Enzymatic Chokepoints and Synergistic Drug Targets in the Sterol Biosynthesis Pathway of Naegleria Fowleri
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Next-Generation Sequencing of Representational Difference Analysis
Planta DOI 10.1007/s00425-017-2657-0 ORIGINAL ARTICLE Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in fenugreek (Trigonella foenum-graecum) 1 1 1 1 Joanna Ciura • Magdalena Szeliga • Michalina Grzesik • Mirosław Tyrka Received: 19 August 2016 / Accepted: 30 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Within the transcripts related to sterol and steroidal Main conclusion Representational difference analysis saponin biosynthesis, we discovered novel candidate of cDNA was performed and differential products were genes of diosgenin biosynthesis and validated their sequenced and annotated. Candidate genes involved in expression using quantitative RT-PCR analysis. Based on biosynthesis of diosgenin in fenugreek were identified. these findings, we supported the idea that diosgenin is Detailed mechanism of diosgenin synthesis was biosynthesized from cycloartenol via cholesterol. This is proposed. the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes Fenugreek (Trigonella foenum-graecum L.) is a valuable enriched in low copy sequences contributed substantially medicinal and crop plant. It belongs to Fabaceae family to our understanding of the biochemical pathways of and has a unique potential to synthesize valuable steroidal steroid synthesis in fenugreek. saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were Keywords Diosgenin Á Next-generation sequencing Á used to enhance the content of sterols and steroidal Phytosterols Á Representational difference analysis of sapogenins in in vitro grown plants for representational cDNA Á Steroidal saponins Á Transcriptome user-friendly difference analysis of cDNA (cDNA-RDA). -
(12) United States Patent (10) Patent No.: US 6,441,206 B1 Mikkonen Et Al
USOO64.41206B1 (12) United States Patent (10) Patent No.: US 6,441,206 B1 Mikkonen et al. (45) Date of Patent: Aug. 27, 2002 (54) USE OF ORGANIC ACID ESTERS IN GB 1298047 11/1972 DIETARY FAT GB 2288805 * 7/1995 JP 588.098 A 1/1983 (75) Inventors: Hannu Mikkonen, Rajamäki; Elina JP 9194345 A 7/1997 Heikkilä, Vantaa, Erkki Anttila, Algy o Rajamäki; Anneli Lindeman, Espoo, all WO A19806405 2/1998 of (FI) OTHER PUBLICATIONS (73) Assignee: Raisio Benecol Ltd., Raisio (FI) Miettinen et al., New Technologies for Healthy Foods, pp. * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi 71-83 (1997). patent is extended or adjusted under 35 Habib et al., Sci. Pharm. vol. 49, pp. 253–257 (1981). U.S.C. 154(b) by 0 days. Mukhina e al., STN International, vol. 88, No. 7, pp. 1429-1430 (1977). (21) Appl. No.: 09/508,295 Mukhina et al., STN International, vol. 67, No. 9, pp. 587-589 (1967). (22) PCT Filed: Sep. 9, 1998 Tuomisto et al., Farmakologia Ja Toksikologia, pp. 526-534 (86) PCT No.: PCT/FI98/00707 (1982). Ikeda et al., J. Nutr Sci. Vitaminol, vol. 35, pp. 361-369 S371 (c)(1), (1989). (2), (4) Date: May 12, 2000 Heinemann et al., Eur: J. Clin. Pharmacol., 40(Suppl 1), pp. S59–S63 (1991). (87) PCT Pub. No.: WO99/15546 Mattson et al., J. Nutr, vol. 107, pp. 1139-1146 (1977). PCT Pub. Date: Apr. 1, 1999 Herting et al., Fed. Proc., vol. 19, pp. 18, (1960). Takagi et al., J. -
Comprehensive Metabolic and Transcriptomic Profiling of Various
www.nature.com/scientificreports OPEN Comprehensive metabolic and transcriptomic profling of various tissues provide insights for saponin Received: 17 October 2017 Accepted: 4 June 2018 biosynthesis in the medicinally Published: xx xx xxxx important Asparagus racemosus Prabhakar Lal Srivastava1, Anurag Shukla2 & Raviraj M. Kalunke2 Asparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a “curer of hundred diseases” since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fngerprinting of various parts of the plant led to the identifcation of 13 monoterpenoids exclusively present in roots. LC-MS profling led to the identifcation of a signifcant number of steroidal saponins (33). However, we have also identifed 16 triterpene saponins for the frst time in A. racemosus. In order to understand the molecular basis of biosynthesis of major components, transcriptome sequencing from three diferent tissues (root, leaf and fruit) was carried out. Functional annotation of A. racemosus transcriptome resulted in the identifcation of 153 transcripts involved in steroidal saponin biosynthesis, 45 transcripts in triterpene saponin biosynthesis, 44 transcripts in monoterpenoid biosynthesis and 79 transcripts in favonoid biosynthesis. These fndings will pave the way for better understanding of the molecular basis of steroidal saponin, triterpene saponin, monoterpenoids and favonoid biosynthesis in A. racemosus. Asparagus racemosus is one of the most valuable medicinal plants, regarded as a “Queen of herbs” in Ayurvedic health system and has been used worldwide to cure various diseases1. -
