Steroids and Nortriterpenoids from Lichens'

Total Page:16

File Type:pdf, Size:1020Kb

Steroids and Nortriterpenoids from Lichens' Journ . Haltori Bot. Lab. No. 63 : 351- 355 (Dec. 1987) STEROIDS AND NORTRITERPENOIDS FROM LICHENS' R. TABACCHI\ G. TSOUPRAS2 AND S. HUNECK3 ABSTRACT. The following lichens have been analysed for steroids and nortriterpenoids by GCI MS : Evernia mesomorpha, Lecanora stenotropa, Leptogium saturninum, Nephroma he/veticum, Par­ melia omphalodes, Ramalina terebrata, Rhizoplaea ehrysoleuea, Umbilicaria deellssata, and Usnea antare/iea. Fourteen steroids and three nortriterpenoids have been found. I NTRODUCTION Only relatively few lichens were analysed for steroids, triterpenoids and simple aliphatic compounds, contrary to the numerous phenolic compounds. Reasons for this are a) the low concentration of these metabolites which ranges in the case of steroids about 0.01 ~;.; , b) the small amount of plant material available, and c) that these metabolites are mostly complex mixtures. The following steroids and nortriterpenoids with known structure have been iso­ lated from lichens: cholestan-3,B-ol, cholesterol, brassicasterol, fecosterol, episterol, lichesterol, ergost-5-en-3,B-ol, ergosterol, ergosterol peroxide, 24-ethyIcholestan-3,B-ol, cIionasterol, sitosterol, 24-ethyIcholest-7-en-3,B-ol, 24-methyIcholestan-3,B-ol, cam­ pesterol, 24-methyIcholest-7-en-3,B-ol (Culberson et al. 1977), peroxyergosteryl di­ varicatinate (Bruun & Motzfeldt 1974), 24-methyIcholesta-5, 22-dien-3,B-ol (Safe et at. 1975), lanosterol (Nicollier et al. 1979), 21 a H-30-nor-hopan-3, 22-dione (Nicollier et al. 1979), and 21a H-30-nor-hopan-22-one (Hveding-Bergseth et al. 1979). We investigated the "steroid" fraction of 9 lichens by gas liquid chromatography­ mass spectrometry (GC-MS) and report here on the results. R ESULTS AND DISCUSSION The neutral parts of the lichen extracts were chromatographed on Silica Gel and the "steroid" fractions anlysed by GC-MS or MS. Table 1 shows the compounds detected in the lichen species investigated. 9(l1)-Dehydroergosterolperoxide and ergosterol peroxide have been separated by 1 Contribution No. 148 of the series "Lichen Substances". No. 147 : Huneck, S., A. Morales Men­ dez & K. Kalb. 1987. The chemistry of Dirinaria and Pyxine species (Pyxinaceae) from South Ame­ rica. Journ. Hattori Bot. Lab. 62 : 331-338. 2 Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchiitel, Switzerland. 3 Institute of Plant Biochemistry of the Academy of Sciences of the GDR, GDR-4050 HallejSaale, Weinberg, German Democratic Republic. 