Analysis of the Chromosomal Clustering of Fusarium-Responsive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q. -
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C. -
Building Blue E. Coli: Engineering the Anthocyanin Biosynthetic Pathway
Building blue E. coli: Engineering the anthocyanin biosynthetic pathway Leah Johnston1, Lucas Jarche1, Alexander Porter1, Julie Ryu1, Emma Price1, Emma Finlayson-Trick1, Khaled Aly1, Paul Bissonnette2, Eric Pace3, Dr. John Rohde1 1Department of Microbiology and Immunology, 2Department of Chemistry, 3Department of Agriculture Dalhousie University, Halifax, Canada, B3H 1X5 THE ANTHOCYANIN PATHWAY METHODS RESULTS 1kb (B) Method of Template DNA for each of the genes required for the production of the Anthocyanin biosynthetic Gene Size (bp) Function Epitope ladder (B) Acquisition of pathway in E. coli were acquired from the following sources outlined in Figure 1 (B). (A) Name Tag Template DNA 10 Phenylalanine Lyase involved in Amplified from A. (A) 2762 polyphenol S-Tag thaliana cDNA, Ammonia . synthesis. insert in Phenylalanine Ammonia Lyase and 4-Coumaroyl CoA Ligase were acquired as inserts in a 3.0. Lyase pACYCDuet-1 pACYCDuet-1 plasmid from Sinyuan Wang et. al (2005) at Utah State University. Cinnamate 4- 2.0 Phenylalanine from Utah State Hydroxylase-HA fusion protein was inserted into this plasmid at the end of the PAL coding region 1.5 Phenylalanine ammonia lyase University using restriction enzymes and transformed into BL21 CaCl2 competent E. coli with T7 RNA Cinnamate 4- Oxidoreductase Amplified from A. Cinnamic Acid 1518 involved in HA-Tag thaliana cDNA, Polymerase activity. A western blot with anti-HA antibody was used to detect the presence of the 1.0 Hydroxylase phenylalanine purchased from C4H fusion protein in the resultant cells. Cinnamate 4-hydroxylase metabolism. TAIR database P-Coumaric Acid 4-Coumaroyl Ligase involved in Insert in 2546 phenylpropanoid His-Tag pACYCDuet-1 Chalcone Synthase, Chalcone Isomerase and Flavanone 3-Hydroxylase were amplified from the CoA Ligase 0.5 4-coumaryl-coenzyme A ligase biosynthesis. -
Next-Generation Sequencing of Representational Difference Analysis
Planta DOI 10.1007/s00425-017-2657-0 ORIGINAL ARTICLE Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in fenugreek (Trigonella foenum-graecum) 1 1 1 1 Joanna Ciura • Magdalena Szeliga • Michalina Grzesik • Mirosław Tyrka Received: 19 August 2016 / Accepted: 30 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Within the transcripts related to sterol and steroidal Main conclusion Representational difference analysis saponin biosynthesis, we discovered novel candidate of cDNA was performed and differential products were genes of diosgenin biosynthesis and validated their sequenced and annotated. Candidate genes involved in expression using quantitative RT-PCR analysis. Based on biosynthesis of diosgenin in fenugreek were identified. these findings, we supported the idea that diosgenin is Detailed mechanism of diosgenin synthesis was biosynthesized from cycloartenol via cholesterol. This is proposed. the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes Fenugreek (Trigonella foenum-graecum L.) is a valuable enriched in low copy sequences contributed substantially medicinal and crop plant. It belongs to Fabaceae family to our understanding of the biochemical pathways of and has a unique potential to synthesize valuable steroidal steroid synthesis in fenugreek. saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were Keywords Diosgenin Á Next-generation sequencing Á used to enhance the content of sterols and steroidal Phytosterols Á Representational difference analysis of sapogenins in in vitro grown plants for representational cDNA Á Steroidal saponins Á Transcriptome user-friendly difference analysis of cDNA (cDNA-RDA). -
NCBI Database on Cycloartenol Synthase