Structural Basis for Human Sterol Isomerase in Cholesterol Biosynthesis and Multidrug Recognition
ARTICLE https://doi.org/10.1038/s41467-019-10279-w OPEN Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition Tao Long 1, Abdirahman Hassan 1, Bonne M Thompson2, Jeffrey G McDonald1,2, Jiawei Wang3 & Xiaochun Li 1,4 3-β-hydroxysteroid-Δ8, Δ7-isomerase, known as Emopamil-Binding Protein (EBP), is an endoplasmic reticulum membrane protein involved in cholesterol biosynthesis, autophagy, 1234567890():,; oligodendrocyte formation. The mutation on EBP can cause Conradi-Hunermann syndrome, an inborn error. Interestingly, EBP binds an abundance of structurally diverse pharmacolo- gically active compounds, causing drug resistance. Here, we report two crystal structures of human EBP, one in complex with the anti-breast cancer drug tamoxifen and the other in complex with the cholesterol biosynthesis inhibitor U18666A. EBP adopts an unreported fold involving five transmembrane-helices (TMs) that creates a membrane cavity presenting a pharmacological binding site that accommodates multiple different ligands. The compounds exploit their positively-charged amine group to mimic the carbocationic sterol intermediate. Mutagenesis studies on specific residues abolish the isomerase activity and decrease the multidrug binding capacity. This work reveals the catalytic mechanism of EBP-mediated isomerization in cholesterol biosynthesis and how this protein may act as a multi-drug binder. 1 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 2 Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 3 State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. 4 Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. -
A Squalene–Hopene Cyclase in Schizosaccharomyces Japonicus Represents a Eukaryotic Adaptation to Sterol-Limited Anaerobic Environments
A squalene–hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments Jonna Bouwknegta,1, Sanne J. Wiersmaa,1, Raúl A. Ortiz-Merinoa, Eline S. R. Doornenbala, Petrik Buitenhuisa, Martin Gierab, Christoph Müllerc, and Jack T. Pronka,2 aDepartment of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; bCenter for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and cDepartment of Pharmacy, Center for Drug Research, Ludwig-Maximillians University Munich, 81377 Munich, Germany Edited by Roger Summons, Massachusetts Institute of Technology, Cambridge, MA, and approved July 6, 2021 (received for review March 18, 2021) Biosynthesis of sterols, which are key constituents of canonical and acquisition of a bacterial STC gene by horizontal gene transfer is eukaryotic membranes, requires molecular oxygen. Anaerobic protists considered a key evolutionary adaptation of Neocalllimastigomycetes and deep-branching anaerobic fungi are the only eukaryotes in which to the strictly anaerobic conditions of the gut of large herbivores a mechanism for sterol-independent growth has been elucidated. In (7). The reaction catalyzed by STC resembles oxygen-independent these organisms, tetrahymanol, formed through oxygen-independent conversion of squalene to hopanol and/or other hopanoids by cyclization of squalene by a squalene–tetrahymanol cyclase, acts as a squalene–hopene cyclases (8) (SHC; SI Appendix,Fig.S1), which sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, are found in many bacteria (9, 10). Some bacteria synthesize tet- Antonie Van Leeuwenhoek,37,353–358 (1971)] that Schizosaccharo- rahymanol by ring expansion of hopanol, in a reaction catalyzed by myces japonicus is exceptional among yeasts in growing anaerobi- tetrahymanol synthase (THS) for which the precise mechanism cally on synthetic media lacking sterols and unsaturated fatty acids. -
Metabolism of Cyclopropane Fatty Acids by Tetrahymena Pyriformis Najah M