352 Journ. Hattori Bot. Lab. No. 63 198 7 TABLE 1. Steroids, nor-triterpenoids and n-nonacosan-lO-ol from lichens. Lichen Compound Brassicasterol + + + + + + Campesterol + + + + + + + + Cholesterol + + + + + 9{l1)-Dehydroergosterolperoxide + Episterol + + + Ergosta-7,22-dien-3p-ol + + + Ergosta-5, 7, 9(1 I), 22-tetraen-3,, -ol + + + + + + + Ergosterol + + + + + + + + Ergosterolperoxide + 24-Ethylcholesta-5, 22-dien-2p-ol + + + + + + + + 24-Ethylcholest-7 -en-3p-ol + Lichesterol + + + + + + + 19-nor-Ergosta-5, 7, 9(1\), 22-tetraen-3,3-ol + Sitosterol + + + + + + + + 21 a H-30-nor-Hopan-3, 22-dione I + 21 pH-30-nor-Hopan-3,22-dione II + 22, 29, 30-trinor-Hopan-3, 21-dione [J[ + n-Nonacosan-lO-ol + HPLC (column: Nucleosil-RP 18, eluent: methanol: water= 94 : 6) and identified by NMR and MS (Gunalitaka et al. 1981). The steroids have been identified on the basis of their mass spectra and GLC retentions time. Sterols with LJ7 double bond exhibits typical fragments due to the loss of the side chain. The shorter GLC retention time of LJ5 than of .:17 sterols made it possible to distinguish between both types (Knights 1967, Itoh et al. 1983). nor-Triterpenoids I, II and III have been separated by HPLC (column: Nucleosil RP-18, eluent: gradient methanol- water, 80 to 100 %) and identified by NMR and MS (Ageta & Arai 1983, Nicollier et al. 1979, Lehn & Ourisson 1962). The mass spectra of I, 11 and III are similar (M+ : 426, 426, 398) and suggest the structure of hopane or lupane derivatives. The NMR spectra show only differences in the region of the methyl groups (Table 2). The comparison with the lH-NMR spectra of 30-nor-lupan-3, 20-dione (IV), ob­ tained from lupenone shows differences only for the C-27 and C-28 methyl groups. We did not succeed in the synthesis, from 20-hydroxy-hopan-3-one, of the analogous hopane derivative, probably because the configuration of the molecule hinders the formation of the complex with osmium tetroxide - sodium periodate. 9(1l)-Dehydroergosterolperoxide. MS, m/z 426 (M+, 10 %), 411 (7), 408 (5), R. TABACCHI et al.: Steroids and nortriterpenoids from lichens 353 TABLE 2. 'H-NMR chemical shifts of the methyl groups of the nor-triterpenoids I, n, Ill, and IV. Chemical shift of the methyl groups Compound C-23 C-24 C-25 C-26 C-27 C-28 C-29 I 0.935 1.028 1.077 1.021 0 .953 0 .703 2 . 175 II 0.935 1.028 1.075 1.010 0 .940 0.585 1.150 III 0.935 1.027 1.077 1.027 0 .935 1.077 IV 0.933 1.026 1.072 1.030 0 .965 0.790 2.170 394 (36),376 (34),361 (8),299 (3), 251 (14), 107 (12), 95 (14), 81 (30),69 (90),55 (lOO). 'N-NMR (0 of the methyl groups compared to ergosterolperoxide): C-1 8: 0.738 (0.825), C-19: 1.1 (0.895), C-21: 0.920 (0.914), C-26: 0.822 (0.822), C-27: 0.840 (0.840), C-28: 1.009 (l.008). Ergosta-7,22-dien-3,B-ol. MS, m/z 398 (M+, 32 %),380 (5), 383 (12), 300 (7),271 (100), 255 (12), 213 (10), 119 (16), 105 (22), 91 (28), 69 (30), 55 (33). Ergosta-5, 7, 9(11), 22-tetraen-3,B-yl-trimethylsilylether. MS, m/z 466 (M+, 18 %), 451 (5),376 (57),361 (14), 325 (5), 277 (7), 251 (100),249 (20), 230 (7), 209 (27), 195 (23), 157 (14), 129 (18), 69 (70), 55 (50). 19-nor-Ergosta-5, 7, 9(10), 22-tetraen-3,B-ol. MS, m/z 380 (M+, 68 %), 365 (5), 362 (28), 347 (3), 319 (8), 282 (5), 253 (22), 238 (25), 237 (100), 228 (15), 213 (27), 195 (47), 183 (35), 181 (45), 167 (27), 165 (30), 141 (32), 128 (20). 