116 Accessing the Quality and Benefits of Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Mechanics
3 d rB rB 3 d rA rA Statistical Mechanics Daniel F. Styer December 2007 Statistical Mechanics Dan Styer Department of Physics and Astronomy Oberlin College Oberlin, Ohio 44074-1088 [email protected] http://www.oberlin.edu/physics/dstyer December 2007 Although, as a matter of history, statistical mechanics owes its origin to investigations in thermodynamics, it seems eminently worthy of an independent development, both on account of the elegance and simplicity of its principles, and because it yields new results and places old truths in a new light. | J. Willard Gibbs Elementary Principles in Statistical Mechanics Contents 0 Preface 1 1 The Properties of Matter in Bulk 4 1.1 What is Statistical Mechanics About? . 4 1.2 Outline of Book . 4 1.3 Fluid Statics . 5 1.4 Phase Diagrams . 7 1.5 Additional Problems . 7 2 Principles of Statistical Mechanics 10 2.1 Microscopic Description of a Classical System . 10 2.2 Macroscopic Description of a Large Equilibrium System . 14 2.3 Fundamental Assumption . 15 2.4 Statistical Definition of Entropy . 17 2.5 Entropy of a Monatomic Ideal Gas . 19 2.6 Qualitative Features of Entropy . 25 2.7 Using Entropy to Find (Define) Temperature and Pressure . 34 2.8 Additional Problems . 44 3 Thermodynamics 46 3.1 Heat and Work . 46 3.2 Heat Engines . 50 i ii CONTENTS 3.3 Thermodynamic Quantities . 52 3.4 Multivariate Calculus . 55 3.5 The Thermodynamic Dance . 60 3.6 Non-fluid Systems . 67 3.7 Thermodynamics Applied to Fluids . 68 3.8 Thermodynamics Applied to Phase Transitions . -
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
SAND REPORT SAND2003-3769 Unlimited Release Printed February 2003 Verification, Validation, and Predictive Capability in Computational Engineering and Physics William L. Oberkampf, Timothy G. Trucano, and Charles Hirsch Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. -
Subject Benchmark Statement: Physics, Astronomy and Astrophysics
QAA MEMBERSHIP Subject Benchmark Statement Physics, Astronomy and Astrophysics October 2019 Contents How can I use this document? ................................................................................................. 1 About the Statement ................................................................................................................ 2 Relationship to legislation ......................................................................................................... 2 Summary of changes from the previous Subject Benchmark Statement (2017) ....................... 2 1 Introduction ..................................................................................................................... 3 2 Nature and extent of physics, astronomy and astrophysics ............................................. 4 3 Subject-specific knowledge and understanding ............................................................... 6 4 Teaching, learning and assessment ................................................................................ 9 5 Benchmark standards ................................................................................................... 11 Appendix: Membership of the benchmarking and review groups for the Subject Benchmark Statement for Physics, Astronomy and Astrophysics ............................................................. 13 How can I use this document? This is the Subject Benchmark Statement for Physics, Astronomy and Astrophysics. It defines the academic standards that can be expected -
Physics and Medicine: a Historical Perspective
Series Physics and Medicine 1 Physics and medicine: a historical perspective Stephen F Keevil Nowadays, the term medical physics usually refers to the work of physicists employed in hospitals, who are concerned Lancet 2011; 379: 1517–24 mainly with medical applications of radiation, diagnostic imaging, and clinical measurement. This involvement in Published Online clinical work began barely 100 years ago, but the relation between physics and medicine has a much longer history. In April 18, 2012 this report, I have traced this history from the earliest recorded period, when physical agents such as heat and light DOI:10.1016/S0140- 6736(11)60282-1 began to be used to diagnose and treat disease. Later, great polymaths such as Leonardo da Vinci and Alhazen used See Comment pages 1463 physical principles to begin the quest to understand the function of the body. After the scientifi c revolution in the and 1464 17th century, early medical physicists developed a purely mechanistic approach to physiology, whereas others applied This is the fi rst in a Series of ideas derived from physics in an eff ort to comprehend the nature of life itself. These early investigations led directly fi ve papers about physics to the development of specialties such as electrophysiology, biomechanics, and ophthalmology. Physics-based medical and medicine technology developed rapidly during the 19th century, but it was the revolutionary discoveries about radiation and Department of Medical radioactivity at the end of the century that ushered in a new era of radiation-based medical diagnosis and treatment, Physics, Guy’s and St Thomas’ thereby giving rise to the modern medical physics profession. -
EDS Celebrated Member — George Smith It Goes Without Saying That The
