Friedelin Synthase from Maytenus Ilicifolia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Analysis of the Chromosomal Clustering of Fusarium-Responsive
www.nature.com/scientificreports OPEN Analysis of the chromosomal clustering of Fusarium‑responsive wheat genes uncovers new players in the defence against head blight disease Alexandre Perochon1,2, Harriet R. Benbow1,2, Katarzyna Ślęczka‑Brady1, Keshav B. Malla1 & Fiona M. Doohan1* There is increasing evidence that some functionally related, co‑expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium‑responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non‑metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin‑like proteins. 20 of the FRGCs encode nonhomologous, non‑metabolic genes (including defence‑related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium‑ responsive genes, fve of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specifc traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease. Prokaryote genomes encode co-transcribed genes with related functions that cluster together within operons. Clusters of functionally related genes also exist in eukaryote genomes, including fungi, nematodes, mammals and plants1. -
Next-Generation Sequencing of Representational Difference Analysis
Planta DOI 10.1007/s00425-017-2657-0 ORIGINAL ARTICLE Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in fenugreek (Trigonella foenum-graecum) 1 1 1 1 Joanna Ciura • Magdalena Szeliga • Michalina Grzesik • Mirosław Tyrka Received: 19 August 2016 / Accepted: 30 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Within the transcripts related to sterol and steroidal Main conclusion Representational difference analysis saponin biosynthesis, we discovered novel candidate of cDNA was performed and differential products were genes of diosgenin biosynthesis and validated their sequenced and annotated. Candidate genes involved in expression using quantitative RT-PCR analysis. Based on biosynthesis of diosgenin in fenugreek were identified. these findings, we supported the idea that diosgenin is Detailed mechanism of diosgenin synthesis was biosynthesized from cycloartenol via cholesterol. This is proposed. the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes Fenugreek (Trigonella foenum-graecum L.) is a valuable enriched in low copy sequences contributed substantially medicinal and crop plant. It belongs to Fabaceae family to our understanding of the biochemical pathways of and has a unique potential to synthesize valuable steroidal steroid synthesis in fenugreek. saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were Keywords Diosgenin Á Next-generation sequencing Á used to enhance the content of sterols and steroidal Phytosterols Á Representational difference analysis of sapogenins in in vitro grown plants for representational cDNA Á Steroidal saponins Á Transcriptome user-friendly difference analysis of cDNA (cDNA-RDA). -
NCBI Database on Cycloartenol Synthase
NCBI Database on Cycloartenol Synthase Mohammad Basyuni1,2, Rahmah Hayati1, Yuntha Bimantara1, Rizka Amelia1, Sumaiyah3, Era Yusraini4, and Hirosuke Oku5 1Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Medan, North Sumatera 20155, Indonesia 2Mangrove and Bio-Resources Group, Center of Excellence for Natural Resources Based Technology, Universitas Sumatera Utara, Medan North Sumatera 20155, Indonesia. 3Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia 4Faculty of Agriculture, Universitas Sumatera Utara, Medan 20155, Indonesia 3Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Keywords: Abiotic stress, cycloartenol, isoprenoid, oxidosqualene Abstract: Cycloartenol synthase (EC 5.4.99.8) is a cycloartenol-converting enzyme. The current research describes the search of cycloartenol synthase databases from the National Center for Biotechnology Information (NCBI). A amount of precious information was generated by NCBI database search (https:/www.ncbi.nlm.nih.gov/). Results discovered in 22 cycloartenol synthase databases. All literature, genes, genetics, protein, genomes, and chemical features of cycloartenol synthase databases. Bookshelf, MeSH (Medical Subject Headings) and PubMed Central were discussed in the literature. Gene was made up of profiles from Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet, and UniGene. Data on genetics such as MedGen was available for cycloartenol -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
Anaerobic Bacteria Need Their Vitamin B12 to Digest Estrogen COMMENTARY Montserrat El´Ias-Arnanza,1
