Dual Biosynthetic Pathways to Phytosterol Via Cycloartenol and Lanosterol in Arabidopsis

Total Page:16

File Type:pdf, Size:1020Kb

Dual Biosynthetic Pathways to Phytosterol Via Cycloartenol and Lanosterol in Arabidopsis Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis Kiyoshi Ohyamaa, Masashi Suzukia, Jun Kikuchia,b,c, Kazuki Saitoa,d, and Toshiya Muranakaa,e,1 aRIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; bGraduate School of Bioagriculture Sciences, Nagoya University, 1-1 Fro-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan; cInternational Graduate School of Integrated Sciences, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan; dGraduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan; and eKihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan Edited by Charles J. Arntzen, Arizona State University, Tempe, AZ, and approved November 21, 2008 (received for review August 5, 2008) The differences between the biosynthesis of sterols in higher HO acetyl-CoA -OOC plants and yeast/mammals are believed to originate at the cycliza- OH tion step of oxidosqualene, which is cyclized to cycloartenol in mevalonate higher plants and lanosterol in yeast/mammals. Recently, lanos- terol synthase genes were identified from dicotyledonous plant species including Arabidopsis, suggesting that higher plants pos- CAS sess dual biosynthetic pathways to phytosterols via lanosterol, and HO O through cycloartenol. To identify the biosynthetic pathway to parkeol phytosterol via lanosterol, and to reveal the contributions to 2,3-oxido- CAS squalene LAS phytosterol biosynthesis via each cycloartenol and lanosterol, we 13 2 performed feeding experiments by using [6- C H3]mevalonate with Arabidopsis seedlings. Applying 13C-{1H}{2H} nuclear magnetic resonance (NMR) techniques, the elucidation of deuterium on C-19 behavior of phytosterol provided evidence that small amounts of HO ? HO HO cycloartenol lanosterol lanosterol phytosterol were biosynthesized via lanosterol. The levels of phytosterol increased on overexpression of LAS1, and phytosterols derived from lanosterol were not observed in a LAS1-knockout plant. This is direct evidence to indicate that the biosynthetic phytosterols pathway for phytosterol via lanosterol exists in plant cells. We designate the biosynthetic pathway to phytosterols via lanosterol HO ‘‘the lanosterol pathway.’’ LAS1 expression is reported to be HO HO HO induced by the application of jasmonate and is thought to have campesterol sitosterol ergosterol cholesterol evolved from an ancestral cycloartenol synthase to a triterpenoid plants yeasts mammals synthase, such as ␤-amyrin synthase and lupeol synthase. Consid- ering this background, the lanosterol pathway may contribute to Fig. 1. Cyclization step of oxidosqualene in yeasts, mammals, and plants. the biosynthesis of not only phytosterols, but also steroids as Recently, lanosterol synthase genes were identified from several plants, Ara- secondary metabolites. bidopsis thaliana, Panax ginseng, and Lotus japonica (6–8). However, no clear data confirm the existence of that biosynthetic pathway of phytosterol via lanosterol in the plant kingdom. CAS, cycloartenol synthase; LAS, lanosterol ͉ ͉ ͉ ͉ metabolic diversity mevalonate sterol tracer experiment triterpene synthase. terols are indispensable compounds in all eukaryotes, be- Scause they are structural components of plasma membranes. Both cycloartenol and lanosterol are biosynthesized from oxi- In mammals, insects, and higher plants, sterols are also con- dosqualene after the formation of the protosteryl cation. Both verted to steroidal hormones. Because of their chemical signif- H-19 and H-9 protons of the protosteryl cation are deprotonated icance, the main pathway of sterol biosynthesis has been studied to afford cycloartenol and lanosterol, respectively (Fig. 2) (9). extensively, and is believed to be fully understood (1). The We noted the difference of this cyclization mechanism, and 13 2 differences in the biosynthesis of sterols between higher plants designed a tracer experiment by using [6- C H3]mevalonate 13 2 and yeast/mammals are generally accepted to begin at the ([6- C H3]MVL) (Fig. 2). Each of the labeled atom positions, cyclization step of 2,3-oxidosqualene, a common