Spotlight On: EDS Celebrated Member — George Smith It goes without saying that the field of electron device engineering has revolutionized, and in many ways defines, 21st century life. As a part of EDS, each of us can take pride in our society’s members’ accomplishments. We should draw from them inspiration to advance our field and to achieve more because it is not only their work, but ours as well, that can help transform the world around us. It is in this spirit that the EDS Celebrated Member program was created, with the inaugural Celebrated Member Award presented to Electron Device Letters founding editor and 2009 Nobel laureate for Physics, George E. Smith. The presentation was made by EDS President, Renuka Jindal at the Photovoltaics Specialists Conference held in Hawaii in June. The audience in the packed reception hall was treated to George’s recounting of how he and his colleague Willard Boyle (a fellow EDS member and with whom George shares the 2009 Nobel Prize for Physics) developed the Charged-Coupled Device (CCD) at the famous Bell Laboratories in New Jersey. EDL Founding Editor and Nobel They were tasked with developing a new platform for information storage. The Laureate, George Smith device they initially sketched was an image sensor based on Einstein's photoelectric effect, in which arrays of photocells emit electrons in amounts proportional to the intensity of incoming light. The electron content of each photocell could then be read out, transforming an optical image into a digital one. The charge-coupled device they created gave rise to the first CCD-based video cameras, which appeared in the early 1970s. -
Beyond Einstein : New Jersey’S* Contributions to World Science and Technology
Beyond Einstein : New Jersey’s* Contributions to World Science and Technology * also New York City and Philadelphia Michael G. Littman Mechanical and Aerospace Engineering Princeton University 1 Since 1664 … • What radical innovations originate and thrive in NJ ? • Who are the key people ? • How has society changed ? 2 For this talk … • List NJ innovators, innovations, and organizations Since 1664 … • Select the most significant • What radical innovations originate and thrive in NJ ? • Group them • Who are the key people ? Common theme emerges – • How has society changed ? NJ contributions to origin and development of electric power and information networks is extensive 3 “ CEE 102 Engineering For this talk … in the Modern World” • List NJ innovators, DESIGN innovations, and organizations Structures Civil Machines Mechanical • Select the most significant Networks Electrical Processes Chemical • Group them DISCOVERY Physics Common theme emerges – Astronomy NJ contributions to origin and Chemistry development of electric power Geology and information networks is extensive No Life Science or Medicine 4 Edward Sorel – “People of Progress” – 20th Century (left to right): Philo T. Farnsworth, George Washington Carver, Jonas Salk, Henry Ford, Orville Wright, Wilbur Wright, Albert Einstein, Charles H. Townes, Charles Steinmetz, J. C. R. Licklider, John Von Neumann, William H. Gates III, Robert Goddard, James Dewey 5 Watson, Wallace Hume Carothers, Rachel Carson, Willis Carrier, Gertrude Elion, Edwin H. Armstrong, Robert Noyce Edward Sorel – “People of Progress” – 20th Century (left to right): Philo T. Farnsworth, George Washington Carver, Jonas Salk, Henry Ford, Orville Wright, Wilbur Wright, Albert Einstein, Charles H. Townes, Charles Steinmetz, J. C. R. Licklider, John Von Neumann, William H. -
NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771
1 NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 This report covers the period from July 1, 2002 to June Stephen Henderson, Hans Krimm, John Krizmanic, Jeongin 30, 2003. Lee, John Lehan, James Lochner, Thomas McGlynn, Paul This Laboratory’s scientific research is directed toward McNamara, Alex Moiseev, Koji Mukai, James Reeves, Na- experimental and theoretical investigations in the areas of dine Saudraix, Chris Shrader, Steven Snowden, Yang Soong, X-ray, gamma-ray, gravitational wave and cosmic-ray astro- Martin Still, Steve Sturner, and Vigdor Teplitz. physics. The range of interests of the scientists includes the The following investigators are University of Maryland Sun and the solar system, stellar objects, binary systems, Scientists: Drs. Keith Arnaud, David Band ͑UMBC͒, Simon neutron stars, black holes, the interstellar medium, normal Bandler, Patricia Boyd ͑UMBC͒, John Cannizzo ͑UMBC͒, and active galaxies, galaxy clusters, cosmic ray particles, David Davis ͑UMBC͒, Ian George ͑UMBC͒, Masaharu gravitational wave astrophysics, extragalactic background ra- Hirayama ͑UMBC͒, Una Hwang, Yasushi Ikebe ͑UMBC͒, diation, and cosmology. Scientists and engineers in the Kip Kuntz ͑UMBC͒, Mark Lindeman, Michael Loewenstein, Laboratory also serve the scientific community, including Craig Markwardt, Julie McEnery ͑UMBC͒, Igor Moskalenko project support such as acting as project scientists and pro- ͑UMBC͒, Chee Ng, Patrick Palmeri, Dirk Petry ͑UMBC͒, viding technical assistance for various space missions. Also Christopher Reynolds, Ian Richardson, and Jane Turner at any one time, there are typically between ten and fifteen ͑UMBC͒. graduate students involved in Ph.D. research work in this Visiting scientists from other institutions: Drs. Hilary Laboratory. -
Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene. -
A Cultural History of Physics
