Steroid Interference with Antifungal Activity of Polyene Antibiotics

Total Page:16

File Type:pdf, Size:1020Kb

Steroid Interference with Antifungal Activity of Polyene Antibiotics APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin. In contrast, certain other ions, inorganic phosphate, carboxylic acids, A5-33-hydroxy steroids showed no neutralizing sugar phosphates, nucleotides, and protein have activity. In view of the sparsity of information been shown to occur in several fungal species on the reversal of the biological activity of polyene after exposure to nystatin, filipin, and ampho- antibiotics by certain steroids against Candida tericin B (1, 5, 9, 10, 13, 14, 16). Furthermore, it albicans, a dimorphic fungus, it seemed pertinent has been suggested that the binding site on the to undertake further studies with this organism membrane contains a sterol, possibly unesterified with use of several classes of polyene antibiotics ergosterol (13). The presence of a sterol appears and a wide variety of steroids as potential to be a prerequisite for sensitivity toward the neutralizing agents. polyene antibiotics. Thus far, growth inhibitory activities of the polyene antibiotics have been MATERIALS AND MerHoDs demonstrated against yeasts (6, 14), algae (6, Growth conditions. All studies were done in a 12), protozoa (2), and flatworms (8). In contrast, liquid medium (Sabouraud's dextrose broth) with bacteria which contain no significant amount of volumes of 10 ml in a 50-ml Erlenmeyer flask. Unless sterols are insensitive to these antibiotics. otherwise indicated, the medium had an initial pH of Hickey (6) reported that certain fatty acids 4.5, and all flasks were cultured under constant agita- depress the antifungal activity of ascosin. Gott- tion on a rotary shaker at 28 C. C. albicans (ATCC lieb et al. (3) found that cholesterol, ergosterol, 10231) was maintained on YM (Difco) slants and was transferred at intervals. The inoculum sitosterol, and stigmasterol had a neutralizing weekly used was derived from a suspension of an 18- to 24-hr effect on the of antifungal activity filipin against slant culture in sterile saline. The cells were centri- Hansenula subpelliculosa. The above A5-3,B- fuged, washed twice, resuspended in saline, and ad- hydroxy steroids also antagonized the inhibitory justed to an optical density reading of 0.100 0.010 activity of pimaricin against Saccharomyces with a Coleman Junior spectrophotometer (620 m,p). cerevisiae (15). Two drops ofthis inoculum were used per flask. 865 866 ZYGMUNT AND TAVORMINA APPL. MICROBIOL. Polyene antibiotics. Nystatin and amphotericin B RESULTS were kindly furnished by E. R. Squibb & Sons, New York, N.Y.; rimocidin, by Chas. Pfizer & Co., Inc., Data in Table 1 clearly differentiate the ability Brooklyn, N.Y.; pimaricin, by American Cyanamid of various compounds to antagonize the anti- Co., Pearl River, N.Y.; and filipin, by The Upjohn fungal activities of the polyene antibiotics tested. Co., Kalamazoo, Mich. For example, ergosterol is the only compound of Stock solutions (100 pg/ml) of each antibiotic were the 27 tested which interfered with the inhibitory prepared aseptically by dissolving 5 mg of antibiotic in 0.5 ml of dimethyl sulfoxide, diluting promptly activity of nystatin. In contrast, cholesterol, with sterile distilled water, and adjusting the pH to cholesterol acetate, dihydrocholesterol, 5a-cho- 4.5. lestan-3-one, lanosterol, ergosterol, ergostenol, Potential neutralizing agents. Cholesterol, choles- stigmasterol, and ,B-sitosterol are all highly terol acetate, cholesterol propionate, ergosterol, es- effective in neutralizing filipin. Our results tradiol, estrone, deoxycorticosterone, pregnenolone, precisely parallel those of Gottlieb et al. (4), dehydroepiandrosterone, jS-sitosterol, dihydrocholes- with the exception that diosgenin was inactive in terol, stigmasterol, testosterone, progesterone, cholic our hands. Epiandrosterone was not tested. acid, deoxycholic acid, squalene, lanosterol, AW-cho- Interestingly, although cholesterol