Metabolic and Molecular Adaptation of Wine Yeasts at Low Temperature Fermentation: Strategies for Their Genetic Improvement

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic and Molecular Adaptation of Wine Yeasts at Low Temperature Fermentation: Strategies for Their Genetic Improvement METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo Dipòsit Legal: T. 1275-2013 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 María López Malo Metabolic and molecular adaptation of wine yeasts at low temperature fermentation: strategies for their genetic improvement Doctoral Thesis Supervised by: Dr. José Manuel Guillamón Navarro Departament de Bioquimica i Biotecnologia Facultat d’Enologia Tarragona 2013 UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 Dept. Bioquimica i Biotecnologia FACULTAT D’ENOLOGIA C/ Marcel.li Domingo s/n 43007 Tarragona Tel. 34-977558442 Fax. 34-977558232 HAGO CONSTAR que el presente trabajo, con título “Metabolic and molecular adaptation of wine yeast at low temperature fermentation: strategies for their genetic improvement”, que presenta la Srta María López Malo, para optar al título de Doctora, ha sido realizado bajo mi dirección en el Departamento de Bioquímica y Biotecnología de la Universidad Rovira i Virgili y en el Departamento Biología de Sistemas en Levaduras de Interés Biotecnológico del Instituto de Agroquímica y Tecnología de los Alimentos (IATA) del CSIC en Valencia. Valencia, 23 de Mayo de 2013 El director de la tesis doctoral Dr. José Manuel Guillamón Navarro UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 AGRADECIMIENTOS UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 Nunca pensé que fuera tan difícil escribir estos agradecimientos, pero han pasado tantos años, tantas cosas, tantas experiencias, tantas personas que es difícil resumir en unos párrafos lo agradecida que estoy. En primer lugar me gustaría agradecer a mi director de tesis, José Manuel Guillamón, todo lo que he aprendido trabajando con él, todo el tiempo que le ha dedicado a esta tesis y sobre todo me gustaría agradecerle el haberme transmitido esa ilusión por la ciencia, esa ilusión que me ha hecho disfrutar tanto de mi trabajo cada día. Quiero agradecer a Eladio y Amparo que me dieran la oportunidad de conocer a José Manuel. Sin ellos esta tesis no hubiera sido posible. A todos y cada uno de mis compañeros del IATA, a los que ya no están y a los que están. He pasado momentos maravillosos. Especialmente me gustaría agradecer a mis chicas (y ahora también chicos) que hemos compartido laboratorio. Rosana, muchas gracias por enseñarme tantas cosas, sin ti no podría haber dado mis primeros pasos en el laboratorio!je! Ali me ha encantado haber compartido tantas horas en el laboratorio y fuera de él, tantas horas de xarreta de trabajo y de la vida, gracias por haber estado siempre ahí, gracias por ser tan buena compañera, sin ti esta tesis no hubiera sido igual. Clarita, gracias, gracias! Por ser como eres! Pasamos poco tiempo juntas en el laboratorio, la suerte es que no te fuiste muy lejos y te he podido disfrutar todo este tiempo en el laboratorio de al lado o donde hiciera falta! Fani, pequeño pony! Muchas gracias por apoyarme siempre y confiar tanto en mi! Y por haber sobrevivido tus primeros días en el laboratorio cuando yo te enseñaba!jiji! Me gustaría también agradecer a Víctor y Bruno su apoyo, sobretodo estos últimos meses en los que la locura se apodera de mi. Muchas gracias también a mis compañeros del 306, con los que compartimos unos añitos laboratorio, Patri, Montse, Jordi, Gloria…gracias por haberme hecho pasar tan buenos momentos! Y como no también me gustaría agradecerles a nuestras compis más recientes del 303, Meri y Bea, gracias por haber sido tan buenas UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T. 1275-2013 vecinas de