Structure-Cytotoxicity Relationship Profile of 13 Synthetic Cathinones In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Collaborative Exercises (Ice)
INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Summary Report BIOLOGICAL SPECIMENS 2013/2 INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Table of contents Introduction Page 3 Comments from the International Panel of Forensic Experts Page 3 Codes and Abbreviations Page 4 Sample 1 Analysis Page 5 Identified substances Page 5 Statement of findings Page 6 Identification methods Page 10 Summary Page 12 Z-Scores Page 13 Sample 2 Analysis Page 15 Identified substances Page 15 Statement of findings Page 16 Identification methods Page 20 Summary Page 22 Z-Scores Page 23 Sample 3 Analysis Page 25 Identified substances Page 25 Statement of findings Page 27 Identification methods Page 31 Summary Page 33 Z-Scores Page 34 Sample 4 Analysis Page 36 Identified substances Page 36 Statement of findings Page 38 Identification methods Page 42 Summary Page 44 Test Samples Information Samples Comments on samples Sample 1 To prepare BS-1, urine was spiked with 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) (1590 ng base/ml), as an ethanolic solution. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 2 To prepare BS-2, urine was spiked with Gammahydroxybutyrate (GHB) (14360 ng base/ml), as an aqueous solution. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 3 To prepare BS-3, urine was spiked with Amfetamine sulphate (1570ng/ml, 1150 ng base/ml) and Metamfetamine hydrochloride (4290 ng/ml, 3450 ng base/ml) as aqueous solutions. The spiked urine was dispensed in 50ml aliquots and lyophilised Sample 4 BS-4 was a blank test sample containing no substances in the ICE menu Samples Substances Concentrations Comments on substances Sample 1 4-Bromo-2,5-dimethoxyphenethylamine (2C- 1590 ng/ml B) Sample 2 gamma-Hydroxybutyric acid (GHB) 14360 ng/ml Sample 3 Metamfetamine 3450 ng/ml Amfetamine 1150 ng/ml Sample 4 [blank sample] This report contains the data received from laboratories participating in the current exercise. -
Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materialsd
Recommended methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits:UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2020 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/49/REV.1 Original language: English © United Nations, March 2020. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. -
FSI-D-16-00226R1 Title
Elsevier Editorial System(tm) for Forensic Science International Manuscript Draft Manuscript Number: FSI-D-16-00226R1 Title: An overview of Emerging and New Psychoactive Substances in the United Kingdom Article Type: Review Article Keywords: New Psychoactive Substances Psychostimulants Lefetamine Hallucinogens LSD Derivatives Benzodiazepines Corresponding Author: Prof. Simon Gibbons, Corresponding Author's Institution: UCL School of Pharmacy First Author: Simon Gibbons Order of Authors: Simon Gibbons; Shruti Beharry Abstract: The purpose of this review is to identify emerging or new psychoactive substances (NPS) by undertaking an online survey of the UK NPS market and to gather any data from online drug fora and published literature. Drugs from four main classes of NPS were identified: psychostimulants, dissociative anaesthetics, hallucinogens (phenylalkylamine-based and lysergamide-based materials) and finally benzodiazepines. For inclusion in the review the 'user reviews' on drugs fora were selected based on whether or not the particular NPS of interest was used alone or in combination. NPS that were use alone were considered. Each of the classes contained drugs that are modelled on existing illegal materials and are now covered by the UK New Psychoactive Substances Bill in 2016. Suggested Reviewers: Title Page (with authors and addresses) An overview of Emerging and New Psychoactive Substances in the United Kingdom Shruti Beharry and Simon Gibbons1 Research Department of Pharmaceutical and Biological Chemistry UCL School of Pharmacy -
Octopamine and Tyramine Regulate the Activity of Reproductive Visceral Muscles in the Adult Female Blood-Feeding Bug, Rhodnius Prolixus Sam Hana* and Angela B