acetate showed lenic acid-30-ol, A5-pregnen-3,B-ol-20-one-3-methyl with ether, diosgenin, smilagenin, calciferol, 5a-cholestan- reversal activity filipin, the propionate (Table 1) and palnitate (4) derivatives were 3-one, oleic acid, and sodium acetate were tested as possible antagonists of the polyene antibiotics. All inactive. Amphotericin B approached nystatin in compounds were obtained commercially and were of the specificity of chemical structure required for analytical reagent grade. Unless otherwise indicated, vitiation of anticandidal activity in that only addition of these compounds was at 100 pg/ml. ergosterol and j3-sitosterol are active compounds. Ergostenol was prepared by hydrogenation of With the exception of dihydrocholesterol inter- ergosterol (PtO2 in absolute ethyl alcohol). Nuclear fering with the biological activity of rimocidin, magnetic resonance analysis of the product showed it the spectra of compounds antagonizing rimocidin of to be a mixture A8:14 (50%), A8:9 (35%), and and were identical. A7:8 (15%) ergosten-3-ol. pimaricin Addition of the five antibiotics at a twofold All steroids were emulsified with the aid of poly- oxyethylene sorbitan monooleate (Tween 80) and increase in concentration results in only minor propylene glycol, sterilized by free-flowing steam for changes from the steroid-neutralizing activities 10 min and diluted aseptically with distilled water to described above. f3-Sitosterol (100 ,g/ml) failed a concentration of 1 mg/ml. Oleic acid was dissolved to antagonize the growth inhibition of 10 ,ug/ in 95% ethyl alcohol, sterilized by Seitz filtration, and ml of amphotericin B, whereas it was fully active diluted aseptically with distilled water. All other com- at a lower antibiotic level. pounds were dissolved in distilled water, neutralized, The following compounds antagonized the and sterilized by filtration. Only freshly prepared anticandidal activities of all five antibiotics (5 solutions of antibiotics and neutralizing agents were used throughout these studies. and 10 ,ug/ml) by less than 20% and in most The Cary recording spectrophotometer, model 14, instances were totally inactive: calciferol, preg- was used for ultraviolet spectral data. nenolone, dehydroepiandrosterone, testosterone, TABLE 1. Vitiation of the antifungal activities ofpolyene antibiotics by certain steroidsa Neutralizaton of growth inhibition (per cent)C Steroidb Nystatin Filipin Amphotericin B Rimocidin Pimaricn Cholesterol ...... ..............100 - 100 90 Cholesterol acetate.. 94 - - Dihydrocholesterol.- 100 _ 99 5a-Cholestan-3-one ............. 97 Ergosterol ...................... 88 100 98 100 100 Ergostenol ..................... 95 88 74 Stigmasterol.- ................ 96 22 84 92 B-Sitosterol .................... 96 70 99 100 Lanosterol ....... .._..76 - - - a Addition of all antibiotics was 5 pg/ml, and of steroids, 100 pg/ml. b In the absence of steroids, all antibiotics resulted in complete inhibition of yeast growth. c A total of 27 compounds were tested individually with each of the antibiotics, but only those com- pounds in which the growth inhibition was reduced by at least 20% are indicated. VOL. 14,1966 STEROID INTERFERENCE WITH ANTIFUNGAL ACTIVITY 867 TABLE 2. Effects ofergosterol and cholesterol additions on the antifungal activities ofpolyene antibioticsa Neutralization of growth inhibition (per cent) Addition Amt Rimocidin Filipin Pimaricin Nystatin Amphotericin B pg/mi Ergosterol ........ 5 0 0 0 0 0 10 1 1 1 1 1 25 95 22 22 38 98 50 100 100 100 92 98 100 97 97 97 90 97 Cholesterol ..... 5 0 100 0 0 0 10 94 100 0 0 0 25 100 100 77 0 0 50 100 100 100 0 3 100 100 100 78 0 7 a Addition of all antibiotics was at 10 Ag/ml, and, in each instance, caused complete inhibition of yeast growth. TABLE 3. Effect ofpH on the neutralization of the growth media with initial pH in the broad range antifungal activities of nystatin
Recommended publications
  • • Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
    • Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo.