laboratorio y tan buenas amigas en la calle! Y por supuesto a Silvia, gracias por tu ayuda! También quiero agradecer al resto de compañeros de la tercera planta…Sarita, parece que llegamos a la recta final! Muchos ánimos y muchas gracias por haber compartido tantas cosas conmigo. Amparito, muchas gracias por haber sido mi compi de fiestas, almuerzos, risas…Aunque esos almuerzos de risas nunca podrían haber sido tan graciosos sin Juan! Gracias por haberme alegrado el día durante tanto tiempo! Muchas gracias a los chicos y chicas del 307, 308 y 309! Laura, gracias por cuidar tan bien del HPLC y del gases!jeje!No…gracias por haberme ayudado tanto sobre todo con mis amigas las manoproteinas! Peris, ahora que ya no estás esos cigarritos de mitad mañana me resultan más aburridos, encima Adri ha dejado de fumar, pero con suerte viene a visitarme a menudo! Gracias a los dos! Rosa, Nerea, Anto, David, Eli, Bruno, Jiri, Lupita, Marlen, Ana moltes gràcies. Hay más compañeros que ya se ha ido ya del IATA y que tampoco me puedo quedar si agradecerles esos buenos momentos, Ana, Jordi, Juanan....Me gustaría agradecer especialmente a Aurora y a Isaac que estos últimos meses me ha ayudado mucho con tanta alegría! Gracias por esas noches de jager (jeje), por esas conversaciones de pasillo y por darme tanto apoyo. Me gustaría agradecer a toda la gente que conocí en Tarragona que me hiciera sentir desde un primer momento como si estuviera en casa. Gràcies a Nicolas per rebrem al teu laboratori. Gracias Maria Jesus por ayudarme con todo el papeleo de la tesis! Anna gràcies per ensenyar-me a treballar amb lípids. Braulio, gràcies per rebrem tan bé! A les meues xiquetes Imma, Marta i Maria vaig gaudir molt de la vostra companyia! Y como no a Angel y Ruben muchas gracias por todo! Zoel, Maite, Gemma moltes gràcies! En último lugar me gustaría agradecer a mi familia y amigos todo el apoyo que me han ofrecido durante este tiempo. A mis amigos de toda la vida, especialmente a Neus, que me ha regalado una portada tan bonita! A mis amigos de biologia, UNIVERSITAT ROVIRA I VIRGILI METABOLIC AND MOLECULAR ADAPTATION OF WINE YEASTS AT LOW TEMPERATURE FERMENTATION: STRATEGIES FOR THEIR GENETIC IMPROVEMENT María López Malo DL: T.
Recommended publications
  • Structural Basis for Human Sterol Isomerase in Cholesterol Biosynthesis and Multidrug Recognition
    ARTICLE https://doi.org/10.1038/s41467-019-10279-w OPEN Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition Tao Long 1, Abdirahman Hassan 1, Bonne M Thompson2, Jeffrey G McDonald1,2, Jiawei Wang3 & Xiaochun Li 1,4 3-β-hydroxysteroid-Δ8, Δ7-isomerase, known as Emopamil-Binding Protein (EBP), is an endoplasmic reticulum membrane protein involved in cholesterol biosynthesis, autophagy, 1234567890():,; oligodendrocyte formation. The mutation on EBP can cause Conradi-Hunermann syndrome, an inborn error. Interestingly, EBP binds an abundance of structurally diverse pharmacolo- gically active compounds, causing drug resistance. Here, we report two crystal structures of human EBP, one in complex with the anti-breast cancer drug tamoxifen and the other in complex with the cholesterol biosynthesis inhibitor U18666A. EBP adopts an unreported fold involving five transmembrane-helices (TMs) that creates a membrane cavity presenting a pharmacological binding site that accommodates multiple different ligands. The compounds exploit their positively-charged amine group to mimic the carbocationic sterol intermediate. Mutagenesis studies on specific residues abolish the isomerase activity and decrease the multidrug binding capacity. This work reveals the catalytic mechanism of EBP-mediated isomerization in cholesterol biosynthesis and how this protein may act as a multi-drug binder. 1 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 3 State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. 4 Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