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1830-1836 doi:10.1242/jeb.156307 RESEARCH ARTICLE Octopamine and tyramine regulate the activity of reproductive visceral muscles in the adult female blood-feeding bug, Rhodnius prolixus Sam Hana* and Angela B. Lange ABSTRACT Monastirioti et al., 1996). Octopamine and tyramine signal via The role of octopamine and tyramine in regulating spontaneous G-protein coupled receptors (GPCRs), leading to changes in second contractions of reproductive tissues was examined in the messenger levels. The recently updated receptor classification α β female Rhodnius prolixus. Octopamine decreased the amplitude of (Farooqui, 2012) divides the receptors into Oct -R, Oct -Rs β β β spontaneous contractions of the oviducts and reduced RhoprFIRFa- (Oct 1-R, Oct 2-R, Oct 3-R), TYR1-R and TYR2-R. In general, β α induced contractions in a dose-dependent manner, whereas tyramine Oct -Rs lead to elevation of cAMP while Oct -R and TYR-Rs lead to 2+ only reduced the RhoprFIRFa-induced contractions. Both octopamine an increase in Ca (Farooqui, 2012). and tyramine decreased the frequency of spontaneous bursal The movement of eggs in the reproductive system of contractions and completely abolished the contractions at Rhodnius prolixus starts at the ovaries, the site of egg maturation. 5×10−7 mol l−1 and above. Phentolamine, an octopamine receptor Upon ovulation, mature eggs are released into the oviducts antagonist, attenuated the inhibition induced by octopamine on the (Wigglesworth, 1942). Eggs are then guided, via oviductal oviducts and the bursa. Octopamine also increased the levels of peristaltic and phasic contractions, to the common oviduct, where cAMP in the oviducts, and this effect was blocked by phentolamine. -
Pharmacokinetics of Mephedrone Enantiomers in Whole Blood After a Controlled Intranasal Administration to Healthy Human Volunteers
pharmaceuticals Article Pharmacokinetics of Mephedrone Enantiomers in Whole Blood after a Controlled Intranasal Administration to Healthy Human Volunteers Joanna Czerwinska 1, Mark C. Parkin 1,2, Agostino Cilibrizzi 3 , Claire George 4, Andrew T. Kicman 1, Paul I. Dargan 5,6 and Vincenzo Abbate 1,* 1 King’s Forensics, Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; [email protected] (J.C.); MarkParkin@eurofins.co.uk (M.C.P.); [email protected] (A.T.K.) 2 Toxicology Department, Eurofins Forensic Services, Teddington TW11 0LY, UK 3 Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK; [email protected] 4 Alere Toxicology (Now Part of Abbott), Abingdon OX14 1DY, UK; [email protected] 5 Clinical Toxicology, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; [email protected] 6 Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust and King’s Health Partners, London SE1 7EH, UK * Correspondence: [email protected] Abstract: Mephedrone, which is one of the most popular synthetic cathinones, has one chiral centre and thus exists as two enantiomers: R-(+)-mephedrone and S-(−)-mephedrone. There are some preliminary data suggesting that the enantiomers of mephedrone may display enantioselective phar- macokinetics and exhibit different neurological effects. In this study, enantiomers of mephedrone were resolved via chromatographic chiral recognition and the absolute configuration was unambigu- ously determined by a combination of elution order and chiroptical analysis (i.e., circular dichroism). A chiral liquid chromatography tandem mass spectrometry method was fully validated and was Citation: Czerwinska, J.; Parkin, M.C.; applied to the analysis of whole blood samples collected from a controlled intranasal administra- Cilibrizzi, A.; George, C.; Kicman, A.T.; tion of racemic mephedrone hydrochloride to healthy male volunteers. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
WHO Expert Committee on Drug Dependence Thirty-Eighth Report
WHO Expert Committee on Drug Dependence Thirty-eighth report This report contains the views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization iii Contents WHO Expert Committee on Drug Dependence vi Abbreviations ix Introduction 1 1. Briefings from International Organizations on their work on the public health element of the world drug problem 4 1.1 Update from the International Narcotics Control Board 4 1.2 Update from the United Nations Office on Drugs and Crime 5 1.3 Update from the Department of Essential Medicines and Health Products, WHO 7 1.4 Update from the Department of Mental Health and Substance Abuse, WHO 9 1.5 Update from the Department of HIV/AIDS, WHO 9 2. Principles for prioritizing and assessing substances as part of ECDD work 11 3. Update from the 1st Informal Working Group of the ECDD 12 4. Follow-up on recommendations made by the ECDD at its thirty-seventh meeting 13 5. Critical review of psychoactive substances 14 5.1 U- 47700 15 5.2 Butyrfentanyl (Butyrylfentanyl) 17 5.3 4-Methylethcathinone (4-MEC) 18 5.4 3-Methylmethcathinone (3-methyl-N-methylcathinone; 3-MMC) 21 iv 5.5 Ethylone (3,4-metheylenedioxy-N-ethylcathinone; bk-MDEA; MEDEC) 23 5.6 Pentedrone (α-Methylaminovalerophenone) 24 5.7 Ethylphenidate (EPH) 26 5.8 Methiopropamine (MPA) 28 5.9 MDMB-CHMICA 30 5.10 5F-APINACA (5F-AKB-48) 32 5.11 JWH-073 34 5.12 XLR-11 36 6. Updates 37 6.1 Cannabis and cannabis resin 37 7. -
Can Hepatic Coma Be Caused by a Reduction of Brain Noradrenaline Or Dopamine?