19-nor-Ergosta-5, 7, 9(10), 22-tetraen-3,B -yl-trimethylsilylether. MS, m/z 452 (M+, 10 %), 437 (5), 362 (lOO), 237 (92), 221 (12), 210 (52), 195 (55), 183 (47), 181 (30), 169 (27), 155 (20), 141 (40), 128 (12),109 (11). 21a H-30-nor-Hopan-3, 22-dione (I). MS, m/z 426 (M+, 60 %), 411 (30), 393 (10),383 (20, [M-CHa-CO-] +), 205 (30, oW), 191 (100, ~o), 173 (15), :! O ~.: .....?o . H H I : ; o~ / 0 / II III IV 354 Journ. Hattori Bot. Lab. No. 63 1 987 163 (30), 149 (28), 121 (25), 107 (30), 95 (45),81 (44),67 (50), 55 (35), 43 (80). 21p H-30-nor-Hopan-3, 22-dione (Il). MS, m/z 426 (M+, 35 %), 411 (10), 393 (8), 383 (50, [M-CH3- CO-] +), 205 (30, o.o=r ), 191 (100, :Q1rO), 173 (55), 163 (30), 149 (28), 121 (25), 107 (28), 95 (45), 81 (44),67 (50),55 (30), 43 (80). 22,29, 30-trinor-Hopan-3, 21-dione (Ill). MS, mj z 398 (M+, 100 %), 383 (20), 365 (5), 355 (25), 220 (5), 205 (80), 191 (20), 177 (28), 163 (30), 149 (25), 107 (30), 81 (60), 67 (80), 55 (75). 30-nor-lupan-3, 20-dione (IV). MS, m j z 426 (M +, 80 %), 411 (8),408 (16),393 (7),383 (18), 365 (4), 340 (20),231 (17),205 (54),191 (20),177 (26),163 (37),135 (30), 135 (30), 121 (44), 107 (65), 95 (80), 93 (69), 81 (100),69 (65), 67 (75), 55 (60), 43 (90). Table 1 shows that brassicasterol, campesterol, ergosta-5, 7, 9(11), 22-tetraen-3j3- 01, ergosterol, 24-ethy1cholesta-5, 22-dien-3j3-01, lichesterol, and sitosterol are the more abundant sterols in the lichens investigated. Remarkable is the occurrence of the nor­ triterpenoids I, 11, and III in Rhizoplaca chrysoleuca and it would be of interest to look for these or similar compounds in the other Rhizoplaca species. EXPERIMENTAL Instruments used for the analyses: lH-NMR: Bruker WP-200, 200 MHz, solvent: CDCI 3• MS: NERMAG R-30-10 MS - MS triple-quadrupole with SIDAR-data-system; spectra at 70 eV. GLC: DANI 6500, column: SE 54 fused silica, 25 m, 0.23 mmg). The air dried and pulverized lichens were extracted with diethyl ether, the neutral parts of the extracts chromatographed on Silica Gel, the "steroid" fractions eluted with a n-hexane - diethyl ether gradient and crystallized from CHCl3-methanol. Evernia mesomorpha Nyl. Mongolian Peoples Republic, Chovsgol Aimak, Alag Erdene Somon, at the west bank of the Chovsgollake on Larix sihirica; leg. et det. S. Huneck, 14. 7. 1983 . From 365 g lichen 5 mg (0.0013%) steroid mixture in plates of m.p. 124-126°. Lecanora stenotropa Nyl. German Democratic Republic, on copper slate near Eisleben; leg. et det. S. Huneck, 17. 6. 1984. From 890 g lichen 0.02 g (0.002%) steroid mixture of m.p. 120-126°. Leptogium saturninum (Dickson) Nyl. Mongolian Peoples Republic, Bulgan Aimak, Gurvanbulag Somon, Chogno-tarna-uul (Cecerleg Mountains), on rocks; leg. S. Huneck, 26. 6. 1983, det. T. Ahti, 20. 12. 1984. From 52 g lichen 0.034 g (0.06 %) steroid mixture of m.p. 120-160°. Nephroma helveticum Ach. Mongolian Peoples Republic, ChovsgOl Aimak, Alag Erdene Somon, on rocks at the northern slope of the Sumber-uul; leg. et det. S. Huneck, 19. 7. 1983.
