Astronomical Imaging Detectors

Total Page:16

File Type:pdf, Size:1020Kb

Astronomical Imaging Detectors Astronomical Imaging Detectors Juan Estrada 2/21/2012 1 Wednesday, February 22, 2012 Astronomical Imaging Detectors (mostly optical... and mostly CCDs) Juan Estrada 2/21/2012 2 Wednesday, February 22, 2012 first thing you should know when thinking about detectors to look into space the sky is mostly dark!3 Wednesday, February 22, 2012 ... but with the right detector it can be fun! Wednesday, February 22, 2012 To give you an idea: Naked eye can see stars of magnitude 6 which means about 1000 photons per second. modern astronomical instruments we are trying to see objects in the sky of magnitude 24, which means about 15 photons per second on a 4 meter telescope (for your eye this would be 5e-5 photons per second). which brings me to another important point for detectors in astronomy... timescale = seconds (not nanoseconds). 5 Wednesday, February 22, 2012 What are the options for visible and IR? Mainly CMOS and CCDs... will go over CCDs and then discuss the difference with CMOS 6 Wednesday, February 22, 2012 :)/&$;/).2).;&'(*%)<)3=);>.&.+),$&$(&'.+ D+&'E6$2%$(&'.+)(.*&'+5 1FG/&6*&$)6$4.?*% !A))-'5>&)'+&.),$&$(&.6 OF*+&F4 P22'('$+(@ B$&$(&.6)J*&$6'*%/ 1'K)L5H,M$K)3+1GK)1'ND/ 8A))H>*65$)I$+$6*&'.+ P%$(&6'()R'$%,/)'+),$&$(&.6 S.'+&)1;6$*,)RF+(&'.+ (.%%$(&)$%$(&6'(*%)(>*65$ QA))H>*65$)H.%%$(&'.+ HHB HJ71 H>*65$)(.F;%$,H>*65$)(.F;%$, UA))H>*65$ UA))H>*65$E&.E 1.F6($)2.%%.T$6K1.F6($)2.%%.T$6K &6*+/2$6&6*+/2$6 M6*+/2$6 V.%&*5$ HM3DK)B3HM3DK)B3 1$+/'&?'&@ H.+?$6/'.+ WA))H>*65$E&.E J71RPMJ71RPM =*+,.4)*(($//=*+,.4)*(($// D4;%'2'$6D4;%'2'$6 V.%&*5$ WA))1'5+*% .6)2F%%)26*4$)6$*,.6)2F%%)26*4$)6$*, H.+?$6/'.+ M6*+/2$6 a few slides from J. Beletic :A))B'5'&'C*&'.+ 7 #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)899" !" Wednesday, February 22, 2012 2009 Nobel Prize in Physics awarded to the inventors of the CCD In 1969, Willard S. Boyle and George E. Smith invented the first successful imaging technology using a digital sensor, a CCD (charge-coupled device). The two researchers came up with the idea in just an hour of brainstorming. Bell Labs researchers Willard Boyle (left) and George Willard S. Boyle George E. Smith Smith (right) with the charge-coupled device. !"#$#%$&'()%*)%+,-./%%%!"#$#%01(2*$3%450&$(56780()$9:(55%7&;</ 8 Wednesday, February 22, 2012 Light into the detector 100 80 1 ! R r o ) Old UCO/Lick y % c ( n y e t i 60 i c v i i f light has to get inside the detector t f c e e l QE f m for detection. This means that e 40 u t R n - a destructive interference has to be u 1 Q 20 example for DECam CCD accommodated for reflections. 0 200 400 600 800 1000 1200 qe_photonics06.eps Wavelength (nm) 9 Figure 7. First results with The Quantum Efficiency Machine (solid circles and error band). 1 R is also shown. Old Wednesday, February 22, 2012 − UCO/Lick measurements are shown for comparison; that CCD had nominally the same antireflective coating but was thicker, so that the IR response is higher. CCD with nominally the same antireflective (AR) coating are shown by the open circles. Results obtained with the CCD connected as a diode are consistent with the CCD-mode results. Our < 1% error level goal means that most contributions must be far less than this. If a systematic error is one-sided, then the measurement is