Gut: first published as 10.1136/gut.18.9.688 on 1 September 1977. Downloaded from Gut, 1977, 18, 688-691 Can hepatic coma be caused by a reduction of brain noradrenaline or dopamine? L. ZIEVE AND R. L. OLSEN From the Department ofMedicine, Minneapolis Veterans Hospital, University of Minnesota, Minneapolis, and Department of Chemistry, Hamline University, St. Paul, Minnesota, USA SUMMARY Intraventricular infusions of octopamine which raised brain octopamine concentrations more than 20 000-fold resulted in reductions in brain noradrenaline and dopamine by as much as 90% without affecting the alertness or activity of normal rats. As this reduction of brain catechol- amines is much greater than any reported in hepatic coma, we do not believe that values observed in experimental hepatic failure have aetiological significance for the encephalopathy that ensues. Though catecholaminergic nerve terminals represent dopamine and noradrenaline had no discernible only a small proportion of brain synapses (Snyder et effect on the state of alertness of the animals. al., 1973), the reduction in brain dopamine or nor- adrenaline by the accumulation of false neuro- Methods transmitterssuch as octopamine or of aromaticamino acids such as phenylalanine or tyrosine has been ANIMALS suggested as a cause of hepatic coma (Fischer and Male Sprague-Dawley rats weighing between 300 and Baldessarini, 1971; Dodsworth et al., 1974; Fischer 350 were g prepared by the method of Peterson and http://gut.bmj.com/ and Baldessarini, 1975; Munro et al., 1975). The Sparber (1974) for intraventricular infusions of following data have been cited in support of this octopamine. Rats of 250-400 g were used as controls. -
Immediate Action New Tests and Test Updates
Effective Date: Monday, August 26, 2013 New Tests and Test Updates Immediate Action In our continuing effort to provide you with the highest quality toxicology laboratory services available, we have compiled important changes regarding a number of tests we perform. Listed below are the types of changes that may be included in this notification, effective Monday, August 26, 2013 New Tests - Tests recently added to the NMS Labs test menu. New Tests are effective immediately. Test Changes - Tests that have had changes to the method/ CPT code, units of measurement, scope of analysis, reference comments, or specimen requirements. Discontinued Tests - Tests being discontinued with alternate testing suggestions. Please use this information to update your computer systems/records. These changes are important to ensure standardization of our mutual laboratory databases. If you have any questions about the information contained in this notification, please call our Client Support Department at (866) 522-2206. Thank you for your continued support of NMS Labs and your assistance in implementing these changes. The CPT Codes provided in this document are based on AMA guidelines and are for informational purposes only. NMS Labs does not assume responsibility for billing errors due to reliance on the CPT Codes listed in this document. NMS LABS 3701 Welsh Road Willow Grove, PA 19090 www.NMSLabs.com Page 1 of 76 Effective Date: Monday, August 26, 2013 New Tests and Test Updates Test Test Name New Test Method / Specimen Stability Scope Units Reference Discontinue -
Booklet 4 Stimulants Preface
4 STIMULANTS 4 STIMULANTS 2019 2019 © United Nations, June 2019. All rights reserved worldwide. ISBN: 978-92-1-148314-7 eISBN: 978-92-1-004174-4 United Nations publication, Sales No. E.19.XI.8 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. The United Nations Office on Drugs and Crime (UNODC) would appreciate receiving a copy of any publication that uses this publication as a source. Suggested citation: World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from UNODC. Applications for such permission, with a statement of purpose and intent of the reproduction, should be addressed to the Research and Trend Analysis Branch of UNODC. DISCLAIMER The content of this publication does not necessarily reflect the views or policies of UNODC or contributory organizations, nor does it imply any endorsement. Comments on the report are welcome and can be sent to: Division for Policy Analysis and Public Affairs United Nations Office on Drugs and Crime PO Box 500 1400 Vienna Austria Tel: (+43) 1 26060 0 Fax: (+43) 1 26060 5827 E-mail: [email protected] Website: www.unodc.org/wdr2019 PREFACE The findings of this year’s World Drug Report fill in same time clamping down on organized crime and and further complicate the global picture of drug trafficking. -