Recommended publications
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Structural Basis for Human Sterol Isomerase in Cholesterol Biosynthesis and Multidrug Recognition
    ARTICLE https://doi.org/10.1038/s41467-019-10279-w OPEN Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition Tao Long 1, Abdirahman Hassan 1, Bonne M Thompson2, Jeffrey G McDonald1,2, Jiawei Wang3 & Xiaochun Li 1,4 3-β-hydroxysteroid-Δ8, Δ7-isomerase, known as Emopamil-Binding Protein (EBP), is an endoplasmic reticulum membrane protein involved in cholesterol biosynthesis, autophagy, 1234567890():,; oligodendrocyte formation. The mutation on EBP can cause Conradi-Hunermann syndrome, an inborn error. Interestingly, EBP binds an abundance of structurally diverse pharmacolo- gically active compounds, causing drug resistance. Here, we report two crystal structures of human EBP, one in complex with the anti-breast cancer drug tamoxifen and the other in complex with the cholesterol biosynthesis inhibitor U18666A. EBP adopts an unreported fold involving five transmembrane-helices (TMs) that creates a membrane cavity presenting a pharmacological binding site that accommodates multiple different ligands. The compounds exploit their positively-charged amine group to mimic the carbocationic sterol intermediate. Mutagenesis studies on specific residues abolish the isomerase activity and decrease the multidrug binding capacity. This work reveals the catalytic mechanism of EBP-mediated isomerization in cholesterol biosynthesis and how this protein may act as a multi-drug binder. 1 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 3 State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. 4 Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e Et Al
    US007906307B2 (12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e et al. (45) Date of Patent: Mar. 15, 2011 (54) VARIANT LIPIDACYLTRANSFERASES AND 4,683.202 A 7, 1987 Mullis METHODS OF MAKING 4,689,297 A 8, 1987 Good 4,707,291 A 11, 1987 Thom 4,707,364 A 11/1987 Barach (75) Inventors: Jorn Borch Soe, Tilst (DK); Jorn 4,708,876 A 1 1/1987 Yokoyama Dalgaard Mikkelson, Hvidovre (DK); 4,798,793 A 1/1989 Eigtved 4,808,417 A 2f1989 Masuda Arno de Kreij. Geneve (CH) 4,810,414 A 3/1989 Huge-Jensen 4,814,331 A 3, 1989 Kerkenaar (73) Assignee: Danisco A/S, Copenhagen (DK) 4,818,695 A 4/1989 Eigtved 4,826,767 A 5/1989 Hansen 4,865,866 A 9, 1989 Moore (*) Notice: Subject to any disclaimer, the term of this 4,904.483. A 2f1990 Christensen patent is extended or adjusted under 35 4,916,064 A 4, 1990 Derez U.S.C. 154(b) by 0 days. 5,112,624 A 5/1992 Johna 5,213,968 A 5, 1993 Castle 5,219,733 A 6/1993 Myojo (21) Appl. No.: 11/852,274 5,219,744 A 6/1993 Kurashige 5,232,846 A 8, 1993 Takeda (22) Filed: Sep. 7, 2007 5,264,367 A 11/1993 Aalrust (Continued) (65) Prior Publication Data US 2008/OO70287 A1 Mar. 20, 2008 FOREIGN PATENT DOCUMENTS AR 331094 2, 1995 Related U.S. Application Data (Continued) (63) Continuation-in-part of application No.
    [Show full text]
  • A Squalene–Hopene Cyclase in Schizosaccharomyces Japonicus Represents a Eukaryotic Adaptation to Sterol-Limited Anaerobic Environments
    A squalene–hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments Jonna Bouwknegta,1, Sanne J. Wiersmaa,1, Raúl A. Ortiz-Merinoa, Eline S. R. Doornenbala, Petrik Buitenhuisa, Martin Gierab, Christoph Müllerc, and Jack T. Pronka,2 aDepartment of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; bCenter for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and cDepartment of Pharmacy, Center for Drug Research, Ludwig-Maximillians University Munich, 81377 Munich, Germany Edited by Roger Summons, Massachusetts Institute of Technology, Cambridge, MA, and approved July 6, 2021 (received for review March 18, 2021) Biosynthesis of sterols, which are key constituents of canonical and acquisition of a bacterial STC gene by horizontal gene transfer is eukaryotic membranes, requires molecular oxygen. Anaerobic protists considered a key evolutionary adaptation of Neocalllimastigomycetes and deep-branching