NCBI Database on Cycloartenol Synthase Mohammad Basyuni1,2, Rahmah Hayati1, Yuntha Bimantara1, Rizka Amelia1, Sumaiyah3, Era Yusraini4, and Hirosuke Oku5 1Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Medan, North Sumatera 20155, Indonesia 2Mangrove and Bio-Resources Group, Center of Excellence for Natural Resources Based Technology, Universitas Sumatera Utara, Medan North Sumatera 20155, Indonesia. 3Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia 4Faculty of Agriculture, Universitas Sumatera Utara, Medan 20155, Indonesia 3Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Keywords: Abiotic stress, cycloartenol, isoprenoid, oxidosqualene Abstract: Cycloartenol synthase (EC 5.4.99.8) is a cycloartenol-converting enzyme. The current research describes the search of cycloartenol synthase databases from the National Center for Biotechnology Information (NCBI). A amount of precious information was generated by NCBI database search (https:/www.ncbi.nlm.nih.gov/). Results discovered in 22 cycloartenol synthase databases. All literature, genes, genetics, protein, genomes, and chemical features of cycloartenol synthase databases. Bookshelf, MeSH (Medical Subject Headings) and PubMed Central were discussed in the literature. Gene was made up of profiles from Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet, and UniGene. Data on genetics such as MedGen was available for cycloartenol -
Supplementary Material
CSIRO PUBLISHING www.publish.csiro.au/journals/fpb Functional Plant Biology 33, 1–24 Supplementary material: FP05139_AC Supplementary material Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration Nathalie DruartA,B, Marisa Rodríguez-BueyA, Greg Barron-GaffordC, Andreas SjödinA, Rishikesh BhaleraoB and Vaughan HurryA,D AUmeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden. BUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden. CBiosphere 2 Laboratory, Columbia University, Oracle AZ 85623 USA. Current address: Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA. DCorresponding author. Email: [email protected] Appendix S1 1.0 1.0 A B 0.5 0.5 0.0 0.0 –0.5 –0.5 –1.0 –1.0 Relative gene expression (log gene expression Relative ) 1.0 1.0 2 C D 0.5 0.5 0.0 0.0 –0.5 –0.5 2 ) Relative gene expression (log gene expression Relative –1.0 –1.0 1.0 1.0 E F 0.5 0.5 0.0 0.0 –0.5 –0.5 –1.0 –1.0 400 800 1200 400 800 1200 Ambient [CO2] (µmol mol–1) Validation of reproducibility of the hybridisations by comparing the hybridisation results of three genes for which two independent cDNA clones had been spotted on the array. (A, C, E leaves; B, D, F stems). (A, B) Protein phosphatase 2A, 65 kDa subunit. (C, D) Elicitor-inducible cytochrome P450. -
Transcription Factors Regulating Terpene Synthases in Tomato Trichomes
UvA-DARE (Digital Academic Repository) Transcription factors regulating terpene synthases in tomato trichomes Spyropoulou, E. Publication date 2012 Document Version Final published version Link to publication Citation for published version (APA): Spyropoulou, E. (2012). Transcription factors regulating terpene synthases in tomato trichomes. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 Transcription factors regulating terpene synthases in tomato trichomes factors regulating Transcription Transcription factors regulating terpene synthases in tomato trichomes Eleni Spyropoulou Eleni Spyropoulou Transcription factors regulating terpene synthases in tomato trichomes ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 03 juli 2012, te 16:00 uur door Eleni Spyropoulou geboren te Marousi, Griekenland PROMOTIECOMISSIE Promotor Prof. -
Noncatalytic Chalcone Isomerase-Fold Proteins in Humulus Lupulus Are Auxiliary Components in Prenylated Flavonoid Biosynthesis
Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis Zhaonan Bana,b, Hao Qina, Andrew J. Mitchellc, Baoxiu Liua, Fengxia Zhanga, Jing-Ke Wengc,d, Richard A. Dixone,f,1, and Guodong Wanga,1 aState Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eBioDiscovery Institute, University of North Texas, Denton, TX 76203; and fDepartment of Biological Sciences, University of North Texas, Denton, TX 76203 Contributed by Richard A. Dixon, April 25, 2018 (sent for review February 6, 2018; reviewed by Joerg Bohlmann and Mattheos A. G. Koffas) Xanthohumol (XN) and demethylxanthohumol (DMX) are special- braries have been deposited in the TrichOME database [www. ized prenylated chalconoids with multiple pharmaceutical appli- planttrichome.org (18)], and numerous large RNAseq datasets from cations that accumulate to high levels in the glandular trichomes different hop tissues or cultivars have also been made publically of hops (Humulus lupulus L.). Although all structural enzymes in available. By mining the hops transcriptome data, we and others have the XN pathway have been functionally identified, biochemical functionally identified several key terpenophenolic biosynthetic en- mechanisms underlying highly efficient production of XN have zymes from hop glandular trichomes (1, 18–23); these include car- not been fully resolved. In this study, we characterized two non- boxyl CoA ligase (CCL) genes and two aromatic prenyltransferase catalytic chalcone isomerase (CHI)-like proteins (designated as (PT) genes (HlPT1L and HlPT2) (22, 23). -
De Novo Sequencing and Comparative Analysis of Holy and Sweet Basil
Rastogi et al. BMC Genomics 2014, 15:588 http://www.biomedcentral.com/1471-2164/15/588 RESEARCH ARTICLE Open Access De novo sequencing and comparative analysis of holy and sweet basil transcriptomes Shubhra Rastogi1, Seema Meena1, Ankita Bhattacharya1, Sumit Ghosh1, Rakesh Kumar Shukla1, Neelam Singh Sangwan2, Raj Kishori Lal3, Madan Mohan Gupta4, Umesh Chandra Lavania3, Vikrant Gupta1, Dinesh A Nagegowda1* and Ajit Kumar Shasany1* Abstract Background: Ocimum L. of family Lamiaceae is a well known genus for its ethnobotanical, medicinal and aromatic properties, which are attributed to innumerable phenylpropanoid and terpenoid compounds produced by the plant. To enrich genomic resources for understanding various pathways, de novo transcriptome sequencing of two important species, O. sanctum and O. basilicum, was carried out by Illumina paired-end sequencing. Results: The sequence assembly resulted in 69117 and 130043 transcripts with an average length of 1646 ± 1210.1 bp and 1363 ± 1139.3 bp for O. sanctum and O. basilicum, respectively. Out of the total transcripts, 59648 (86.30%) and 105470 (81.10%) from O. sanctum and O. basilicum, and respectively were annotated by uniprot blastx against Arabidopsis, rice and lamiaceae. KEGG analysis identified 501 and 952 transcripts from O. sanctum and O. basilicum, respectively, related to secondary metabolism with higher percentage of transcripts for biosynthesis of terpenoids in O. sanctum and phenylpropanoids in O. basilicum. Higher digital gene expression in O. basilicum was validated through qPCR and correlated to higher essential oil content and chromosome number (O. sanctum, 2n = 16; and O. basilicum, 2n = 48). Several CYP450 (26) and TF (40) families were identified having probable roles in primary and secondary metabolism. -
Comprehensive Metabolic and Transcriptomic Profiling of Various
www.nature.com/scientificreports OPEN Comprehensive metabolic and transcriptomic profling of various tissues provide insights for saponin Received: 17 October 2017 Accepted: 4 June 2018 biosynthesis in the medicinally Published: xx xx xxxx important Asparagus racemosus Prabhakar Lal Srivastava1, Anurag Shukla2 & Raviraj M. Kalunke2 Asparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a “curer of hundred diseases” since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fngerprinting of various parts of the plant led to the identifcation of 13 monoterpenoids exclusively present in roots. LC-MS profling led to the identifcation of a signifcant number of steroidal saponins (33). However, we have also identifed 16 triterpene saponins for the frst time in A. racemosus. In order to understand the molecular basis of biosynthesis of major components, transcriptome sequencing from three diferent tissues (root, leaf and fruit) was carried out. Functional annotation of A. racemosus transcriptome resulted in the identifcation of 153 transcripts involved in steroidal saponin biosynthesis, 45 transcripts in triterpene saponin biosynthesis, 44 transcripts in monoterpenoid biosynthesis and 79 transcripts in favonoid biosynthesis. These fndings will pave the way for better understanding of the molecular basis of steroidal saponin, triterpene saponin, monoterpenoids and favonoid biosynthesis in A. racemosus. Asparagus racemosus is one of the most valuable medicinal plants, regarded as a “Queen of herbs” in Ayurvedic health system and has been used worldwide to cure various diseases1. -