    [Show full text]
  • Download Download
    What’s On Your Mind? Percy Lavon Julian PhD — The Man Who Wouldn’t Give Up Richard J. Barohn In the Volume 2, Issue 1 of this journal, I told the story of Vivien Thomas, an incredibly bright and technically adept laboratory technician who had to take a role behind the physician Alfred Blalock, literally in the operating room where he would tell Dr. Blalock how to proceed in the new open heart surgeries Vivien developed, and throughout his whole life as he struggled as a black man in the scientific world. He is indeed a scientific hero worthy of honor for Black History Month. Let me tell you the story of another black pioneer in health care science that has touched millions of lives but Figure 1. Percy Julian is seen here in this 1920 photo at who you may never have heard of, and while February DePauw University. was officially Black History month, we should consider any month or day a good time to honor great scientists of and was that year’s valedictorian, majoring in chemistry. all backgrounds. The scientists I will tell you about now He applied to graduate school at DePauw and at many will be of particular interest to neuromuscular health care other institutions around the country, but he was denied researchers and providers. admission. In 1960 he told this story as follows: Percy Lavon Julian, PhD was born in Montgomery, Alabama in 1899, the son of a railway mail clerk and the I shall never forget the week of anxious waiting in 1920 grandson of slaves.
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • The Coordinated Upregulated Expression of Genes Involved In
    plants Article The Coordinated Upregulated Expression of Genes Involved in MEP, Chlorophyll, Carotenoid and Tocopherol Pathways, Mirrored the Corresponding Metabolite Contents in Rice Leaves during De-Etiolation Xin Jin 1,2,3,†, Can Baysal 3,†, Margit Drapal 4, Yanmin Sheng 5, Xin Huang 3, Wenshu He 3, Lianxuan Shi 6, Teresa Capell 3, Paul D. Fraser 4, Paul Christou 3,7 and Changfu Zhu 3,5,* 1 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; [email protected] 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China 3 Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; [email protected] (C.B.); [email protected] (X.H.); [email protected] (W.H.); [email protected] (T.C.); [email protected] (P.C.) 4 Biochemistry, School of Life Sciences and Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK; [email protected] (M.D.); [email protected] (P.D.F.) 5 School of Life Sciences, Changchun Normal University, Changchun 130032, China; [email protected] 6 School of Life Sciences, Northeast Normal University, Changchun 130024, China; [email protected] 7 ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain Citation: Jin, X.; Baysal, C.; Drapal, * Correspondence: [email protected] M.; Sheng, Y.; Huang, X.; He, W.; Shi, † These authors contributed equally to this work. L.; Capell, T.; Fraser, P.D.; Christou, P.; et al.
    [Show full text]
  • Orthologs of the Archaeal Isopentenyl Phosphate Kinase Regulate Terpenoid Production in Plants
    Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants Laura K. Henrya, Michael Gutensohnb, Suzanne T. Thomasc, Joseph P. Noelc,d, and Natalia Dudarevaa,b,1 aDepartment of Biochemistry, Purdue University, West Lafayette, IN 47907; bDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; cJack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037; and dHoward Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037 Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 2, 2015 (received for review March 9, 2015) Terpenoids, compounds found in all domains of life, represent the distributed among the three domains of life: eukaryotes, archaea, largest class of natural products with essential roles in their hosts. and bacteria. Although the MEP pathway is found in most bacteria, All terpenoids originate from the five-carbon building blocks, the MVA pathway resides in the cytosol and peroxisomes of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphos- eukaryotic cells. Plants contain both the MEP and MVA pathways, phate (DMAPP), which can be derived from the mevalonic acid which act independently in plastids and cytosol/peroxisomes, re- (MVA) and methylerythritol phosphate (MEP) pathways. The ab- spectively (Fig. 1). Nevertheless, metabolic cross-talk between these sence of two components of the MVA pathway from archaeal two pathways occurs via the exchange of IPP—andtoalesserextent genomes led to the discovery of an alternative MVA pathway with of DMAPP—in both directions (1, 2). IPP and DMAPP are sub- isopentenyl phosphate kinase (IPK) catalyzing the final step, the sequently used in multiple compartments by short-chain prenyl- formation of IPP.