anaerobic fungi are the only eukaryotes in which to the strictly anaerobic conditions of the gut of large herbivores a mechanism for sterol-independent growth has been elucidated. In (7). The reaction catalyzed by STC resembles oxygen-independent these organisms, tetrahymanol, formed through oxygen-independent conversion of squalene to hopanol and/or other hopanoids by cyclization of squalene by a squalene–tetrahymanol cyclase, acts as a squalene–hopene cyclases (8) (SHC; SI Appendix,Fig.S1), which sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, are found in many bacteria (9, 10). Some bacteria synthesize tet- Antonie Van Leeuwenhoek,37,353–358 (1971)] that Schizosaccharo- rahymanol by ring expansion of hopanol, in a reaction catalyzed by myces japonicus is exceptional among yeasts in growing anaerobi- tetrahymanol synthase (THS) for which the precise mechanism cally on synthetic media lacking sterols and unsaturated fatty acids.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,642,021 B2 Brautigam Et Al
    USOO8642021B2 (12) United States Patent (10) Patent No.: US 8,642,021 B2 Brautigam et al. (45) Date of Patent: *Feb. 4, 2014 (54) CONDITIONING COMPOSITION FOR HAIR FOREIGN PATENT DOCUMENTS (75) Inventors: Ina Brautigam, Darmstadt (DE); Frank DE 2630560 1/1978 ............... A61K 7.48 EP O315541 5, 1989 ............... A61K 7.48 Hermes, Seeheim (DE) FR 241 1001 7, 1979 ............... A61K 700 JP O7327633. A * 12/1995 (73) Assignee: Kao Germany GmbH, Darmstadt (DE) WO WOOO28966 A1 * 5, 2000 WO WOO3,070208 A1 8/2003 ............. A61K 7,134 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 1520 days. Abstract Accession No. 2000:35.1345 from the CaPlus database on This patent is Subject to a terminal dis STN, the bibliography, abstract and indexing data for WO 200028966 claimer. A1, downloaded on Aug. 8, 2007, 2 pages.* Quest International: “Yogurtene” Cosmetic Ingredients (Jun. 2000) (21) Appl. No.: 11/001,840 pp. 1-17.* Machine translation of JP 07327633A dowloaded from the JPO Feb. (22) Filed: Dec. 2, 2004 14, 2012.* thehealthyeating.org website (www.healthyeating.org/Milk-Dairy/ (65) Prior Publication Data Nutrients-in-Milk-Cheese-Yogurt/Yogurt-Nutrition. aspx?Referer-dairycouncilofca (downloaded Feb. 28, 2013).* US 2005/O152863 A1 Jul. 14, 2005 Website: Clairol's Touch of Yoghurt Shampoo (http://brandfailures. (30) Foreign Application Priority Data blogspot.com/2006/12/other-famous-brand-idea-failures.html) downloaded Feb. 28, 2013).* Skin Deep website http://www.ewg.org/skindeepfingredient/ Dec. 5, 2003 (EP) ..................................... O3O27985 702759/GUAR HYDROXYPROPYLTRIMONIUM CHLO RIDE/downloaded Sep.
    [Show full text]
  • (12)UK Patent Application (1S1GB ,„>2577037 ,,3,A 2577037
    (12)UK Patent Application (1S1GB ,„>2577037 ,,3,A (43) Date of A Publication 18.03.2020 (21) Application No: 1812997.3 (51) INT CL: C12N 15/52 (2006.01) C12P 33/02 (2006.01) (22) Date of Filing: 09.08.2018 C12R 1/32 (2006.01) C12R 1/365 (2006.01) (56) Documents Cited: GB 2102429 A EP 3112472 A (71) Applicant(s): WO 2001/031050 A US 4345029 A Cambrex Karlskoga AB US 4320195 A (Incorporated in Sweden) Appl Environ Microbiol, published online 4 May 2018, S-691 85 Karlskoga, Sweden Liu et al, "Characterization and engineering of 3- ketosteroid 9a-hydroxylases in Mycobacterium Rijksuniversiteit Groningen neoarum ATCC 25795 for the development of (Incorporated in the Netherlands) androst-1,4- diene3,17-dione and 9a-hydroxy- Broerstraat 5, 9712 CP Groningen, Netherlands androst-4-ene-3,17-dione-producing strains" Appl Environ Microbiol, Vol 77 (2011), Wilbrink et al, (72) Inventor(s): "FadD19 of Rhodococcus rhodochrous DMS43269, a Jonathan Knight steroid-coenzyme A ligase essential for degradation Cecilia Kvarnstrom Branneby of C-24 branched sterol side chains", pp 4455-4464 Lubbert Dijkhuizen FEMS Microbiol Letts, Vol 205 (2001), van der Geize et Janet Maria Petrusma al, "Unmarked gene deletion mutagenesis of kstD, Laura Fernandez De Las Heras encoding 3-ketosteroid deltal-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as a counter-selectable marker", pp 197-202 (74) Agent and/or Address for Service: J Steroid Biochem Mol Biol, Vol 172 (2017), Guevara Potter Clarkson LLP et al, "Functional characterization of 3-ketosteroid 9a- The