Allelic Mutant Series Reveal Distinct Functions for Arabidopsis Cycloartenol Synthase 1 in Cell Viability and Plastid Biogenesis
Allelic mutant series reveal distinct functions for Arabidopsis cycloartenol synthase 1 in cell viability and plastid biogenesis Elena Babiychuk*†, Pierrette Bouvier-Nave´ ‡, Vincent Compagnon‡, Masashi Suzuki§, Toshiya Muranaka§, Marc Van Montagu*†¶, Sergei Kushnir*†, and Hubert Schaller‡¶ *Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052 Ghent, Belgium; †Department of Molecular Genetics, Ghent University, 9052 Ghent, Belgium; ‡Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique–Unite´ Propre de Recherche 2357, Universite´Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France; and §RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan Contributed by Marc Van Montagu, December 24, 2007 (sent for review August 31, 2007) Sterols have multiple functions in all eukaryotes. In plants, sterol biosynthesis is initiated by the enzymatic conversion of 2,3-oxido- squalene to cycloartenol. This reaction is catalyzed by cycloartenol synthase 1 (CAS1), which belongs to a family of 13 2,3-oxidosqua- lene cyclases in Arabidopsis thaliana. To understand the full scope of sterol biological functions in plants, we characterized allelic series of cas1 mutations. Plants carrying the weak mutant allele cas1–1 were viable but developed albino inflorescence shoots because of photooxidation of plastids in stems that contained low amounts of carotenoids and chlorophylls. Consistent with the CAS1 catalyzed reaction, mutant tissues accumulated 2,3-oxidosqualene. This triterpenoid precursor did not increase at the expense of the pathway end products. Two strong mutations, cas1–2 and cas1–3, were not transmissible through the male gametes, suggesting a role for CAS1 in male gametophyte function. To validate these findings, we analyzed a conditional CRE/loxP recombination- dependent cas1–2 mutant allele. -
The Role of LC and FAS in Regulating Floral Meristem and Fruit Locule Number in Tomato
The role of LC and FAS in regulating floral meristem and fruit locule number in tomato Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yi-Hsuan Chu, B.S. Graduate Program in Horticulture and Crop Science The Ohio State University 2017 Dissertation Committee Dr. Jyan-Chyun Jang, Dr. Esther van der Knaap, Advisor Dr. Anna Dobritsa Dr. David Mackey Dr. Leah McHale 1 Copyrighted by Yi-Hsuan Chu 2017 2 Abstract In tomato, lc and fas control the variation between the small and bilocular fruits from the wild ancestor (S. pimpinellifolium) and large fruit cultivars (S. lycopersicum var. lycopersicum) with up to ten locules. SlWUS and SlCLV3 are the candidates of lc and fas, respectively. The regulatory balance between these two genes plays a pivotal role in meristem maintenance in Arabidopsis. However, the genetic and molecular mechanisms of SlWUS and SlCLV3 have not been functionally characterized in tomato. Here, we performed a detailed phenotypic analysis of the reproductive organs in tomato near-isogenic lines. The results showed that lc and fas synergistically controlled floral organ and locule number. In addition, results from targeted RNA interference (RNAi) and transgenic complementation of fas clearly demonstrated that SlCLV3 was the gene underlying fas. By using mRNA in situ hybridization and transcriptome profiling, we observed temporal and spatial changes in the expression patterns of these two genes during floral development. Our results indicated that lc was a gain-of-function mutation of SlWUS while fas was a loss-of-function mutation of SlCLV3.