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 Metabolism of cyclopropane fatty acids by Tetrahymena pyriformis Najah M. Al-Shathir Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Al-Shathir, Najah M., "Metabolism of cyclopropane fatty acids by Tetrahymena pyriformis " (1973). Retrospective Theses and Dissertations. 4989. https://lib.dr.iastate.edu/rtd/4989 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dspendent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Cigarette Additives, Carcinogens and Chemicals Nicotine
Cigarette Additives, Carcinogens and Chemicals Nicotine A Destructive Natural Pesticide Which ... Is extremely addictive when smoked Is extremely addictive when chewed Causes addiction as permanent as Is harder to quit than heroin or cocaine alcoholism Is not medicine and its use not therapy Is ineffective as a stand-alone quitting aid Prevents pre-cancerous cells from dying Accelerates cancer tumor growth rates Contributes to artery hardening Has a metabolite which may cause cancer May kill brain cells and impair memory Is linked to lung cancer Likely causes brain damage and Is also a fetus destroying teratogen depression Kills half of adult smokers 13-14 years Is beat by never taking another puff or early chew! 81 Cancer Causing Chemicals Have So Far Been Identified in Cigarettes Acetaldehyde Acetamide Acrylamide Acrylonitrile 2-Amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) 3-Amino-1,4-dimethyl-5H-pyrido [4,3-b]indole (Trp-P-1) 2-Amino-l-methyl-6-phenyl-1H-imidazo [4,5-b]pyridine (PhlP) 2-Amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) 3-Amino-l-methyl-5H-pyrido {4,3-b]indole (Trp-P-2 2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAaC) 2-Amino-9H-pyrido[2,3-b]indole (AaC) 4-Aminobiphenyl 2-Aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2) 0-Anisidine Arsenic Benz[a]anthracene Benzene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[j]fluoranthene Benzo[k]fluoranthene Benzo[b]furan Beryllium 1,3-Butadiene Cadmium Catechol (1,2-benzenediol) p-Chloroaniline Chloroform Cobalt p,p'-DDT Dibenz[a,h]acridine Dibenz[a,j]acridine Dibenz(a,h)anthracene -
Vitamin D in Plants – Occurrence, Analysis and Biosynthesis
Vitamin D in plants – occurrence, analysis and biosynthesis Rie Bak Jäpelt PhD Thesis 2011 Vitamin D in plants Occurrence, analysis and biosynthesis PhD thesis Rie Bak Jäpelt Division of Food Chemistry National Food Institute Technical University of Denmark 2011 Vitamin D in plants – occurrence, analysis and biosynthesis December 2011 Copyright: National Food Institute, Technical University of Denmark Photo: Colourbox ISBN: 978-87-92763-15-0 This PhD Thesis is available at www.food.dtu.dk National Food Institute Technical University of Denmark Mørkhøj Bygade 19 DK-2860 Søborg Tel: +45 35 88 70 00 Fax: +45 35 88 70 01 Preface This PhD study was conducted from 2008 to 2011 at the Division of Food Chemistry, National Food Institute, Technical University of Denmark. The project was financially supported by Ministry of Food, Agriculture and Fisheries, Directorate for Food, Fisheries and Agri Business (3304-FVFP-07-774-02) and Technical University of Denmark. I will start by expressing my gratitude to everyone who has helped during my PhD study. In particular, I would like to thank my principal supervisor Senior Scientist Jette Jakobsen. Jette has been an invaluable support both in ups and downs. Thank you for giving me diverse and varying tasks and responsibilities and for believing in me. I would also like to thank my co- supervisor, Head of Division Jørn Smedsgaard, for introducing me to mass spectrometry and for valuable discussions on method development. I thank current and former colleagues at Division of Food Chemistry and especially the group of Bioactive Compounds for creating a comfortable work atmosphere. -
Generate Metabolic Map Poster
Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical -
(MVA) Pathway Genes and Triterpene Accumulation in Panax Ginseng
J Korean Soc Appl Biol Chem (2014) 57(3), 289−295 Online ISSN 2234-344X DOI 10.1007/s13765-014-4008-1 Print ISSN 1738-2203 ARTICLE Molecular Cloning and Characterization of Mevalonic acid (MVA) Pathway Genes and Triterpene Accumulation in Panax ginseng Yong-Kyoung Kim · Yeon Bok Kim · Jae Kwang Kim · Soo-Un Kim · Sang Un Park Received: 7 January 2014 / Accepted: 19 March 2014 / Published Online: 30 June 2014 © The Korean Society for Applied Biological Chemistry and Springer 2014 Abstract Panax ginseng Meyer is one of the most important Keywords gene expression · ginsenosides · mevalonic acid medicinal plants in Asia, and ginseng has attracted considerable pathway · Panax