Toxicology Report Division of Toxicology Daniel D
Franklin County Forensic Science Center Office of the Coroner Anahi M. Ortiz, M.D. 2090 Frank Road Columbus, Ohio 43223 Toxicology Report Division of Toxicology Daniel D. Baker, Chief Toxicologist Casey Goodson Case # LAB-20-5315 Date report completed: January 28, 2021 A systematic toxicological analysis has been performed and the following agents were detected. Postmortem Blood: Gray Top Thoracic ELISA Screen Acetaminophen Not Detected ELISA Screen Barbiturates Not Detected ELISA Screen Benzodiazepines Not Detected ELISA Screen Benzoylecgonine Not Detected ELISA Screen Buprenorphine Not Detected ELISA Screen Cannabinoids See Confirmation ELISA Screen Fentanyl Not Detected ELISA Screen Methamphetamine Not Detected ELISA Screen Naltrexone/Naloxone Not Detected ELISA Screen Opiates Not Detected ELISA Screen Oxycodone/Oxymorphone Not Detected ELISA Screen Salicylates Not Detected ELISA Screen Tricyclics Not Detected Page 1 of 4 Casey Goodson Case # LAB-20-5315 GC/FID Ethanol Not Detected GC/MS Acidic/Neutral Drugs None Detected GC/MS Nicotine Positive GC/MS Cotinine Positive Reference Lab Delta-9-THC 13 ng/mL Reference Lab 11-Hydroxy-Delta-9-THC 1.2 ng/mL Reference Lab 11-Nor-9-Carboxy-Delta-9-THC 15 ng/mL Postmortem Urine: Gray Top Urine GC/MS Cotinine Positive This report has been verified as accurate and complete by ______________________________________ Daniel D. Baker, M.S., F-ABFT Cannabinoid quantitations in blood were performed by NMS Labs, Horsham, PA. Page 2 of 4 Casey Goodson Case # LAB-20-5315 Postmortem Toxicology Scope of Analysis Franklin County Coroner’s Office Division of Toxicology Enzyme Linked Immunosorbant Assay (ELISA) Blood Screen: Qualitative Presumptive Compounds/Classes: Acetaminophen (cut-off 10 µg/mL), Benzodiazepines (cut-off 20 ng/mL), Benzoylecgonine (cut-off 50 ng/mL), Cannabinoids (cut-off 40 ng/mL), Fentanyl (cut-off 1 ng/mL), Methamphetamine/MDMA (cut-off 50 ng/mL), Opiates (cut-off 40 ng/mL), Oxycodone/Oxymorphone (cut-off 40 ng/mL), Salicylates (50 µg/mL). -
4F-Pentedrone
NMS Labs 2300 Stratford Ave Willow Grove, PA 19090 4F-Pentedrone Sample Type: Seized Material Latest Revision: December 3, 2019 Date Received: August 16, 2019 Date of Report: December 3, 2019 1. GENERAL INFORMATION IUPAC Name: 1-(4-fluorophenyl)-2-(methylamino)pentan-1-one InChI String: InChI=1S/C12H16FNO/c1-3-4-11(14-2)12(15)9-5-7-10(13)8-6- 9/h5-8,11,14H,3-4H2,1-2H3 CFR: Not Scheduled (12/2019) CAS# Not Available Synonyms: 4-Fluoro Pentedrone, 4-Fluoro-α-Methylamino-Valerophenone, 4-FPD Source: Department of Homeland Security Appearance: Tan Solid Material Important Note: All identifications were made based on evaluation of analytical data (GC-MS and LC- QTOF-MS) in comparison to analysis of acquired reference material. Prepared By: Alex J. Krotulski, PhD; Melissa F. Fogarty, MSFS, D-ABFT-FT; and Barry K. Logan, PhD, F-ABFT 2. CHEMICAL AND PHYSICAL DATA 2.1 CHEMICAL DATA Chemical Molecular Molecular Ion Exact Mass Form Formula Weight [M+] [M+H]+ Base C12H16FNO 209.3 209 210.1289 3. BRIEF DESCRIPTION 4F-Pentedrone is classified as a novel stimulant and substituted cathinone. Substituted cathinones are modified based on the structure of cathinone, an alkaloid found in the Khat plant. Novel stimulants have been reported to cause stimulant-like effects, similar to amphetamines. Novel stimulants have also caused adverse events, including deaths, as described in the literature. Structurally similar compounds include pentedrone, hexedrone, and N-ethyl hexedrone. Pentedrone is a Schedule I substance in the United States while 4F-pentedrone is not explicitly scheduled.