    [Show full text]
  • Short-Step Synthesis of Chenodiol from Stigmasterol
    Biosci. Biotechnol. Biochem., 68 (6), 1332–1337, 2004 Short-step Synthesis of Chenodiol from Stigmasterol y Toru UEKAWA, Ken ISHIGAMI, and Takeshi KITAHARA Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Received February 3, 2004; Accepted March 11, 2004 Chenodiol is an important bile acid widely used for the hydroxyl group (C-3 position), 2) construction of gallstone dissolution and cholestatic liver diseases. We cis-fused rings by hydrogenation (C-5 position), 3) succeeded in a short-step synthesis of chenodiol, starting allylic oxidation and stereoselective reduction (C-7 from the safer phytosterol, stigmasterol. position), and 4) ozonolysis of the side chain and subsequent transformation, including the Wittig reac- Key words: chenodiol; stigmasterol; gallstone dissolu- tion. tion; bovine spongiform encephalopathy Our first synthetic route is outlined in Scheme 2. The hydroxyl group of stigmasterol (2) was inverted by Chenodiol is an important bile acid contained in many mesylation4,5) and the subsequent treatment with cesium vertebrates. This compound is widely used in clinical acetate.6) Inversion under Mitsunobu conditions gave a applications for the dissolution of cholesterol gallstones diastereomixture at the C-3 position, and elimination of and cholestatic liver diseases.1) At present, chenodiol is the hydroxyl group was also observed. Allylic oxidation industrially synthesized from cholic acid,2,3) a major of the C-7 position was accomplished by N-hydroxy- component of bovine bile. BSE (bovine spongiform phthalimide-catalyzed air oxidation, using benzoyl per- encephalopathy) has recently become a global problem oxide as a radical initiator.7,8) The resulting hydroper- and it is now prohibited to use the specified bovine risk oxide was dehydrated to give enone 4.
    [Show full text]
  • BB 451/551 Lecture 35 Highlights
    Kevin Ahern's Biochemistry (BB 451/551) at Oregon State University http://oregonstate.edu/instruct/bb451/summer13/lectures/highlightsglycer... Glycerolipid and Sphingolipid Metabolism 1. Phosphatidic acid is an immediate precursor of CDP-diacylglycerol, which is a precursor of the various glycerophospholipids . CTP combines with phosphatidic acid to yield a pyrophosphate and CDP-Diacylglycerol. Activation by CDP yields a high energy activated intermediate that can be readily converted to phosphatidyl glycerophospholipids. 2. From CDP-diacylglycerol, phosphatidyl serine can be made, as canphosphatidyl ethanolamine and phosphatidyl choline. Synthesis of phosphatidyl choline from phosphatidyl ethanolamine requires methyl groups donated by S-Adenoysyl-Methionine (SAM). Loss of the methyl groups by SAM yields S-Adenosyl-Homocysteine (I incorrectly said S-adenosyl-homoserine in the lecture). 3. Phosphatidyl ethanolamine (and phosphatidyl choline - derived from phosphatidyl ethanolamine) can both be made independently of phosphatidic acid biosynthesis. For this pathway, CDP-ethanolamine is the activated intermediate and the phosphoethanolamine of it is added to diacylglycerol to form phosphatidylethanolamine. Phosphatidyl choline can be made by the same methylation scheme in point 4. 4. Sphingolipids are synthesized beginning with palmitoyl-CoA and serine. Addition of a fatty acid to the amine group yields a ceramide. Addition of sugars to a ceramide yields either a cerebroside (single sugar added) or a ganglioside (complex sugar added). 5. Deficiencies in enzymes that degrade sphingolipids (particularly cerebrosides and gangliosides) are linked to neural disorders. One such disorder is Tay-Sachs disease. 6. Cholesterol is an important component of membranes, particularly in the brain. Cholesterol can be synthesized totally from acetyl-CoA. 7. Steroids include all compounds synthesized from cholesterol.