corrected by half this error so that there is not a systematic bias. Most conceivable sources of error have been investigated and found to be negligible at this level: Filter out-of-bandpass leakage, 2nd order light from the monochromator, light leaks, noise in photodiode current measurements, picoammeter offset, and monochromator wavelength uncertainties. The dark current in a 1 cm2 monitor diode in the integrating sphere is about 50 fA, so that neither light leakage nor PD noise is significant. Intensity and hence exposure times, typically 5–10 s, are set by the requirement that the PD current should 13 be well above noise in the picoammeter, which is less than 10− A. For longer exposures at reduced intensity, the monitor PD in the integrating sphere, calibrated using the standard PD, is used as the reference. A normal scan consists of automatically repeating the following: The monochromator and (if called for) the filter wheel are moved to the new wavelength, after which • there is a 500 s settling time. The motorized input and output slits are adjusted to obtain the desired intensity at the dewar. • A 10 s dark is obtained with the large-aperture shutter closed. • A 10 s exposure is obtained with the shutter open, at the end of which it closes. • Because the PD is coplanar with the CCD in the dewar, there are no geometrical or window-reflection corrections, except for the very tiny radial intensity variation shown in Fig. 4. Fiducial areas are a different problem. So far it has been assumed that the PD area is exactly 1 cm2, but this needs to be checked. Similarly, if the CCD is configured as a photodiode, a mask will be needed to define/check the fiducial area. So far we have simply taken the pixel area as correct, but there may be edge effects. Masks have been obtained but not yet installed. The Uniblitz shutter remains open during the scan described above. The large-aperture shutter on which we presently depend is somewhat problematical. It takes 29 ms to open and 65 ns to close, which means that the center (the CCD fiducial area) and reference PD are illuminated for different times. Since aperture is star-shaped during the process, a correction is difficult to calculate. Better schemes are under discussion, and it will probably be moved to the light-entrance end of the dark box. 107 Charge Generation Charge generation The1'%'(.+)::; photoelectric 1'4'%*6)<=>/'(/)2.6)effect makes it possible3?)4*&$6'*%/ for photons with more than 1.1eV to produce electron-hole pairs in Silicon. !" #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)8""9 10 Wednesday, February 22, 2012 Photon Detection =-5()*(#$#'%5-*(%-(>#(#?'&%#+(15-3(%@# :-*+;'%&-*(")*+ '-*+;'%&-*(>)*+(%-(%@#(A)$#*'#(>)*+ !g !! B !g <)$#*'#(")*+ !"C(D$)*'E('-*.%)*%(FGHG!I8J!K L-;$#M.#'N " C(IH7!S(Q ! F#<N ! C(15#O;#*'P(-1($&4@%(F'P'$#.Q.#'N(C "Q' # g !g C(#*#54P(4)R(-1(3)%#5&)$(F#$#'%5-*JA-$%.N \)%#5&)$(])3# 0P3>-$ !g (eV) "'(F#3N 0&$&'-* 0& IHI7 IHI 2*+&;3JV)$$&;3JW5.#*&+# 2*V)W. 8HU!(/ 8HKS IHGST(/ 7HG \#5J:)+J[#$ Z4:+[# IH88(/ 8H8U IH7K(/ IS 2*+&;3(W*%&3-*&+# 2*0> 8H7!( XHX W5.#*&'(+-R#+(0&$&'-* 0&YW. 8H8X 7X T,)%%&'#(3)%'@#+(2*V)W.(F2* V) W.N IR detectors work with the same8HX! principle,8HKU but with crystals that are a lot more !! "#$#%&'()*+(,--.#(/expensive 0'&#*%&1&'(23)4&*4(0#*.-5.(/ than Silicon 6'%(7889 11 Wednesday, February 22, 2012 Spectral Bands :#1&*#+(;<()%3-.