    [Show full text]
  • A Squalene–Hopene Cyclase in Schizosaccharomyces Japonicus Represents a Eukaryotic Adaptation to Sterol-Limited Anaerobic Environments
    A squalene–hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments Jonna Bouwknegta,1, Sanne J. Wiersmaa,1, Raúl A. Ortiz-Merinoa, Eline S. R. Doornenbala, Petrik Buitenhuisa, Martin Gierab, Christoph Müllerc, and Jack T. Pronka,2 aDepartment of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; bCenter for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and cDepartment of Pharmacy, Center for Drug Research, Ludwig-Maximillians University Munich, 81377 Munich, Germany Edited by Roger Summons, Massachusetts Institute of Technology, Cambridge, MA, and approved July 6, 2021 (received for review March 18, 2021) Biosynthesis of sterols, which are key constituents of canonical and acquisition of a bacterial STC gene by horizontal gene transfer is eukaryotic membranes, requires molecular oxygen. Anaerobic protists considered a key evolutionary adaptation of Neocalllimastigomycetes and deep-branching anaerobic fungi are the only eukaryotes in which to the strictly anaerobic conditions of the gut of large herbivores a mechanism for sterol-independent growth has been elucidated. In (7). The reaction catalyzed by STC resembles oxygen-independent these organisms, tetrahymanol, formed through oxygen-independent conversion of squalene to hopanol and/or other hopanoids by cyclization of squalene by a squalene–tetrahymanol cyclase, acts as a squalene–hopene cyclases (8) (SHC; SI Appendix,Fig.S1), which sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, are found in many bacteria (9, 10). Some bacteria synthesize tet- Antonie Van Leeuwenhoek,37,353–358 (1971)] that Schizosaccharo- rahymanol by ring expansion of hopanol, in a reaction catalyzed by myces japonicus is exceptional among yeasts in growing anaerobi- tetrahymanol synthase (THS) for which the precise mechanism cally on synthetic media lacking sterols and unsaturated fatty acids.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli Et Al
    US 20090131395A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli et al. (43) Pub. Date: May 21, 2009 (54) BIPHENYLAZETIDINONE CHOLESTEROL Publication Classification ABSORPTION INHIBITORS (51) Int. Cl. (75) Inventors: Stephen Antonelli, Lynn, MA A 6LX 3L/397 (2006.01) (US); Regina Lundrigan, C07D 205/08 (2006.01) Charlestown, MA (US); Eduardo J. A6IP 9/10 (2006.01) Martinez, St. Louis, MO (US); Wayne C. Schairer, Westboro, MA (52) U.S. Cl. .................................... 514/210.02:540/360 (US); John J. Talley, Somerville, MA (US); Timothy C. Barden, Salem, MA (US); Jing Jing Yang, (57) ABSTRACT Boxborough, MA (US); Daniel P. The invention relates to a chemical genus of 4-biphenyl-1- Zimmer, Somerville, MA (US) phenylaZetidin-2-ones useful in the treatment of hypercho Correspondence Address: lesterolemia and other disorders. The compounds have the HESLN ROTHENBERG EARLEY & MEST general formula I: PC S COLUMBIA. CIRCLE ALBANY, NY 12203 (US) (73) Assignee: MICROBIA, INC., Cambridge, MA (US) “O O (21) Appl. No.: 11/913,461 o R2 R4 X (22) PCT Filed: May 5, 2006 R \ / (86). PCT No.: PCT/USO6/17412 S371 (c)(1), (2), (4) Date: May 30, 2008 * / Related U.S. Application Data (60) Provisional application No. 60/677,976, filed on May Pharmaceutical compositions and methods for treating cho 5, 2005. lesterol- and lipid-associated diseases are also disclosed. US 2009/013 1395 A1 May 21, 2009 BPHENYLAZETIONONE CHOLESTEROL autoimmune disorders, (6) an agent used to treat demylena ABSORPTION INHIBITORS tion and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone FIELD OF THE INVENTION replacement agent/composition, (10) a chemotherapeutic 0001.