precursor. C-18, C-19, C-21, and C-27 (Pro-R), of phytosterol are biosyn- Ergosterol and cholesterol are biosynthesized via lanosterol, thetically equivalent to C-6 of MVL (10). Elucidation of the catalyzed by lanosterol synthase (LAS), in yeast and in mammals deuterium on C-19 behavior of phytosterol made it possible to (2, 3), respectively. Phytosterols, such as campesterol and sitos- clarify whether the phytosterol is biosynthesized via either terol, are biosynthesized via cycloartenol and catalyzed by cycloartenol synthase (CAS) in higher plants (Fig. 1) (4, 5). Recently, however, three different laboratories have identified Author contributions: K.O., K.S., and T.M. designed research; K.O. and M.S. performed LAS genes from dicotyledonous plant species including Arabi- research; K.O. and J.K. contributed new reagents/analytic tools; K.O. and M.S. analyzed dopsis thaliana (6, 7), Panax ginseng (6), and Lotus japonica (8) data; and K.O. and M.S. wrote the paper. using a yeast expression system. The existence of LAS genes in The authors declare no conflict of interest. the plant kingdom led us to address the question of whether the This article is a PNAS Direct Submission. biosynthetic pathway of phytosterols via lanosterol as the first Freely available online through the PNAS open access option. cyclic intermediate exists. 1To whom correspondence should be addressed. E-mail: [email protected]. To overturn the common knowledge, one must clarify that This article contains supporting information online at www.pnas.org/cgi/content/full/ endogenous lanosterol is metabolized to phytosterols by using 0807675106/DCSupplemental. BIOCHEMISTRY upstream substrates such as acetate and mevalonate (MVL). © 2009 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0807675106 PNAS ͉ January 20, 2009 ͉ vol. 106 ͉ no. 3 ͉ 725–730 Downloaded by guest on September 28, 2021 O Br O OEt , Zn OH O LiAlH4 OH TBSCl, DMAP, Et3N HO 13CD 13CD 3 3 H OEt OH -OOC Et2O Et2O CH2Cl2 OH 13 1 66% 2 85% [6- CD3]MVL for 2 steps O 13 : CD 13 2 HO 13 2 oxidosqualene 3 OH TPAP, NMO O C H3MgI C H3 TBAF OTBS OTBS CH2Cl2 Et2O OTBS 345 Enz-B: 66% 75% 99% D 13 2 H 1) K2CO3 HO C H3 13 13 2 AcO 13 2 AcO 13 2 CD2 HO C H3 Ac O, DMAP C H RuCl , NaIO C H 2 3 3 4 O 3 2) HCl OH HO CH2Cl2 OAc CCl4, CH3CN, HO OAc phosphate buffer O O 67 8 [6-13C2H ]MVL protosteryl cation 96% 92% 84% 3 13 2 D D Fig. 3. Total synthesis of [6- C H3]MVL. D D D 13C 13C HO HO to increase the incorporation ratio of the labeled MVL into cycloartenol lanosterol phytosterol (13). The isolated sterol fraction was analyzed initially using gas chromatography-mass spectrometry (GC-MS). R R D The mass spectra for major phytosterols, such as campesterol, H D D D D 13C 13C stigmasterol, and sitosterol, are shown in Fig. 4A. Nonlabeled campesterol, stigmasterol, and sitosterol have a molecular ion at HO HO m/z ϭ 400, 412, and 414, respectively. The extracted phytosterols phytosterol had major molecular ions at m/z ϭ 415, 427, and 429, corre- 13 2 Fig. 2. Label pattern of phytosterol in the feeding experiment using sponding to those molecules with four C atoms and 11 H 13 [6- CD3]MVL. C-19 of phytosterol biosynthesized via cycloartenol and lanos- atoms per molecule. Phytosterols were biosynthesized effectively 13 13 13 2 terol are labeled as CD2H and CD3, respectively. from exogenous [6- C H3]MVL in this experiment. GC-MS results suggested that three deuteriums at C-6 of MVL were retained in the C-18, -21, and -27 positions, whereas a deuterium cycloartenol or lanosterol. If the phytosterol retained two deu- at the C-19 position was substituted with a hydrogen during terium labels at the C-19 position, then it was biosynthesized via sterol biosynthesis. Phytosterol with three deuteriums retained cycloartenol. In the case when three deuteriums are detected on at the C-19 position could not be determined by the analyses of C-19, the results would indicate that the phytosterol was bio- MS data. Next, the major phytosterol, sitosterol, was analyzed by synthesized via lanosterol. The number of deuterium labels was using NMR after the separation of sterol fraction by HPLC analyzed by proton and deuterium double-decoupled 13C- (High Performance Liquid Chromatography). The labeling pat- nuclear magnetic resonance (NMR) (13C-{1H}{2H}NMR). Be- tern of the sitosterol was determined by 13C-{1H}{2H}NMR. cause the signal for a carbon connected to a deuterium would be The 13C-{1H}{2H}NMR spectrum and chemical shift values for shifted theoretically by approximately 0.3 ppm upfield because C-18, -19, -21, and -27 are shown in Fig. 5B and Table 1, of isotope effects (11), C-19 carbon peaks connected to two and three deuteriums were shifted to 0.6 ppm and 0.9 ppm upfield, respectively. Resonances at 10.98 (C-18), 17.84 (C-21), 18.08 respectively, compared with the unshifted 13C spectrum. By (C-27), and 18.81 (C-19) ppm were identified with 0.88, 0.94, using this strategy, one can determine whether phytosterols are biosynthesized via lanosterol. The contribution to phytosterol biosynthesis via lanosterol can also be determined by comparing A WT B LAS1 over C las1 mutant 13 100 the area of two C peaks, namely, the signals shifted 0.6 and 0.9 c b c c a b a ab ppm upfield. 0 8121410 8121410 81216 13 2 In this study, [6- C H3]MVL was synthesized and fed to the a Retention time (min) seedlings of the wild type (WT), LAS1 overexpressing plant, and 100 415 415 415 a las1 mutant of Arabidopsis.
Recommended publications
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • • Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
    • Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo.
    [Show full text]
  • Analysis of the Chromosomal Clustering of Fusarium-Responsive
    www.nature.com/scientificreports OPEN Analysis of the chromosomal clustering of Fusarium‑responsive wheat genes uncovers new players in the defence against head blight disease Alexandre Perochon1,2, Harriet R. Benbow1,2, Katarzyna Ślęczka‑Brady1, Keshav B. Malla1 & Fiona M. Doohan1* There is increasing evidence that some functionally related, co‑expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium‑responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non‑metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin‑like proteins. 20 of the FRGCs encode nonhomologous, non‑metabolic genes (including defence‑related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium‑ responsive genes, fve of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specifc traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease. Prokaryote genomes encode co-transcribed genes with related functions that cluster together within operons. Clusters of functionally related genes also exist in eukaryote genomes, including fungi, nematodes, mammals and plants1.
    [Show full text]
  • Next-Generation Sequencing of Representational Difference Analysis
    Planta DOI 10.1007/s00425-017-2657-0 ORIGINAL ARTICLE Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in fenugreek (Trigonella foenum-graecum) 1 1 1 1 Joanna Ciura • Magdalena Szeliga • Michalina Grzesik • Mirosław Tyrka Received: 19 August 2016 / Accepted: 30 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Within the transcripts related to sterol and steroidal Main conclusion Representational difference analysis saponin biosynthesis, we discovered novel candidate of cDNA was performed and differential products were genes of diosgenin biosynthesis and validated their sequenced and annotated. Candidate genes involved in expression using quantitative RT-PCR analysis. Based on biosynthesis of diosgenin in fenugreek were identified. these findings, we supported the idea that diosgenin is Detailed mechanism of diosgenin synthesis was biosynthesized from cycloartenol via cholesterol. This is proposed. the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes Fenugreek (Trigonella foenum-graecum L.) is a valuable enriched in low copy sequences contributed substantially medicinal and crop plant. It belongs to Fabaceae family to our understanding of the biochemical pathways of and has a unique potential to synthesize valuable steroidal steroid synthesis in fenugreek. saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were Keywords Diosgenin Á Next-generation sequencing Á used to enhance the content of sterols and steroidal Phytosterols Á Representational difference analysis of sapogenins in in vitro grown plants for representational cDNA Á Steroidal saponins Á Transcriptome user-friendly difference analysis of cDNA (cDNA-RDA).