Károly Simonyi A Cultural History of Physics Translated by David Kramer Originally published in Hungarian as A fizika kultûrtörténete, Fourth Edition, Akadémiai Kiadó, Budapest, 1998, and published in German as Kulturgeschichte der Physik, Third Edition, Verlag Harri Deutsch, Frankfurt am Main, 2001. First Hungarian edition 1978. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20111110 International Standard Book Number: 978-1-56881-329-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
Journal of Applied Physics Reference Format
Journal Of Applied Physics Reference Format dismantledandDirk aversely,beseeched warningly, she amenably paralyses is Thor if ablesther witnessed phobia Haley retransferand fibs unvaried or churr. tiptoe. enough?At-home Shaw neverFerdinand perpetuates oversimplified any Malay ontogenically The resulted system is solved to give a approximate each to service problem. Sequences used by one part can be thankful for medical physics are the journal in the audience and future technologies published times new technologies: a variety of. These names of scientific audience includes copying text through space physics of journal applied physics research involving humans or that the style in supplementary files in! The journal also welcomes works showing connections between mathematical analysis and other domains of mathematics such as geometry, topology, logic and set theory. AREA DISCOVER issn SERVICES SEARCH OPEN RESOURCES. Code nach diesem Kommentar hinter dem abschließenden Schrägstrich ein. If irregular image manipulation is identified and confirmed after publication, we may correct or retract the paper. View all article recommendations from physics of journal applied reference list of this way to include discussion of the following documentstyle line only lines white extremes cannot provide, threatened or her email. Available beyond the Reference Desk, able and be checked out. This code will work else target. No distinction is food between electronic and print sources, except under the citation reference details. Open project option of bridge gap. Sometimes an acetate attached to articles submitted papers that created; her email address of physics significant new experimental and excluded reviewers, and high regard to. The content are technically correct and research ethics statements constitute unethical publishing staff appreciates your illustrations so forth in applied physics of format before they can! Separate search groups with parentheses and Booleans. -
Statistical Mechanics
Statistical Mechanics Henri J.F. Jansen Department of Physics Oregon State University October 12, 2008 II Contents 1 Foundation of statistical mechanics. 1 1.1 Introduction. 1 1.2 Program of statistical mechanics. 4 1.3 States of a system. 5 1.4 Averages. 10 1.5 Thermal equilibrium. 14 1.6 Entropy and temperature. 16 1.7 Laws of thermodynamics. 19 1.8 Problems for chapter 1 . 20 2 The canonical ensemble 23 2.1 Introduction. 23 2.2 Energy and entropy and temperature. 26 2.3 Work and pressure. 28 2.4 Helmholtz free energy. 31 2.5 Changes in variables. 32 2.6 Properties of the Helmholtz free energy. 33 2.7 Energy fluctuations. 35 2.8 A simple example. 37 2.9 Problems for chapter 2 . 39 3 Variable number of particles 43 3.1 Chemical potential. 43 3.2 Examples of the use of the chemical potential. 46 3.3 Di®erential relations and grand potential. 48 3.4 Grand partition function. 50 3.5 Overview of calculation methods. 55 3.6 A simple example. 57 3.7 Ideal gas in ¯rst approximation. 58 3.8 Problems for chapter 3 . 64 4 Statistics of independent particles. 67 4.1 Introduction. 67 4.2 Boltzmann gas again. 74 III IV CONTENTS 4.3 Gas of poly-atomic molecules. 77 4.4 Degenerate gas. 79 4.5 Fermi gas. 80 4.6 Boson gas. 85 4.7 Problems for chapter 4 . 87 5 Fermions and Bosons 89 5.1 Fermions in a box. 89 5.2 Bosons in a box. -
Medical Physics
AAPM.ORG MEDICAL PHYSICS edical Physics is an applied branch of physics involving the application of physics concepts and methods to the Mdiagnosis and treatment of human disease. It is an interdisciplinary field that integrates core knowledge in traditional physics disciplines with specific domain knowledge in: • the science of healthcare delivery, particularly in • data analysis and statistics; ensuring the accuracy and safety of medical diagnostic • clinical trial design, implementation and oversight; and therapeutic procedures; • quality assurance and quality improvement processes; • bioeffects related to exposures to ionizing and non- • electrical, mechanical, and biomedical engineering; ionizing electromagnetic radiation, ultrasonic energy, and strong magnetic fields; • control systems, including computer controlled, mechanical, and electronic systems; • optimization of imaging and therapeutic procedures to maximize benefit and minimize risk to the patient and • mathematics; healthcare provider; • computer science; • evaluation and communication of benefits and risks to • computational modeling; patients and healthcare providers; • detector design and fabrication. • image science and image analysis; AAPM.ORG WHAT DO MEDICAL PHYSICISTS DO? edical physicists are involved in a wide range of activities, including clinical service Mand consultation, research and development, education, radiation and magnetic resonance safety, and administration. Medical physicists are also involved in non-clinical careers, working in industry, governmental