    [Show full text]
  • A Study of the Function and Physiological Forms of Ergosterol in Saccharomyces Cerevisiae
    AN ABSTRACT OF THE THESIS OF BRUCE GORDON ADAMS for the Ph. D. (Name of student) (Degree) Microbiology April 25, 1968 in (Microbial Physiology) presented on (Major) (Date) Title: A STUDY OF THE FUNCTION AND PHYSIOLOGICAL FORMS OF ERGOSTEROL IN SACCHAROMYCES CEREVISIAE Abstract approved: A water - soluble complex containing ergosterol together with a component of yeast has been isolated. The complex can be iso- lated from commercial yeast extract to which ergosterol has been added or directly from whole yeast cells. The complexing agent from yeast extract is also capable of solubilizing cholesterol and a long chain hydrocarbon, hexadecane. The complexing agent has been shown to be a polysaccharide and appears to be composed solely of glucose subunits. The complexing agent does not appear to be glycogen. The binding between the sterol and the polysaccharide appears to be noncovalent. The complex is easily prepared and is stable in aqueous solution; ergosterol in this solution is meta- bolically available to yeast cells to which it is added. Data obtained from acid hydrolysis and extraction of yeast have demonstrated that routine saponification does not recover total sterol from the cells. This suggests the existence of a form of ergosterol resistant to saponification. Time course analyses of sterol synthesis by nonproliferating cell suspensions reveal an inverse relationship between the amounts of base labile and acid labile forms of sterol. These data give strong presumptive evi- dence for dual forms of ergosterol which are interconvertible according to the respiratory state of the cell. Experiments dealing with the effect of respiratory inhibitors on sterol synthesis in nonprofilerating cell suspensions suggest that the synthesis and physiological form of ergosterol is inti- mately related to the integrity of the respiratory apparatus and that the DNA encoding for the synthesis and regulation of ergo- sterol is located in the mitochondria.
    [Show full text]
  • Inhibition of Ergosterol Biosynthesis by Etaconazole in Ustilago Maydis
    Inhibition of Ergosterol Biosynthesis by Etaconazole in Ustilago maydis Edith Ebert, John Gaudin, Wolfgang Muecke, Klaus Ramsteiner, and Christian Vogel Agricultural Division, CIBA-GEIGY Limited, CH-4002 Basel, Switzerland Hermann Führer Central Research Laboratories, CIBA-GEIGY Limited, CH-4002 Basel, Switzerland Z. Naturforsch. 38 c, 2 8 -3 4 (1983); received July 22, 1982 Fungal Lipids, Ergosterol, Inhibition, Etaconazole, Fungicide The triazole fungicide etaconazole (CGA64 251) interferes with the ergosterol biosynthesis in Ustilago maydis by inhibiting the C-14 demethylation of the sterol nucleus. During the late log growth phase of U. maydis a novel endogenous sterol metabolite (14x-methyl-ergosta-8,24(28)- dien-3/?,6a-diol) was discovered and analyzed, which accumulates under the influence of the fungicide. The structure of this metabolite points to a hydroxylation-dehydration mechanism for the introduction of the double bond at C-5 during the ergosterol biosynthesis. Introduction investigated, as well as the accumulation of the various sterol intermediates of ergosterol biosyn­ In the past decade a series of substances have thesis studied after an inhibition time of only a few been discovered that inhibit the biosynthesis of hours. It was of interest for us to follow up the ergosterol. Some of them have been developed as appearance and accumulation of the various sterol fungicides and introduced to practical application. intermediates of ergosterol biosynthesis throughout They include various structural classes, such as the entire growth phase of the fungus under the piperazines (triforine), pyridines (S-1358), pyrimi­ influence of etaconazole. dines (fenarimol, triarimol), triazoles (triadimefon), and others [1]. More recently, further analogues of one of these classes of compounds, namely the M ethods triazoles, have been developed as plant protection /.