COMMENTARY Anaerobic bacteria need their vitamin B12 to digest estrogen COMMENTARY Montserrat El´ıas-Arnanza,1 Often described as nature’s most beautiful cofactor (1), vitamin B12 (cobalamin) is a complex and fascinating organometallic molecule that, although made only by some prokaryotes, has key functional roles in microbes, animals, and humans (2). Its two major biological forms, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), have a central cobalt atom in a corrin ring that is coordinated via a cobalt–carbon bond to an upper axial methyl or 5′-deoxyadenosyl group, re- spectively; in both forms the lower axial ligand is the 5,6-dimethylbenzimidazole (DMB) base of a nu- cleotide tail attached to the corrin ring (2–5). Finely controlled enzymatic or photolytic cleavage of the upper axial cobalt–carbon bond underlies the use of B12 as an enzyme cofactor or, in a new twist, as the light-sensing molecule in a photoreceptor pro- tein (2–5). As an enzyme cofactor, MeCbl is used for methyl transfer reactions by methyltransferases and Fig. 1. Proposed B12-dependent methylation of estrogen to androgen in AdoCbl for radical-based transformations by mutases, anaerobic denitrifying bacteria. The putative catalytic and B12-binding units are EmtA and EmtB, respectively, which are encoded by the estrogen–up-regulated dehydratases, deaminases, and ribonucleotide reduc- emtABCD operon. As in well-characterized B -dependent methyltransferases, the – 12 tases (2 4). In a broad range of organisms and bio- cobalt in B12 is expected to cycle between the +3and+1oxidationstates.The logical processes, B12-dependent methyltransferases latter is a potent nucleophile that suffers occasional oxidative inactivation to the catalyze the transfer of a methyl group from a donor +2 state and requires reductive activation to reenter the catalytic cycle (dotted to a final acceptor, utilizing MeCbl or its methylcobamide arrows). -
Allelic Mutant Series Reveal Distinct Functions for Arabidopsis Cycloartenol Synthase 1 in Cell Viability and Plastid Biogenesis
Allelic mutant series reveal distinct functions for Arabidopsis cycloartenol synthase 1 in cell viability and plastid biogenesis Elena Babiychuk*†, Pierrette Bouvier-Nave´ ‡, Vincent Compagnon‡, Masashi Suzuki§, Toshiya Muranaka§, Marc Van Montagu*†¶, Sergei Kushnir*†, and Hubert Schaller‡¶ *Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052 Ghent, Belgium; †Department of Molecular Genetics, Ghent University, 9052 Ghent, Belgium; ‡Institut de Biologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique–Unite´ Propre de Recherche 2357, Universite´Louis Pasteur, 28 rue Goethe, 67083 Strasbourg, France; and §RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan Contributed by Marc Van Montagu, December 24, 2007 (sent for review August 31, 2007) Sterols have multiple functions in all eukaryotes. In plants, sterol biosynthesis is initiated by the enzymatic conversion of 2,3-oxido- squalene to cycloartenol. This reaction is catalyzed by cycloartenol synthase 1 (CAS1), which belongs to a family of 13 2,3-oxidosqua- lene cyclases in Arabidopsis thaliana. To understand the full scope of sterol biological functions in plants, we characterized allelic series of cas1 mutations. Plants carrying the weak mutant allele cas1–1 were viable but developed albino inflorescence shoots because of photooxidation of plastids in stems that contained low amounts of carotenoids and chlorophylls. Consistent with the CAS1 catalyzed reaction, mutant tissues accumulated 2,3-oxidosqualene. This triterpenoid precursor did not increase at the expense of the pathway end products. Two strong mutations, cas1–2 and cas1–3, were not transmissible through the male gametes, suggesting a role for CAS1 in male gametophyte function. To validate these findings, we analyzed a conditional CRE/loxP recombination- dependent cas1–2 mutant allele. -
Plant-Specific Glutaredoxin ROXY9 Regulates Hyponastic Growth by Inhibiting
Plant-specific glutaredoxin ROXY9 regulates hyponastic growth by inhibiting TGA1 function Dissertation for the award of the degree “Doctor of Philosophy” (Ph.D.) Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) Submitted by Ning Li from Shandong, China Göttingen 2017 Thesis Committee Prof. Dr. Christiane Gatz (Department of Plant Molecular Biology and Physiology) Prof. Dr. Volker Lipka (Department of Plant Cell Biology) Dr. Corinna Thurow (Department of Plant Molecular Biology and Physiology) Members of the Examination Board Reviewer: Prof. Dr. Christiane Gatz (Department of Plant Molecular Biology and Physiology) Second reviewer: Prof. Dr. Volker Lipka (Department of Plant Cell Biology) Further members of the Examination Board: Prof. Dr. Ivo Feussner (Department of Plant Biochemistry) PD Dr. Thomas Teichmann (Department of Plant Cell Biology) Dr. Marcel Wiermer (Department of Plant Cell Biology) PD. Dr. Martin Fulda (Department of Plant Biochemistry) Date of the oral examination: 30.03.2017 1 Introduction ................................................................................................................ 1 1.1 Hyponastic growth ............................................................................................ 1 1.1.1 Ethylene and hyponastic growth in Arabidopsis thaliana ...................... 2 1.1.2 Photoreceptors and hyponastic growth ................................................ -
Biocatalysis in the Chemistry of Lupane Triterpenoids