    [Show full text]
  • Steroidal Triterpenes of Cholesterol Synthesis
    Molecules 2013, 18, 4002-4017; doi:10.3390/molecules18044002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Steroidal Triterpenes of Cholesterol Synthesis Jure Ačimovič and Damjana Rozman * Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-543-7591; Fax: +386-1-543-7588. Received: 18 February 2013; in revised form: 19 March 2013 / Accepted: 27 March 2013 / Published: 4 April 2013 Abstract: Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions.
    [Show full text]
  • Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium Barbarum L
    Molecules 2015, 20, 15060-15071; doi:10.3390/molecules200815060 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium barbarum L. Flowers Andrei Mocan 1, Laurian Vlase 2,*, Dan Cristian Vodnar 3, Ana-Maria Gheldiu 2, Radu Oprean 4 and Gianina Crișan 1 1 Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 23 Ghe. Marinescu Street, Cluj-Napoca 400010, Romania; E-Mails: [email protected] (A.M.); [email protected] (G.C.) 2 Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 12 I. Creangă Street, Cluj-Napoca 400010, Romania; E-Mail: [email protected] 3 Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manăştur Street, Cluj-Napoca 400372, Romania; E-Mail: [email protected] 4 Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 L. Pasteur Street, Cluj-Napoca 400010, Romania; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +40-264-595-770. Academic Editor: Milen I. Georgiev Received: 28 June 2015 / Accepted: 10 August 2015 / Published: 17 August 2015 Abstract: L. barbarum L. is a widely-accepted nutraceutical presenting highly advantageous nutritive and antioxidant properties. Its flowers have been previously described as a source of diosgenin, β-sitosterol and lanosterol that can be further pharmaceutically developed, but no other data regarding their composition is available. The purpose of this work was to investigate the chemical constituents, antioxidant and antimicrobial activities of L.
    [Show full text]
  • Self-Assembly of Naturally Occurring Stigmasterol in Liquids Yielding A
    RSC Advances View Article Online PAPER View Journal | View Issue Self-assembly of naturally occurring stigmasterol in liquids yielding a fibrillar network and gel† Cite this: RSC Adv., 2020, 10,4755 Braja Gopal Bag * and Abir Chandan Barai Stigmasterol, a naturally occurring 6-6-6-5 monohydroxy phytosterol, was extracted from the leaves of Indian medicinal plant Roscoea purpurea, commonly known as Kakoli. In continuation of our studies on the self-assembly properties of naturally occurring terpenoids, herein, we report the first self-assembly properties of this phytosterol in different organic liquids. The molecule self-assembled in organic liquids yielding supramolecular gels in most of the liquids studied via the formation of fibers and belt-like architechtures of nano-to micrometer diameter. Characterization of the self-assemblies carried out by using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, optical microscopy, FTIR and X-ray diffraction studies indicated fibrillar network and belt-like structures. A model for the self-assembly of stigmasterol has been proposed based on molecular modeling studies, Received 10th December 2019 X-ray diffraction data and FTIR studies. Rheology studies indicated that the gels were of high mechanical Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Accepted 21st January 2020 strength. Fluorophores such as rhodamine B, carboxy fluorescein including the anticancer drug DOI: 10.1039/c9ra10376g doxorubicin could be loaded in the gels. Moreover, release of the loaded fluorophores including the rsc.li/rsc-advances drug has also been demonstrated from the gel phase into aqueous medium. 1. Introduction templates for cell growth, inorganic structures,25 cosmetics and food industries.7 Chemical gels26–28 include both synthetic Terpenoids including steroids are the major components of polymeric gels as wells as biopolymers which are based on plant secondary metabolites.