ginseng · triterpene attention worldwide. Triterpene saponins (ginsenosides) are the main bioactive compounds in P. ginseng. The isoprene units of triterpene are derived from the mevalonic acid (MVA) pathway. We cloned four genes involved in MVA pathway using rapid Introduction amplification of cDNA ends by polymerase chain reaction. Additionally, we investigated the transcript levels of 11 genes Panax ginseng C.A. Meyer is an important perennial herb plant involved in the terpenoid pathway in different organs and cell that belongs to the Araliaceae family. The major bioactive suspension cultures of P. g i n s e n g . The full-length cDNA sequences compounds of P. ginseng are the ginsenosides which possess were as follows: PgHMGS (1764 bp; 1407-bp ORF), PgHMGR numerous physiological and pharmacological effects (Sticher, (1992 bp; 1722-bp ORF), PgPMK (2170 bp; 1530-bp ORF), and 1998). These include exerting central nervous stimulating and PgMVD (1759 bp; 1263-bp ORF). -
Gachumi and Elaneed 2017
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Saskatchewan's Research Archive This is the post-print version of the following article: George N. Gachumi and Anas El-Aneed. (2017), Mass Spectrometric Approaches for the Analysis of Phytosterols in Biological Samples. J Agric Food Chem. 2017 Nov 29;65 (47):10141-10156. Published in final form at doi: 10.1021/acs.jafc.7b03785. REVIEW ARTICLE MASS SPECTROMETRIC APPROACHES FOR THE ANALYSIS OF PHYTOSTEROLS IN BIOLOGICAL SAMPLES. George N. Gachumi1, Anas El-Aneed1*. 1College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5 * To whom correspondence should be addressed: [email protected]; phone: +1-306-966-2013 ABSTRACT Plant sterols (phytosterols) are important structural components of plant cellular membranes and they play a major role during development and metabolism. They have health-associated benefits, especially in lowering blood cholesterol levels. Due to their many health claims, there is a growing interest in their analysis. Although various analytical strategies have been employed in analyzing phytosterols, chromatography linked to mass spectrometry (MS) is superior due to its sensitivity. Furthermore, specificity and selectivity are enhanced by utilizing tandem mass spectrometry (MS/MS). This article reviews the various mass spectrometric strategies used for the analysis of phytosterols. It highlights the applications and limitations associated with each MS strategy in various sample matrices such as plant, human, animal, food, and dietary supplements. GC-MS was historically the method of choice for analysis; however, the derivatization step rendered it tedious and time-consuming. On the other hand, liquid chromatography coupled to MS (LC-MS) simplifies the analysis. -
Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli Et Al
US 20090131395A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli et al. (43) Pub. Date: May 21, 2009 (54) BIPHENYLAZETIDINONE CHOLESTEROL Publication Classification ABSORPTION INHIBITORS (51) Int. Cl. (75) Inventors: Stephen Antonelli, Lynn, MA A 6LX 3L/397 (2006.01) (US); Regina Lundrigan, C07D 205/08 (2006.01) Charlestown, MA (US); Eduardo J. A6IP 9/10 (2006.01) Martinez, St. Louis, MO (US); Wayne C. Schairer, Westboro, MA (52) U.S. Cl. .................................... 514/210.02:540/360 (US); John J. Talley, Somerville, MA (US); Timothy C. Barden, Salem, MA (US); Jing Jing Yang, (57) ABSTRACT Boxborough, MA (US); Daniel P. The invention relates to a chemical genus of 4-biphenyl-1- Zimmer, Somerville, MA (US) phenylaZetidin-2-ones useful in the treatment of hypercho Correspondence Address: lesterolemia and other disorders. The compounds have the HESLN ROTHENBERG EARLEY & MEST general formula I: PC S COLUMBIA. CIRCLE ALBANY, NY 12203 (US) (73) Assignee: MICROBIA, INC., Cambridge, MA (US) “O O (21) Appl. No.: 11/913,461 o R2 R4 X (22) PCT Filed: May 5, 2006 R \ / (86). PCT No.: PCT/USO6/17412 S371 (c)(1), (2), (4) Date: May 30, 2008 * / Related U.S. Application Data (60) Provisional application No. 60/677,976, filed on May Pharmaceutical compositions and methods for treating cho 5, 2005. lesterol- and lipid-associated diseases are also disclosed. US 2009/013 1395 A1 May 21, 2009 BPHENYLAZETIONONE CHOLESTEROL autoimmune disorders, (6) an agent used to treat demylena ABSORPTION INHIBITORS tion and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone FIELD OF THE INVENTION replacement agent/composition, (10) a chemotherapeutic 0001.