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli Et Al
    US 20090131395A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli et al. (43) Pub. Date: May 21, 2009 (54) BIPHENYLAZETIDINONE CHOLESTEROL Publication Classification ABSORPTION INHIBITORS (51) Int. Cl. (75) Inventors: Stephen Antonelli, Lynn, MA A 6LX 3L/397 (2006.01) (US); Regina Lundrigan, C07D 205/08 (2006.01) Charlestown, MA (US); Eduardo J. A6IP 9/10 (2006.01) Martinez, St. Louis, MO (US); Wayne C. Schairer, Westboro, MA (52) U.S. Cl. .................................... 514/210.02:540/360 (US); John J. Talley, Somerville, MA (US); Timothy C. Barden, Salem, MA (US); Jing Jing Yang, (57) ABSTRACT Boxborough, MA (US); Daniel P. The invention relates to a chemical genus of 4-biphenyl-1- Zimmer, Somerville, MA (US) phenylaZetidin-2-ones useful in the treatment of hypercho Correspondence Address: lesterolemia and other disorders. The compounds have the HESLN ROTHENBERG EARLEY & MEST general formula I: PC S COLUMBIA. CIRCLE ALBANY, NY 12203 (US) (73) Assignee: MICROBIA, INC., Cambridge, MA (US) “O O (21) Appl. No.: 11/913,461 o R2 R4 X (22) PCT Filed: May 5, 2006 R \ / (86). PCT No.: PCT/USO6/17412 S371 (c)(1), (2), (4) Date: May 30, 2008 * / Related U.S. Application Data (60) Provisional application No. 60/677,976, filed on May Pharmaceutical compositions and methods for treating cho 5, 2005. lesterol- and lipid-associated diseases are also disclosed. US 2009/013 1395 A1 May 21, 2009 BPHENYLAZETIONONE CHOLESTEROL autoimmune disorders, (6) an agent used to treat demylena ABSORPTION INHIBITORS tion and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone FIELD OF THE INVENTION replacement agent/composition, (10) a chemotherapeutic 0001.
    [Show full text]
  • A Study of the Function and Physiological Forms of Ergosterol in Saccharomyces Cerevisiae
    AN ABSTRACT OF THE THESIS OF BRUCE GORDON ADAMS for the Ph. D. (Name of student) (Degree) Microbiology April 25, 1968 in (Microbial Physiology) presented on (Major) (Date) Title: A STUDY OF THE FUNCTION AND PHYSIOLOGICAL FORMS OF ERGOSTEROL IN SACCHAROMYCES CEREVISIAE Abstract approved: A water - soluble complex containing ergosterol together with a component of yeast has been isolated. The complex can be iso- lated from commercial yeast extract to which ergosterol has been added or directly from whole yeast cells. The complexing agent from yeast extract is also capable of solubilizing cholesterol and a long chain hydrocarbon, hexadecane. The complexing agent has been shown to be a polysaccharide and appears to be composed solely of glucose subunits. The complexing agent does not appear to be glycogen. The binding between the sterol and the polysaccharide appears to be noncovalent. The complex is easily prepared and is stable in aqueous solution; ergosterol in this solution is meta- bolically available to yeast cells to which it is added. Data obtained from acid hydrolysis and extraction of yeast have demonstrated that routine saponification does not recover total sterol from the cells. This suggests the existence of a form of ergosterol resistant to saponification. Time course analyses of sterol synthesis by nonproliferating cell suspensions reveal an inverse relationship between the amounts of base labile and acid labile forms of sterol. These data give strong presumptive evi- dence for dual forms of ergosterol which are interconvertible according to the respiratory state of the cell. Experiments dealing with the effect of respiratory inhibitors on sterol synthesis in nonprofilerating cell suspensions suggest that the synthesis and physiological form of ergosterol is inti- mately related to the integrity of the respiratory apparatus and that the DNA encoding for the synthesis and regulation of ergo- sterol is located in the mitochondria.