    [Show full text]
  • Chemical Constituents of Plants from the Genus Patrinia
    Natural Product Sciences 19(2) : 77-119 (2013) Chemical Constituents of Plants from the Genus Patrinia Ju Sun Kim and Sam Sik Kang* Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul 151-742, Korea Abstract − The genus Patrinia, belonging to the Valerianaceae family, includes ca. 20 species of herbaceous plants with yellow or white flowers, distributed in Korea, China, Siberia, and Japan. Among them, P. scabiosaefolia (yellow Patrinia), P. saniculaefolia, P. villosa (white Patrinia), and P. rupestris are found in Korea. Several members of this genus have long been used in folk medicine for the treatment of inflammation, wound healing, ascetics, and abdominal pain after childbirth. Thus far, ca. 217 constituents, namely flavonoids, iridoids, triterpenes, saponins, and others have been identified in this genus. Crude extract and isolated compounds have been found to exhibit anticancer, anti-inflammatory, antioxidant, antifungal, antibacterial, cytotoxic activities, lending support to the rationale behind several of its traditional uses. The present review compiles information concerning the phytochemistry and biological activities of Patrinia, with particular emphasis on P. villosa, as studied by our research group. Keywords − Valerianaceae, Patrinia species, Natural products chemistry, Biological activities Introduction of the compounds/extracts obtained from this plants. Patrinia is a genus of herbaceous plants in the Chemical Constituents Valerianaceae family. There are about 20 species native to grassy mountain habitats in China, Siberia, and Japan. The reported chemical constituents from the genus Among them, P. scabiosaefolia (yellow Patrinia), P. Patrinia number, thus far, approximtely 217, include saniculaefolia, P. villosa (white Patrinia), and P. rupestris flavonoids, iridoids, triterpenes, saponins, steroids, and a are found in Korea (Lee, 1989; Bae, 2000).
    [Show full text]
  • Bio-Guided Isolation, Purification and Chemical Characterization of Epigallocatechin
    mac har olo P gy Osuntokun et al., Biochem Pharmacol (Los Angel) 2018, 7.1 : & O y r p t e s DOI: 10.4172/2167-0501.1000240 i n A m c e c h e c s Open Access o i s Biochemistry & Pharmacology: B ISSN: 2167-0501 Research Article Open Access Bio-guided Isolation, Purification and Chemical Characterization of Epigallocatechin; Epicatechin, Stigmasterol, Phytosterol from of Ethyl Acetate Stem Bark Fraction of Spondias mombin (Linn.) Oludare Temitope Osuntokun1*, T.O Idowu2 and Gamberini Maria Cristina3 1Department of Microbiology, Faculty of Science, Adekunle Ajasin University, Akungba Akoko, P.M.B 001, Ondo State, Nigeria 2Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Nigeria 3Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy Abstract Spondias mombin (Linn.) is a widely cultivated edible plant used in folkloric medicine for the treatment of severe infection and health disorders. This research work was carried out to isolation, purification and chemical characterization the bioactive constituents of the ethyl acetate stem bark fraction of Spondias mombin (Linn.), a medicinally important plant of the Anacardiaceae family. This study revealed the presence of flavonoid and steroids, which have been found to be important hormone regulators which possess antimicrobial, anti-inflammatory, antioxidant properties. The chemical investigation resulted in the isolation of (C15H14O6.) 5, 7, 3', 4'-pentahydroxy flavanol (Epicatechin), (C15H14O7.) Epigallocatechin (C29H48O.), Stigmasterol phytosterol. It is here reported isolated from Spondias mombin for the first time, this makes the Spondias mombin very important medicinal plant in Nigeria and west Africa. EGC and EC arts as a strong inhibitor of HIV replication in cultured peripheral blood cells and inhibition of HIV-1 reverse transcriptase in vitro.
    [Show full text]