=>#5&'(%5)*.3&..&-*(?(+#%#'%-5(3)%#5&)$(=5-=#5%&#. !"#$%&'()*+,-)./%#*%%*$/ @)A#$#*4%>(B3&'5-*.C :#%#'%-5 D--$-4< "#$#%&'()*+(,--.#(/ 0'&#*%&1&'(23)4&*4(0#*.-5.(/ 6'%(7889 !! 12 Wednesday, February 22, 2012 Dark Currentcharge generation of Silicon-based of the unwanted Detectors type Dark Current of e2v CCDs 1E6 MAXIMUM VALUES 1E5 1E4 1;62*($ <*6=)>;66$+& 1E3 1E2 #;%= 1E1 <*6=)>;66$+& 1E0 1E-1 Electrons/sec/15 micron pixel 1E-2 1E-3 -120 -100 -80 -60 -40 -20 0 20 40 Temperature, °C e2v TECHNOLOGIES so youIn silicon, will dark usually current usua havelly dominated to cool by surface the defectsdetectors... !"#$%!&'()*)+,!- #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)899: 13 !" Wednesday, February 22, 2012 PhotovoltaicCharge Detector Collection Potential Well n-channel CCD L.&*)?$+$)M 345 B =*+)(.%%$(&)$'&A$6 Si P $%$(&6.+/).6)A.%$/ #.6.+),.@$, #.6.+),.@'+5 NA./@A.6.E/),.@$, NA./@A.6.E/),.@'+5 1'%'(.+;)<5=,>$)*+,)3+1?)*6$)@A.&.B.%&*'(),$&$(&.6/C))D%%)E/$)*)@+FGE+(&'.+) &.)By 5$+$6*&$) doping HF2'$%,) the Si '+) &A$)we IF,'6$(&'.+)get a E .2field) $*(A) that @'J$%C) moves ) >A'/) $%$(&6'()the charges 2'$%,) /$@*6*&$/)&A$)$%$(&6.+FA.%$)@*'6/)5$+$6*&$,)?K)*)@A.&.+Cfrom the generation site to the potential well. #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)899: !" 14 Wednesday, February 22, 2012 ChargeCCD Transfer Rain bucket in a analogyCCD #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)899! 15 !" Wednesday, February 22, 2012 2009 Nobel Prize in Physics awarded to the inventors of the CCD In 1969, Willard S. Boyle and George E. Smith invented the first successful imaging technology using a digital sensor, a CCD (charge-coupled device). The two researchers came up with the idea in just an hour of brainstorming. First CCD Bell Labs researchers Willard Boyle (left) and George Willard S. Boyle George E. Smith Smith (right) with the charge-coupled device. !"#$#%$&'()%*)%+,-./%%%!"#$#%01(2*$3%450&$(56780()$9:(55%7&;</ 16 Wednesday, February 22, 2012 CCD Architecture Charge Transfer: CCD architecture 17 Wednesday, February 22, 2012 #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)899: !" CCD Timing 9.:$4$+&)) .2)(;*65$ '/)<(.=>%$,? C;*65$ C.=>%$, D$:'($ #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)8""! !" 18 Wednesday, February 22, 2012 CCD Timing 9.:$4$+&)) .2)(;*65$ '/)<(.=>%$,? C;*65$ C.=>%$, D$:'($ #$%$&'()*+,)-../$)0 1('$+&'2'()34*5'+5)1$+/.6/)0 7(&)8""! !" 18 Wednesday, February 22, 2012 !"#$%"$#&'()*&("#+,!(&-"#+%"(+(!.+//(+.0$1"(02(%*+#3&(+14(#&/&+!&(5"(+"(+(/+"&#("5.&(4522$!513("*&(%*+#3&(51"0(+10"*&#( ,5-&/'(65("#+,!(%+1(7&(20$14(&8&1(7&20#&(99:(2+7#5%+"501'(;0<+4+=!(+(2+7#5%+"&4(99:(<5//(*+8&(8&#=(2&<("#+,!'( >1&#3&"5%(,+#"5%/&!(!$%*(+!(,#0"01!?(&/&%"#01!?(1&$"#01!?(*&+8=(501!?(+14(3+..+(#+=!(%+1(+/!0(3&1&#+"&("#+,!'()*5!( ,#07/&.(5!(.0#&(!&8&#&(20#(!,+%&(.5!!501(%+.&#+!(<&#&(99:!(+#&(.0#&(&-,0!&4("0(#+45+"501'( 9*+#3&(.&+!$#&.&1"@( )*&(99:(,5-&/!(+#&(.+4&(<5"*(AB6(4&85%&!($!&4(+!(#&8&#!&(75+!&4(%+,+%5"0#!'()*&(%*+#3&(5!(#&+40$"(7=(+(AB6C>)(7+!&4(
Recommended publications
  • EDS Celebrated Member — George Smith It Goes Without Saying That The
