show full text]
  • Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances Joshua Zolton Seither [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 4-25-2018 Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances Joshua Zolton Seither [email protected] DOI: 10.25148/etd.FIDC006565 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Chemistry Commons Recommended Citation Seither, Joshua Zolton, "Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances" (2018). FIU Electronic Theses and Dissertations. 3823. https://digitalcommons.fiu.edu/etd/3823 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida APPLICATION OF HIGH RESOLUTION MASS SPECTROMETRY FOR THE SCREENING AND CONFIRMATION OF NOVEL PSYCHOACTIVE SUBSTANCES A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Joshua Zolton Seither 2018 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Joshua Zolton Seither, and entitled Application of High- Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Piero Gardinali _______________________________________ Bruce McCord _______________________________________ DeEtta Mills _______________________________________ Stanislaw Wnuk _______________________________________ Anthony DeCaprio, Major Professor Date of Defense: April 25, 2018 The dissertation of Joshua Zolton Seither is approved.
    [Show full text]
  • Written Witness Statement for U.S. Sentencing Commission's Public
    STATEMENT OF TERRENCE L. BOOS, PH.D. SECTION CHIEF DRUG AND CHEMICAL EVALUATION SECTION DIVERSION CONTROL DIVISION DRUG ENFORCEMENT ADMINISTRATION and CASSANDRA PRIOLEAU, PH.D. DRUG SCIENCE SPECIALIST DRUG AND CHEMICAL EVALUATION SECTION DIVERSION CONTROL DIVISION DRUG ENFORCEMENT ADMINISTRATION - - - BEFORE THE UNITED STATES SENTENCING COMMISSION - - - HEARING ON SENTENCING POLICY FOR SYNTHETIC DRUGS - - - OCTOBER 4, 2017 WASHINGTON, D.C. 1 Introduction New Psychoactive Substances (NPS) are substances trafficked as alternatives to well- studied controlled substances of abuse. NPS have demonstrated adverse health effects such as paranoia, psychosis, and seizures to name a few. Cathinones, cannabinoids, and fentanyl-related substances are the most common NPS drug classes encountered on the illicit drug market, all with negative consequences for the user to include serious injury and death. Our early experience saw substances being introduced from past research efforts in an attempt to evade controls. This has evolved to NPS manufacturers structurally altering substances at a rapid pace with unknown outcomes to targeting specific user populations. These substances represent an unprecedented level of diversity and consequences. Due to clandestine manufacture and unscrupulous trafficking, the user is at great risk. A misconception exists that these substances carry a lower risk of harm In reality, published reports from law enforcement, emergency room physicians and scientists, accompanied with autopsies from medical examiners, have clearly demonstrated the harmful and potentially deadly consequences of using synthetic cathinones. These substances are introduced in an attempt to circumvent drug controls and the recent flood of NPS remains a challenge for law enforcement and public health. The United Nations Office on Drugs and Crime reported over 700 NPS encountered.1 The manufacturers and traffickers make minor changes in the chemical structure of known substances of abuse and maintain the pharmacological effect.
    [Show full text]