    [Show full text]
  • A Phosphorylated Transcription Factor Regulates Sterol Biosynthesis in Fusarium Graminearum
    ARTICLE https://doi.org/10.1038/s41467-019-09145-6 OPEN A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum Zunyong Liu1,2, Yunqing Jian1,2, Yun Chen 1,2, H. Corby Kistler 3, Ping He4, Zhonghua Ma 1,2 & Yanni Yin1,2 Sterol biosynthesis is controlled by transcription factor SREBP in many eukaryotes. Here, we show that SREBP orthologs are not involved in the regulation of sterol biosynthesis in Fusarium graminearum, a fungal pathogen of cereal crops worldwide. Instead, sterol produc- 1234567890():,; tion is controlled in this organism by a different transcription factor, FgSR, that forms a homodimer and binds to a 16-bp cis-element of its target gene promoters containing two conserved CGAA repeat sequences. FgSR is phosphorylated by the MAP kinase FgHog1, and the phosphorylated FgSR interacts with the chromatin remodeling complex SWI/SNF at the target genes, leading to enhanced transcription. Interestingly, FgSR orthologs exist only in Sordariomycetes and Leotiomycetes fungi. Additionally, FgSR controls virulence mainly via modulating deoxynivalenol biosynthesis and responses to phytoalexin. 1 State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. 2 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. 3 United States Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA. 4 Department of Biochemistry
    [Show full text]
  • Steroids and Nortriterpenoids from Lichens'
    Journ . Haltori Bot. Lab. No. 63 : 351- 355 (Dec. 1987) STEROIDS AND NORTRITERPENOIDS FROM LICHENS' R. TABACCHI\ G. TSOUPRAS2 AND S. HUNECK3 ABSTRACT. The following lichens have been analysed for steroids and nortriterpenoids by GCI MS : Evernia mesomorpha, Lecanora stenotropa, Leptogium saturninum, Nephroma he/veticum, Par­ melia omphalodes, Ramalina terebrata, Rhizoplaea ehrysoleuea, Umbilicaria deellssata, and Usnea antare/iea. Fourteen steroids and three nortriterpenoids have been found. I NTRODUCTION Only relatively few lichens were analysed for steroids, triterpenoids and simple aliphatic compounds, contrary to the numerous phenolic compounds. Reasons for this are a) the low concentration of these metabolites which ranges in the case of steroids about 0.01 ~;.; , b) the small amount of plant material available, and c) that these metabolites are mostly complex mixtures. The following steroids and nortriterpenoids with known structure have been iso­ lated from lichens: cholestan-3,B-ol, cholesterol, brassicasterol, fecosterol, episterol, lichesterol, ergost-5-en-3,B-ol, ergosterol, ergosterol peroxide, 24-ethyIcholestan-3,B-ol, cIionasterol, sitosterol, 24-ethyIcholest-7-en-3,B-ol, 24-methyIcholestan-3,B-ol, cam­ pesterol, 24-methyIcholest-7-en-3,B-ol (Culberson et al. 1977), peroxyergosteryl di­ varicatinate (Bruun & Motzfeldt 1974), 24-methyIcholesta-5, 22-dien-3,B-ol (Safe et at. 1975), lanosterol (Nicollier et al. 1979), 21 a H-30-nor-hopan-3, 22-dione (Nicollier et al. 1979), and 21a H-30-nor-hopan-22-one (Hveding-Bergseth et al. 1979). We investigated the "steroid" fraction of 9 lichens by gas liquid chromatography­ mass spectrometry (GC-MS) and report here on the results.
    [Show full text]
  • Actin Cytoskeletal Inhibitor 19,20-Epoxycytochalasin Q
    www.nature.com/scientificreports OPEN Actin cytoskeletal inhibitor 19,20‑epoxycytochalasin Q sensitizes yeast cells lacking ERG6 through actin‑targeting and secondarily through disruption of lipid homeostasis Kwanrutai Watchaputi1, Pichayada Somboon2, Nipatthra Phromma‑in1, Khanok Ratanakhanokchai1 & Nitnipa Soontorngun1* Repetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side‑efects are currently sought after. This study aimed to investigate antifungal property of 19, 20‑epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests. In a model yeast Saccharomyces cerevisiae, ECQ is more toxic in the erg6∆ strain, which has previously been shown to allow higher uptake of many hydrophilic toxins. We selected one pathway to study the efects of ECQ at very high levels on transcription: the ergosterol biosynthesis pathway, which is unlikely to be the primary target of ECQ. Ergosterol serves many functions that cholesterol does in human cells. ECQ’s transcriptional efects were correlated with altered sterol and triacylglycerol levels. In the ECQ‑treated Δerg6 strain, which presumably takes up far more ECQ than the wild‑type strain, there was cell rupture. Increased actin aggregation and lipid droplets assembly were also found in the erg6∆ mutant. Thereby, ECQ is suggested to sensitize yeast cells lacking ERG6 through actin‑targeting and consequently but not primarily led to disruption of lipid homeostasis. Investigation of cytochalasins may provide valuable insight with potential biopharmaceutical applications in treatments of fungal infection, cancer or metabolic disorder. Te incidence of the COVID-19 pandemic provides a valuable lesson and increases our awareness on danger- ous virus as well as other bugs, including microbes.