    Spotlight On: EDS Celebrated Member — George Smith It goes without saying that the field of electron device engineering has revolutionized, and in many ways defines, 21st century life. As a part of EDS, each of us can take pride in our society’s members’ accomplishments. We should draw from them inspiration to advance our field and to achieve more because it is not only their work, but ours as well, that can help transform the world around us. It is in this spirit that the EDS Celebrated Member program was created, with the inaugural Celebrated Member Award presented to Electron Device Letters founding editor and 2009 Nobel laureate for Physics, George E. Smith. The presentation was made by EDS President, Renuka Jindal at the Photovoltaics Specialists Conference held in Hawaii in June. The audience in the packed reception hall was treated to George’s recounting of how he and his colleague Willard Boyle (a fellow EDS member and with whom George shares the 2009 Nobel Prize for Physics) developed the Charged-Coupled Device (CCD) at the famous Bell Laboratories in New Jersey. EDL Founding Editor and Nobel They were tasked with developing a new platform for information storage. The Laureate, George Smith device they initially sketched was an image sensor based on Einstein's photoelectric effect, in which arrays of photocells emit electrons in amounts proportional to the intensity of incoming light. The electron content of each photocell could then be read out, transforming an optical image into a digital one. The charge-coupled device they created gave rise to the first CCD-based video cameras, which appeared in the early 1970s.
    [Show full text]
  • Beyond Einstein : New Jersey’S* Contributions to World Science and Technology
    Beyond Einstein : New Jersey’s* Contributions to World Science and Technology * also New York City and Philadelphia Michael G. Littman Mechanical and Aerospace Engineering Princeton University 1 Since 1664 … • What radical innovations originate and thrive in NJ ? • Who are the key people ? • How has society changed ? 2 For this talk … • List NJ innovators, innovations, and organizations Since 1664 … • Select the most significant • What radical innovations originate and thrive in NJ ? • Group them • Who are the key people ? Common theme emerges – • How has society changed ? NJ contributions to origin and development of electric power and information networks is extensive 3 “ CEE 102 Engineering For this talk … in the Modern World” • List NJ innovators, DESIGN innovations, and organizations Structures Civil Machines Mechanical • Select the most significant Networks Electrical Processes Chemical • Group them DISCOVERY Physics Common theme emerges – Astronomy NJ contributions to origin and Chemistry development of electric power Geology and information networks is extensive No Life Science or Medicine 4 Edward Sorel – “People of Progress” – 20th Century (left to right): Philo T. Farnsworth, George Washington Carver, Jonas Salk, Henry Ford, Orville Wright, Wilbur Wright, Albert Einstein, Charles H. Townes, Charles Steinmetz, J. C. R. Licklider, John Von Neumann, William H. Gates III, Robert Goddard, James Dewey 5 Watson, Wallace Hume Carothers, Rachel Carson, Willis Carrier, Gertrude Elion, Edwin H. Armstrong, Robert Noyce Edward Sorel – “People of Progress” – 20th Century (left to right): Philo T. Farnsworth, George Washington Carver, Jonas Salk, Henry Ford, Orville Wright, Wilbur Wright, Albert Einstein, Charles H. Townes, Charles Steinmetz, J. C. R. Licklider, John Von Neumann, William H.