    [Show full text]
  • 7Th International Conference on Countercurrent Chromatography, Hangzhou, August 6-8, 2012 Program
    010 7th international conference on countercurrent chromatography, Hangzhou, August 6-8, 2012 Program January, August 6, 2012 8:30 – 9:00 Registration 9:00 – 9:10 Opening CCC 2012 Chairman: Prof. Qizhen Du 9:10 – 9:20 Welcome speech from the director of Zhejiang Gongshang University Session 1 – CCC Keynotes Chirman: Prof. Guoan Luo pH-zone-refining countercurrent chromatography : USA 09:20-09:50 Ito, Y. Origin, mechanism, procedure and applications K-1 Sutherland, I.*; Hewitson. P.; Scalable technology for the extraction of UK 09:50-10:20 Janaway, L.; Wood, P; pharmaceuticals (STEP): Outcomes from a year Ignatova, S. collaborative researchprogramme K-2 10:20-11:00 Tea Break with Poster & Exhibition session 1 France 11:00-11:30 Berthod, A. Terminology for countercurrent chromatography K-3 API recovery from pharmaceutical waste streams by high performance countercurrent UK 11:30-12:00 Ignatova, S.*; Sutherland, I. chromatography and intermittent countercurrent K-4 extraction 12:00-13:30 Lunch break 7th international conference on countercurrent chromatography, Hangzhou, August 6-8, 2012 January, August 6, 2012 Session 2 – CCC Instrumentation I Chirman: Prof. Ian Sutherland Pro, S.; Burdick, T.; Pro, L.; Friedl, W.; Novak, N.; Qiu, A new generation of countercurrent separation USA 13:30-14:00 F.; McAlpine, J.B., J. Brent technology O-1 Friesen, J.B.; Pauli, G.F.* Berthod, A.*; Faure, K.; A small volume hydrostatic CCC column for France 14:00-14:20 Meucci, J.; Mekaoui, N. full and quick solvent selection O-2 Construction of a HSCCC apparatus with Du, Q.B.; Jiang, H.; Yin, J.; column capacity of 12 or 15 liters and its China Xu, Y.; Du, W.; Li, B.; Du, application as flash countercurrent 14:20-14:40 O-3 Q.* chromatography in quick preparation of (-)-epicatechin 14:40-15:30 Tea Break with Poster & Exhibition session 2 Session 3 – CCC Instrumentation II Chirman: Prof.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,441,206 B1 Mikkonen Et Al
    USOO64.41206B1 (12) United States Patent (10) Patent No.: US 6,441,206 B1 Mikkonen et al. (45) Date of Patent: Aug. 27, 2002 (54) USE OF ORGANIC ACID ESTERS IN GB 1298047 11/1972 DIETARY FAT GB 2288805 * 7/1995 JP 588.098 A 1/1983 (75) Inventors: Hannu Mikkonen, Rajamäki; Elina JP 9194345 A 7/1997 Heikkilä, Vantaa, Erkki Anttila, Algy o Rajamäki; Anneli Lindeman, Espoo, all WO A19806405 2/1998 of (FI) OTHER PUBLICATIONS (73) Assignee: Raisio Benecol Ltd., Raisio (FI) Miettinen et al., New Technologies for Healthy Foods, pp. * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi 71-83 (1997). patent is extended or adjusted under 35 Habib et al., Sci. Pharm. vol. 49, pp. 253–257 (1981). U.S.C. 154(b) by 0 days. Mukhina e al., STN International, vol. 88, No. 7, pp. 1429-1430 (1977). (21) Appl. No.: 09/508,295 Mukhina et al., STN International, vol. 67, No. 9, pp. 587-589 (1967). (22) PCT Filed: Sep. 9, 1998 Tuomisto et al., Farmakologia Ja Toksikologia, pp. 526-534 (86) PCT No.: PCT/FI98/00707 (1982). Ikeda et al., J. Nutr Sci. Vitaminol, vol. 35, pp. 361-369 S371 (c)(1), (1989). (2), (4) Date: May 12, 2000 Heinemann et al., Eur: J. Clin. Pharmacol., 40(Suppl 1), pp. S59–S63 (1991). (87) PCT Pub. No.: WO99/15546 Mattson et al., J. Nutr, vol. 107, pp. 1139-1146 (1977). PCT Pub. Date: Apr. 1, 1999 Herting et al., Fed. Proc., vol. 19, pp. 18, (1960). Takagi et al., J.