    [Show full text]
  • Discovering a Novel Antifungal Target in Downstream Sterol Biosynthesis Using a Squalene Synthase Functional Motif
    University of Kentucky UKnowledge Theses and Dissertations--Molecular and Cellular Biochemistry Molecular and Cellular Biochemistry 2017 DISCOVERING A NOVEL ANTIFUNGAL TARGET IN DOWNSTREAM STEROL BIOSYNTHESIS USING A SQUALENE SYNTHASE FUNCTIONAL MOTIF Kristin Brooke Linscott University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-7145-4884 Digital Object Identifier: https://doi.org/10.13023/ETD.2017.290 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Linscott, Kristin Brooke, "DISCOVERING A NOVEL ANTIFUNGAL TARGET IN DOWNSTREAM STEROL BIOSYNTHESIS USING A SQUALENE SYNTHASE FUNCTIONAL MOTIF" (2017). Theses and Dissertations-- Molecular and Cellular Biochemistry. 33. https://uknowledge.uky.edu/biochem_etds/33 This Doctoral Dissertation is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Molecular and Cellular Biochemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Principles of Human Nutrition 00 05/03/2003 10:52 Page Ii 00 05/03/2003 10:52 Page Iii
    00 05/03/2003 10:52 Page i Principles of Human Nutrition 00 05/03/2003 10:52 Page ii 00 05/03/2003 10:52 Page iii Principles of Human Nutrition Second edition Martin Eastwood Edinburgh, UK 00 05/03/2003 10:52 Page iv © 2003 by Blackwell Science Ltd, First edition published 1997 by Chapman & Hall a Blackwell Publishing Company This edition first published 2003 by Blackwell Science Ltd Editorial Offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK Library of Congress Tel: 01865 776868 Cataloging-in-Publication Data Blackwell Publishing, Inc., 350 Main Street, Malden, is available MA 02148-5018, USA Tel: +1 781 388 8250 0-632-05811-0 Iowa State Press, a Blackwell Publishing Company, 2121 State Avenue, Ames, Iowa 50014-8300, USA A catalogue record for this title is available from the Tel: +1 515 292 0140 British Library Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, Set in Times and produced by Gray Publishing, Victoria 3053, Australia Tunbridge Wells, Kent Tel: +61 (0)3 9347 0300 Printed and bound in Great Britain by Blackwell Wissenschafts Verlag, Kurfürstendamm 57, Ashford Colour Press, Gosport, Hants 10707 Berlin, Germany Tel: +49 (0)30 32 79 060 For further information on The right of the Author to be identified as the Author Blackwell Publishing, visit our website: of this Work has been asserted in accordance with the www.blackwellpublishing.com Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Relationship Between Acyl-Lipid and Sterol Metabolisms in Diatoms Eric Maréchal, Josselin Lupette
    Relationship between acyl-lipid and sterol metabolisms in diatoms Eric Maréchal, Josselin Lupette To cite this version: Eric Maréchal, Josselin Lupette. Relationship between acyl-lipid and sterol metabolisms in diatoms. Biochimie, Elsevier, 2020, 169, pp.3-11. 10.1016/j.biochi.2019.07.005. hal-02185071 HAL Id: hal-02185071 https://hal.archives-ouvertes.fr/hal-02185071 Submitted on 24 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License *Manuscript - Maréchal & Lupette revision Click here to view linked References Short title: 1 2 3 Acyl-lipid and sterol metabolisms in diatoms 4 5 Title: 6 7 Relationship between acyl-lipid and sterol metabolisms in diatoms 8 9 10 Authors: 11 12 Eric Maréchal1, Josselin Lupette2,* 13 14 15 16 17 Affiliations: 18 19 1Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble 20 21 Alpes, Institut de Recherche Interdisciplinaire de Grenoble, CEA Grenoble, 17 avenue des 22 23 Martyrs, 38000, Grenoble, France. 24 25 2 MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, 26 27 USA.
    [Show full text]