    [Show full text]
  • Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
    Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene.
    [Show full text]
  • Annual Report
    2009 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Center for the Advancement of Scholarship on Engineering Education 5 Technological Literacy 5 Public Understanding of Engineering Implementing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 8 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project 10 Frontiers of Engineering Armstrong Endowment for Young Engineers- Gilbreth Lectures 12 Technology for a Quieter America 12 Technology, Science, and Peacebuilding 13 Engineering and Health 14 Opportunities and Challenges in the Emerging Field of Synthetic Biology 15 America’s Energy Future: Technology Opportunities, Risks and Tradeoffs 15 U.S.-Chinese Cooperation on Electricity from Renewables 17 Gathering Storm Still Frames the Policy Debate 18 Rebuilding a Real Economy: Unleashing Engineering Innovation 20 2009 NAE Awards Recipients 22 2009 New Members and Foreign Associates 24 NAE Anniversary Members 28 2009 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 30 The Presidents’ Circle 30 Catalyst Society 31 Rosette Society 31 Challenge Society 31 Charter Society 33 Other Individual Donors 35 Foundations, Corporations, and Other Organizations 37 National Academy of Engineering Fund Financial Report 39 Report of Independent Certified Public Accountants 43 Notes to Financial Statements 57 Officers 57 Councillors 58 Staff 58 NAE Publications Letter from the President The United States is slowly emerging from the most serious economic cri- sis in recent memory. To set a sound course for the 21st century, we must now turn our attention to unleashing technological innovation to create products and services that add actual value.
    [Show full text]
  • Ieee Electron Devices Society
    IEEE ELECTRON DEVICES SOCIETY Promoting excellence in the field of electron devices for the benefit of humanity Electron Devices Society Mission Statement To fost er professi onal growth of its members by satisfyyging their needs for easy access to and exchange of technical information, publishing, education, and technical recognition and enhancing public visibility in the field of Electron Devices . EDS Field of Interest The field of inte rest fo r EDS is all aspects of engineering, physics, theory, experiment and simulation of electron and ion devices involving insulators, metals, organic materials, plasmas, semiconductors, quantum-effect materials, vacuum, and emerging materials . Sppppecific applications of these devices include bioelectronics, biomedical, computation, communications, displays, electro and micro mechanics, imaging, micro actuators, optical, photovoltaics, power, sensors and signal processing. What We Do Conferences • IEEE International Electron Devices Meeting (IEDM) • IEEE Photovoltaic Specialists Conference (PVSC) • Distinguished Lecturer Workshops and Mini Colloquia This event was partially funded by EDS ! • 150 other conferences worldwide each year Publications • Transactions on Electron Devices • Electron Device Letters • Transactions on Devices and Materials Reliability Networking • EDS supports over 140 chapters worldwide • Chapters: 59 in the Americas; 43 in Europe, Africa, & the Middle East; and 38 in Asia and the Pacific. Awards and Recognition • EDS distributes over $40,000 annually in awards and fellowships to both professionals and students. Why Join? • Free on-line access to the following EDS publications - IEEE Elec tron Dev ice Lett ers (1980 -present) - IEEE Trans. on Electron Devices (1954 - present) - IEEE International Electron Devices Meeting (1955 - present) - IEEE/OSA Journal of Lightwave Technology • QuestEDS - Submit questions online consistent with the EDS filed of interest and can view online the answers provided b y expert s i n th e fi eld .