molecules Review Biocatalysis in the Chemistry of Lupane Triterpenoids Jan Bachoˇrík 1 and Milan Urban 2,* 1 Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] 2 Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hnˇevotínská 5, 779 00 Olomouc, Czech Republic * Correspondence: [email protected] Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by Citation: Bachoˇrík,J.; Urban, M. -
Identification of Key Amino Acid Residues Determining Product Specificity of 2, 3-Oxidosqualene Cyclase in Siraitia Grosvenorii
catalysts Article Identification of Key Amino Acid Residues Determining Product Specificity of 2,3-Oxidosqualene Cyclase in Siraitia grosvenorii Jing Qiao, Jiushi Liu, Jingjing Liao, Zuliang Luo, Xiaojun Ma * and Guoxu Ma * Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] (J.Q.); [email protected] (J.L.); [email protected] (J.L.); [email protected] (Z.L.) * Correspondence: [email protected] (X.M.); mgxfl[email protected] (G.M.); Tel.: +86-10-5783-3155 (X.M. & G.M.) Received: 25 October 2018; Accepted: 19 November 2018; Published: 22 November 2018 Abstract: Sterols and triterpenes are structurally diverse bioactive molecules generated through cyclization of linear 2,3-oxidosqualene. Based on carbocationic intermediates generated during the initial substrate preorganization step, oxidosqualene cyclases (OSCs) are roughly segregated into a dammarenyl cation group that predominantly catalyzes triterpenoid precursor products and a protosteryl cation group which mostly generates sterol precursor products. The mechanism of conversion between two scaffolds is not well understood. Previously, we have characterized a promiscuous OSC from Siraitia grosvenorii (SgCS) that synthesizes a novel cucurbitane-type triterpene cucurbitadienol as its main product. By integration of homology modeling, molecular docking and site-directed mutagenesis, we discover that five key amino acid residues (Asp486, Cys487, Cys565, Tyr535, and His260) may be responsible for interconversions between chair–boat–chair and chair–chair–chair conformations. The discovery of euphol, dihydrolanosterol, dihydroxyeuphol and tirucallenol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into cucurbitane-type and lanostane-type skeletons, and provide a new strategy to identify key residues determining OSC specificity. -
生物合成薯蓣皂素的途径设计及关键酶分析 Chinese Journal of Biotechnology Apr
1178 生物工程学报 孙忠义 等/生物合成薯蓣皂素的途径设计及关键酶分析 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn Apr. 25, 2021, 37(4): 1178−1188 DOI: 10.13345/j.cjb.200389 ©2021 Chin J Biotech, All rights reserved ·综 述· 生物合成薯蓣皂素的途径设计及关键酶分析 1 1 2 1 孙忠义 ,赵鹏 ,葛喜珍 ,田平芳 1 北京化工大学 生命科学与技术学院,北京 100029 2 北京联合大学 生物化学工程学院,北京 100023 孙忠义, 赵鹏, 葛喜珍, 等. 生物合成薯蓣皂素的途径设计及关键酶分析. 生物工程学报, 2021, 37(4): 1178-1188. Sun ZY, Zhao P, Ge XZ, et al. Pathway design and key enzyme analysis of diosgenin biosynthesis. Chin J Biotech, 2021, 37(4): 1178–1188. 摘 要: 薯蓣皂素是一种天然甾体皂苷元,可作为数百种类固醇药物的前体,具有重要药用价值。目前工业生产 薯蓣皂素主要依赖化学提取法,因此该法依赖植物材料和耕地且对环境有害。随着代谢工程和合成生物学的发展, 生物合成法受到广泛关注。文中综述了生物合成薯蓣皂素的代谢途径和关键酶,并在酿酒酵母 Saccharomyces cerevisiae 中设计其异源合成途径,提出改造策略,以期为全生物合成薯蓣皂素提供有价值的参考。 关键词: 薯蓣皂素,生物合成途径,关键酶,异源表达 Pathway design and key enzyme analysis of diosgenin biosynthesis Zhongyi Sun1, Peng Zhao1, Xizhen Ge2, and Pingfang Tian1 1 College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China 2 College of Biochemical Engineering, Beijing Union University, Beijing 100023, China Abstract: As a naturally occurring steroid sapogenin, diosgenin acts as the precursor of hundreds of steroid medicines, and thereby has important medicinal value. Currently, industrial production of diosgenin relies primarily on chemical extraction from plant materials. Clearly, this strategy shows drawbacks of excessive reliance on plant materials and farmland as well as environment pollution. Due to development of metabolic engineering and synthetic biology, bio-production of diosgenin has garnered plenty of attention. Although the biosynthetic pathways of diosgenin have not been completely identified, in this review, we outline the identified biosynthetic pathways and key enzymes. In particular, we suggest heterologous biosynthesis of diosgenin in Saccharomyces cerevisiae. -
Product Data Sheet
Inhibitors Product Data Sheet Ro 48-8071 fumarate • Agonists Cat. No.: HY-18630A CAS No.: 189197-69-1 Molecular Formula: C₂₇H₃₁BrFNO₆ • Molecular Weight: 564.44 Screening Libraries Target: Others Pathway: Others Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro H2O : 100 mg/mL (177.17 mM; Need ultrasonic) DMSO : ≥ 55 mg/mL (97.44 mM) * "≥" means soluble, but saturation unknown. Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 1.7717 mL 8.8583 mL 17.7167 mL Stock Solutions 5 mM 0.3543 mL 1.7717 mL 3.5433 mL 10 mM 0.1772 mL 0.8858 mL 1.7717 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.43 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.43 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.43 mM); Clear solution BIOLOGICAL ACTIVITY Description Ro 48-8071 fumarate is an inhibitor of OSC (Oxidosqualene cyclase) with IC50 of appr 6.5 nM. IC₅₀ & Target IC50: appr 6.5 nM (Oxidosqualene cyclase)[1] [1] In Vitro In HepG2 cells, Ro 48-8071 reduces cholesterol synthesis dose dependently with an IC50 value of appr 1.5 nM .