    [Show full text]
  • Saponins, Phytosterols
    Herbal Pharmacology Saponins, Phytosterols Class Abstract Saponins Mills&Bone p.44-47, p.67, Ginseng monograph (p.635) Rajput, Zahid Iqbal, et al. "Adjuvant effects of saponins on animal immune responses." Journal of Zhejiang University Science B 8.3 (2007): 153-161. Rao, A. V., and M. K. Sung. "Saponins as anticarcinogens." The Journal of nutrition 125.3 Suppl (1995): 717S-724S. Francis, George, et al. "The biological action of saponins in animal systems: a review." British journal of nutrition 88.06 (2002): 587-605. glycyrrhizin dioscin KEY POINTS: Glycosides, steroidal or triterpenoid. Soap-like with sugar moiety being hydrophilic. Act both whole and as aglycones. Interact with hormone (corticosteroid / sex) systems. Increase hepatic cholesterol synthesis and excretion. Interact with immune system. Often toxic by injection Extraction: Water is often excellent. Forms foam. Areas of action: Gut, lymphoid tissue, liver, pituitary, kidney/adrenals. Pharmacokinetics: Micelle formation, various degrees of de-glycosylation in small intestine, though some absorbed whole. Rapid plasma entry (90 min), clearances often longer (8-12h half-lives), perhaps due to enterohepatic recycling. Excreted in bile, some kidney. Representative species: Glycyrrhiza, Panax, Actaea, Saponaria Phytosterols: Mills&Bone Saw Palmetto monograph, pp. 805-810 Demonty, Isabelle, et al. "Continuous dose-response relationship of the LDL-cholesterol– lowering effect of phytosterol intake." The Journal of nutrition 139.2 (2009): 271-284. Phillips, Katherine M., David M. Ruggio, and Mehdi Ashraf-Khorassani. "Phytosterol composition of nuts and seeds commonly consumed in the United States." Journal of agricultural and food chemistry 53.24 (2005): 9436-9445. Ostlund, Richard E., Susan B. Racette, and William F.
    [Show full text]
  • Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nutrition & Health Sciences Dissertations & Theses Nutrition and Health Sciences, Department of 5-2010 Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils Mark McKinley Ash University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/nutritiondiss Part of the Dietetics and Clinical Nutrition Commons, and the Molecular, Genetic, and Biochemical Nutrition Commons Ash, Mark McKinley, "Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils" (2010). Nutrition & Health Sciences Dissertations & Theses. 17. https://digitalcommons.unl.edu/nutritiondiss/17 This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nutrition & Health Sciences Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils by Mark McKinley Ash A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Nutrition Under the Supervision of Professor Timothy P. Carr Lincoln, Nebraska May, 2010 Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils Mark McKinley Ash, M.S. University of Nebraska, 2010 Adviser: Timothy P. Carr Naturally occurring compounds and lifestyle modifications as combination and mono- therapy are increasingly used for dyslipidemia. Specficially, phytosterols and fatty acids have demonstrated an ability to modulate cholesterol and triglyceride metabolism in different fashions.