    [Show full text]
  • Electrical Engineering » X2019 2021-2022 De La Microélectronique Aux Objets Connectés
    Programme d’Approfondissement « Electrical Engineering » X2019 2021-2022 De la microélectronique aux objets connectés Responsable Parcours EE : Yvan BONNASSIEUX 1 Parcours Electrical Engineering X2019 PROGRAMME D’APPROFONDISSEMENT MULTIDISIPLINAIRE « Electrical Engineering » Présentation et objectifs : Ce programme d’approfondissement est fortement multidisciplinaire. Il se propose de fournir à chaque élève une vision complète des champs de l’Electrical Engineering Fondamentaux professionnels du métier d’ingénieur dans les grands domaines actuels et futurs des hautes technologies : • Electronique et microélectronique ; • Objets connectés ; • Electronique de puissance ; • Automatisation des systèmes embarqués et complexes ; • Traitement du signal et de l’information ; • Nanotechnologies et nanoélectronique ; • Réseaux et télécommunications ; • Architecture matérielle et logicielle des systèmes informatiques. 2 Parcours Electrical Engineering X2019 Quelques illustrations 3 Parcours Electrical Engineering X2019 PROGRAMME D’APPROFONDISSEMENT MULTIDISIPLINAIRE « Electrical Engineering » Prix Nobel de physique 2009 Willard Boyle et George E. Smith pour La mise au Point des CCD Coupled Charge devices Prix Nobel de physique 2010 Andre Geim et Konstantin Novoselov pour leurs travaux sur le graphène, un matériau constitué d’une seule couche d’atomes de carbone. Les deux scientifiques se sont servis d’un crayon à papier et d’un bout de scotch… Prix Nobel de physique 2014 samu Akasaki, Hiroshi Amano et Shuji Nakamura pour l’invention des diodes électroluminescentes
    [Show full text]
  • Hyperspectral Remote Sensing
    419 8 1 Hyperspectral Remote Sensing 2 Eyal Ben Dor, Tim Malthus, Antonio Plaza, and Daniel Schläpfer 8.1 3 Introduction 4 Hyperspectral Remote Sensing (HRS) and Imaging Spectroscopy (IS), are two 5 technologies that can provide detailed spectral information from every pixel 6 in an image. Whereas HRS refers mostly to remote sensing (from a distance), 7 the emerging IS technology covers all spatial–spectral domains, from micro- 8 scopic to macroscopic. IS capability is an innovative development of the 9 charge–coupled device (CCD), which was invented by the two 2009 Nobel 10 prize in Physics winners Willard Boyle and George Smith from Bell Labora- 11 tories in 1969. They provided the first assembly capable of generating digital 12 images. In 1972 A. Goetz realized that it was possible to use the CCD for spec- 13 tral applications and after developing the first portable spectrometer together 14 with significant improvements in the area array assembly, a combined spa- 15 tial and spectral capability was designed and successfully operated from orbit 16 (LANDSAT program). In general, HRS/IS is a technology that provides spa- 17 tial and spectral information simultaneously, improving our understanding 18 of the remote environment. It enables accurate identification of both targets 19 and phenomena as the spectral information is presented on a spatial rather 20 than point (pixel) basis. HRS/IS technology is well accepted in remote sens- 21 ing as a tool for many applications, such as in geology, ecology, geomorphol- 22 ogy, limnology, pedology, atmospheric and forensic sciences, especially for 23 cases in which other remote sensing means have failed or are incapable of ob- 24 taining additional information.