    [Show full text]
  • The Free Sterol Content of Selected Clones of Alfalfa As Related to Seed Infestation by the Alfalfa Seed Chalcid
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1967 The Free Sterol Content of Selected Clones of Alfalfa as Related to Seed Infestation by the Alfalfa Seed Chalcid Rex Alton Richards Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Richards, Rex Alton, "The Free Sterol Content of Selected Clones of Alfalfa as Related to Seed Infestation by the Alfalfa Seed Chalcid" (1967). All Graduate Theses and Dissertations. 2974. https://digitalcommons.usu.edu/etd/2974 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. THE FREE STEROL CONTENT OF SELECTED CLONES OF ALFALFA AS RELATED TO SEED INFESTATION BY THE ALFALFA SEED CHALCID by Rex Alton Ri chards A thesis submitted in partial fulfillment of the requirements f or the degree of MASTER OF SCIENCE in Plant Nutrition and Biochemistry UTAH STATE UNIVERSITY Logan , Utah 1967 ACKNOWLEDGMENTS I would like t o express my sincere appreciation t o my major professor, Dr . Keith R. Allred , and to Dr. Herman H. Wiebe and Dr. Orson S. Cannon of my thesis committee for their assistance and direction in this study. wish to acknowledge my parents, Mr . and Mrs. Alton F. Richards, for their aid and encouragement. Also, I wish to acknowledge the financial support given me through the William C.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,955,813 B2 De Kreijet Al
    US007955813B2 (12) United States Patent (10) Patent No.: US 7,955,813 B2 De Kreijet al. (45) Date of Patent: *Jun. 7, 2011 (54) METHOD OF USING LIPID 3,939,350 A 2f1976 Kronicket al. ACYLTRANSFERASE 3,973,042 A 8, 1976 Kosikowski 3.996,345 A 12/1976 Ullman et al. 4,034,124 A 7, 1977 Van Dam (75) Inventors: Arno De Kreij, Papendrecht (NL); 4,065,580 A 12/1977 Feldman Susan Mampusti Madrid, Vedbaek 4,160,848 A T. 1979 Vidal 4,202,941 A 5/1980 Terada (DK); Jorn Dalgaard Mikkelsen, 4,275,149 A 6/1981 Litman et al. Hvidovre (DK); Jorn Borch Soe, Tilst 4,277.437 A 7/1981 Maggio (DK) 4,366,241 A 12/1982 Tom et al. 4,399.218 A 8, 1983 Gauhl (73) Assignee: Danisco, A/S, Copenhagen (DK) 4,567.046 A 1/1986 Inoue 4,683.202 A 7, 1987 Mullis 4,689,297 A 8, 1987 Good (*) Notice: Subject to any disclaimer, the term of this 4,707,291 A 11, 1987 Thom patent is extended or adjusted under 35 4,707,364 A 11/1987 Barach U.S.C. 154(b) by 1056 days. 4,708,876 A 1 1/1987 Yokoyama 4,798,793 A 1/1989 Eigtved This patent is Subject to a terminal dis 4,808,417 A 2f1989 Masuda claimer. 4,810,414 A 3/1989 Huge-Jensen 4,814,331 A 3, 1989 Kerkenaar 4,816,567 A 3/1989 Cabilly et al. (21) Appl. No.: 11/483,345 4,818,695 A 4/1989 Eigtved 4,826,767 A 5/1989 Hansen (22) Filed: Jul.
    [Show full text]
  • Metabolic and Molecular Adaptation of Wine Yeasts at Low Temperature Fermentation: Strategies for Their Genetic Improvement
    METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo Dipòsit Legal: T. 1275-2013 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]