    [Show full text]
  • Sesquiterpenoids and Phenolics from Crepis Conyzifolia
    Sesquiterpenoids and Phenolics from Crepis conyzifolia Wanda Kisiel* and Klaudia Michalska Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Pl-31-343 Krakow, Poland. Fax: +48 126374500. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 961-964 (2001); received July 30/August 28, 2001 Crepis conyzifolia, Sesquiterpenoids, Phenolics From the roots of Crepis conyzifolia, two new and two known guaianolides were isolated together with three known phenylpropanoids. Structures of the new compounds were estab­ lished as 8ß-hydroxy-4ß, 15-dihydrozaluzanin C and 4ß, 15, llß, 13-tetrahydrozaluzanin C-3- O-ß-glucopyranoside by spectral methods. The identity of 8 -epiisolippidiol and dentalactone was also discussed. Introduction previously isolated from Crepis and Lactuca spe­ cies in our laboratory (Kisiel, 1983; Kisiel and Screening tests for potential anticancer agents Barszcz, 1995; Kisiel and Barszcz, 1997; Kisiel et from natural sources showed that crude alcoholic al., 2000). The identity of cichoriin (7) was estab­ extracts from plants belonging to the tribe Lactu- lished by comparison of its spectral data with those ceae of the Asteraceae exhibited chemoprotective in the literature (Kuwajima et al., 1992). The com­ effects on chemical carcinogenesis and differentia­ pound is reported for the first time from Crepis tion-inducing activities on human leukemia and species. Since no complete XH NMR data are mause melanoma cell lines. Some bioactive triter- available for 4 (Kisiel, 1983), we have included all pene and sesquiterpene lactone constituents of the our assignments in Table I, along with unreported plant extracts were isolated and identified (Taka- 13C NMR data in CDC13 and pyridine-d5.
    [Show full text]
  • Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia That Depends on Early Activation of the Camp Pathway
    The Journal of Neuroscience, July 1, 2002, 22(13):5687–5693 Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia that Depends on Early Activation of the cAMP Pathway K. A. Sluka Graduate Program in Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa 52242 Pain and hyperalgesia from deep somatic tissue (i.e., muscle tissue was reversed by spinal blockade of adenylate cyclase or and joint) are processed differently from that from skin. This protein kinase A (PKA). Interestingly, mechanical allodynia was study examined differences between deep and cutaneous tis- reversed if adenylate cyclase or PKA inhibitors were adminis- sue allodynia and the role of cAMP in associated behavioral tered spinally 24 hr, but not 1 week, after injection of capsaicin. changes. Capsaicin was injected into the plantar aspect of the Spinally administered 8-bromo-cAMP resulted in a similar pat- skin, plantar muscles of the paw, or ankle joint, and responses tern, with heat hypoalgesia and mechanical allodynia occurring to mechanical and heat stimuli were assessed until allodynia simultaneously. Thus, injection of capsaicin into deep tissues resolved. Capsaicin injected into skin resulted in a secondary results in a longer-lasting mechanical allodynia and heat hy- mechanical allodynia and heat hypoalgesia lasting ϳ3hr.In poalgesia compared with injection of capsaicin into skin. The contrast, capsaicin injection into muscle or joint resulted in a mechanical allodynia depends on early activation of the cAMP long-lasting bilateral (1–4 weeks) mechanical allodynia with a pathway during the first 24 hr but is independent of the cAMP simultaneous unilateral heat hypoalgesia.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Pearling Barley and Rye to Produce Phytosterol-Rich Fractions Anna-Maija Lampia,*, Robert A
    Pearling Barley and Rye to Produce Phytosterol-Rich Fractions Anna-Maija Lampia,*, Robert A. Moreaub, Vieno Piironena, and Kevin B. Hicksb aDepartment of Applied Chemistry and Microbiology, University of Helsinki, Finland, and bUSDA, ARS, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, ABSTRACT: Because of the positive health effects of phyto- in the kernels and are more concentrated in the outer layers sterols, phytosterol-enriched foods and foods containing than in the starch-rich endosperm (6,7). During the milling of elevated levels of natural phytosterols are being developed. some grains, pearling is a traditional way of gradually remov- Phytosterol contents in cereals are moderate, whereas their lev- ing the hull, pericarp, and other outer layers of the kernels and els in the outer layers of the kernels are higher. The phytosterols germ as pearling fines to produce pearled grains. It is the most in cereals are currently underutilized; thus, there is a need to common technique used to fractionate barley (8). The abra- create or identify processing fractions that are enriched in sion of rye and barley to produce high-starch pearled grains phytosterols. In this study, pearling of hulless barley and rye was investigated as a potential process to make fractions with higher also has been used to improve fuel ethanol production (9,10). levels of phytosterols. The grains were pearled with a labora- There is a need to find new food uses for the pearling fines tory-scale pearler to produce pearling fines and pearled grains. and other possible low-starch by-products remaining after Lipids were extracted by accelerated solvent extraction, and separation of the high-starch pearled grain.
    [Show full text]