    [Show full text]
  • 2009 Nobel Prize in Physics
    NEWS AWARDS ABOUT THE 2009 NOBEL PRIZE IN PHYSICS THE 2009 NOBELPRIZE IN PHYSICS I NOBEL COMMITTEE REWARDS RESEARCH IN TECHNOLOGY /e Nobel Prizes in Physics of 2009 University of California at Berkeley, ged entirely his work. "/is has been have been awarded for two scientific and who joined Bell Labs aWer recei- the most important development in developments that have a profound ving his PhD and started work on the astronomy the last 30 years or so, if impact on both consumer techno- CCD. "My reaction was of absolute not more, for the simple reason that logy and scientific research. Charles delight, I found out that the work we the predecessor of all the electronic K. Kao of the Chinese University in did was actually worth the Nobel detectors was the photographic plate, Hong Kong was awarded the Nobel Prize," says Séquin. and the quantum efficiency of the Prize "for groundbreaking achieve- "I think it is great to give a prize for electronic plate was between 1 and 3 ments concerning the transmission something that is technology, cer- percent. Now, with the solid-state of light in fibres for optical commu- tainly for the science that it enabled," detector, the quantum efficiency nication. /e second half of the prize says Steve Howell, an astronomer at reaches almost 100 percent," says ᭢ Charles was awarded to two researchers from the Planetary Science Institute in Baade. Unlike photographic plates, Kao in his Bell Labs, Willard S. Boyle and Tucson,Arizona. CCDs allow the repeated exposure of laboratory at the Standard George E.
    [Show full text]
  • Downloaded the Top 100 the Seed to This End
    PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012) 11 A Tale of Four Libraries Alejandro Weinstein‡∗, Michael Wakin‡ F Abstract—This work describes the use some scientific Python tools to solve One of the contributions of our research is the idea of rep- information gathering problems using Reinforcement Learning. In particular, resenting the items in the datasets as vectors belonging to a we focus on the problem of designing an agent able to learn how to gather linear space. To this end, we build a Latent Semantic Analysis information in linked datasets. We use four different libraries—RL-Glue, Gensim, (LSA) [Dee90] model to project documents onto a vector space. NetworkX, and scikit-learn—during different stages of our research. We show This allows us, in addition to being able to compute similarities that, by using NumPy arrays as the default vector/matrix format, it is possible to between documents, to leverage a variety of RL techniques that integrate these libraries with minimal effort. require a vector representation. We use the Gensim library to build Index Terms—reinforcement learning, latent semantic analysis, machine learn- the LSA model. This library provides all the machinery to build, ing among other options, the LSA model. One place where Gensim shines is in its capability to handle big data sets, like the entirety of Wikipedia, that do not fit in memory. We also combine the vector Introduction representation of the items as a property of the NetworkX nodes. In addition to bringing efficient array computing and standard Finally, we also use the manifold learning capabilities of mathematical tools to Python, the NumPy/SciPy libraries provide sckit-learn, like the ISOMAP algorithm [Ten00], to perform some an ecosystem where multiple libraries can coexist and interact.
    [Show full text]
  • УДК 4И(АНГЛ):53(092) MODERN NOBEL LAUREATES AS Socolov
    УДК 4И(АНГЛ):53(092) MODERN NOBEL LAUREATES A.S. Socolov Scientific supervisor - Associate professor I. V. Aleckseenco Siberian Federal University Charles K. Kao Born 4 November 1933 is a pioneer in the development and use of fiber optics in tele- communications. Kao, widely regarded as the "Father of Fiber Optics" or "Father of Fiber Op- tic Communications", was awarded half of the 2009 Nobel Prize in Physics for "groundbreak- ing achievements concerning the transmission of light in fibers for optical communication". In early 1960s at STL, Kao did his pioneering work in the realisation of fiber optics as a telecommunications medium, by demonstrating that the high-loss of existing fiber optics arose from impurities in the glass, rather than from an underlying problem with the technolo- gy itself. Kao was pointed to the head of the electro-optics research group at STL in 1963; he took over the whole optical communication program of STL in December 1964 and decided to overall change their research direction. Kao not only considered the optical physics but also the material properties. The results were first presented by Kao in January 1966 in London, and further published in July with his former colleague George Hockham (1964-1965). This study first theorized and proposed to use glass fibers to implement optical communication, the ideas (especially structural features and materials) described largely are the basis of today's optical fiber communication. In 1965, Kao concluded that the fundamental limitation for glass light attenuation is below 20 dB/km (Decibels per Kilometer, is a measure of the attenuation of a signal over a distance), which is a key threshold value for optical communications (it was first reported by Kao to IEE in London in January 1966).
    [Show full text]
  • An Anniversary to Celebrate!
    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 12, DECEMBER 2013 3935 An Anniversary to Celebrate! S THE flagship journal of the IEEE Electron Devices Society, the IEEE TRANSACTIONS ON ELECTRON DEVICES (T-ED Ato most of us) has enjoyed for decades, and continues to enjoy, a stellar reputation in the device community. As you th may or may not be aware, January 2013 was the 50 anniversary of the IEEE TRANSACTIONS ON ELECTRON DEVICES, th and February 2014 will be the 60 anniversary of its predecessor from which it was birthed, the IRE TRANSACTIONS ON ELECTRON DEVICES. Hip, hip, hooray! We thought it would be a fitting time to reflect a bit on T-ED’s many accomplishments, hence this editorial. Yes, sixty years is a long time, and a great many things of interest to the world of electron devices have transpired over that period. We have selected some important milestones from our community’s shared history, things I think you will enjoy knowing, including: I) A listing of the T-ED Editor-in-Chiefs (EiCs), those fearless leaders of T-ED, II) A real treat, some personal reflections by some of those EiCs on their tenure at the helm, III) the Paul Rappaport Award Winners since its inception (the top papers selected each year since 1982 by the T-ED Editorial Board), and finally, IV) the top-25 most downloaded T-ED papers. A special presentation is in store for IEDM this December. Enjoy! JOHN D. CRESSLER Editor-in-Chief, January 2012 to present IEEE TRANSACTIONS ON ELECTRON DEVICES Atlanta, GA I.
    [Show full text]
  • Support CM L2 (Histoire Des Sciences)
    HISTOIRE DES SCIENCES ET DES GRANDES DECOUVERTES SCIENTIFIQUES : « EXEMPLE DE LA PHYSIQUE » A- HISTOIRE DES SCIENCES I- INTRODUCTION 1- Généralités Histoire : le mot ’’histoire’’ vient du Grec ancien « historia » signifiant « enquête » ou « connaissance acquise par l’enquête ». C’est donc l’ensemble des évènements et faits passés relatifs à l’Humanité. Science : la ‘’science ‘’vient du Latin « scientia » qui signifie « connaissance » est ce que l’on sait pour l’avoir appris, ce que l’on tient pour vrai ; au sens large c’est l’ensemble des connaissances. Selon le dictionnaire, la Science est la connaissance relative à des phénomènes obéissant à des lois et vérifiées par des méthodes expérimentales. Cette définition définit les bases de ce qu'est la Science avec ses trois composantes: l'observation, l'expérimentation et les lois. L'observation Tout travail scientifique commence par des observations. L'observation la plus célèbre de l'Histoire de la Science est sans conteste celle de la chute d'une pomme faite par Newton, qui lui donna l'idée de sa théorie de la gravitation universelle. Même si cette histoire n'est peut-être qu'une légende, elle illustre admirablement la démarche scientifique : on observe un phénomène, parfois surprenant, mais bien souvent banal, et on se pose la question : pourquoi ? L'observation se doit d'être la plus objective et la plus précise possible. Elle ne doit pas se laisser influencer par une possible explication, qui risquerait de la biaiser. Elle doit de plus en plus souvent s'aider d'instruments, parfois indispensables pour effectuer cette observation. L'expérimentation L'expérimentation est une catégorie particulière d'observation, dans laquelle d'une part le phénomène à observer est généralement provoqué, et d'autre part les conditions d'observations ont été optimisées en fonction de ce que l'on veut observer, notamment pour éliminer les phénomènes parasites.
    [Show full text]