2019 PDP Annual Summary

Total Page:16

File Type:pdf, Size:1020Kb

2019 PDP Annual Summary United States Department of Agriculture October 2020 Dear Reader: We are pleased to present the Pesticide Data Program’s (PDP) 29th Annual Summary for cal- endar year 2019. The U.S. Department of Agriculture (USDA), Agricultural Marketing Service (AMS) conducts this program each year to collect data on pesticide residues in food. This report shows that when pesticide residues are found on foods, they are nearly always at levels below the tolerance, or maximum amount of a pesticide allowed to remain in or on a food, that is set by the U.S. Environmental Protection Agency (EPA). PDP provides high-quality, nationally representative data to help ensure consumer confidence in the foods they provide to their families. Nearly 99 percent of the products sampled through PDP had residues below the EPA tolerances. Ultimately, if EPA determines a pesticide is not safe for human consumption, it is removed from the market. The PDP tests a wide variety of domestic and imported foods, with a strong focus on foods that are consumed by infants and children. EPA relies on PDP data to conduct dietary risk assess- ments and to ensure that any pesticide residues in foods remain at safe levels. USDA uses the data to better understand the relationship of pesticide residues to agricultural practices and to implement USDA’s Integrated Pest Management objectives. USDA also works with U.S. grow- ers to improve agricultural practices. The PDP is not designed for enforcement of EPA pesticide residue tolerances. Rather, the U.S. Food and Drug Administration (FDA) is responsible for enforcing EPA tolerances. PDP pro- vides FDA and EPA with monthly reports of pesticide residue testing and informs the FDA if residues detected exceed the EPA tolerance or have no EPA tolerance established. The PDP works with State agencies representing all census regions of the country and approxi- mately half of the U.S. population. In 2019, analyzed samples were collected in California, Colorado, Florida, Maryland, Michigan, New York, North Carolina, Ohio, Texas, and Washing- ton. For more information about PDP, please visit our website at https://www.ams.usda.gov/datasets/ pdp. For additional information about pesticides and food, please visit EPA’s website at http:// www.epa.gov/safepestcontrol and FDA’s website at http://www.fda.gov/Food/Chemicals-Met- als-Pesticides-Food/Pesticides. Agricultural Marketing Service 1400 Independence Avenue, SW, Washington, DC 20250-0201 Voice (202) 720-8998 Fax (202) 720-7135 An Equal Opportunity Provider and Employer Contents Page No. Acknowledgements........................................................................................................................ vii Executive Summary...................................................................................................................... ix Acronyms and Abbreviations........................................................................................................ xi Section I--Introduction............................................................................................................... 1 Section II--Sampling Operations............................................................................................... 4 Conceptual Framework.................................................................................................... 4 Sampling Procedures....................................................................................................... 5 2019 Sampling Operations.............................................................................................. 6 Fresh and Processed Commodities.................................................................................. 9 Rice.................................................................................................................................. 9 Oats.................................................................................................................................. 9 Sampling Limitations...................................................................................................... 9 Section III--Laboratory Operations......................................................................................... 13 Overview.......................................................................................................................... 13 Fresh and Processed Commodities.................................................................................. 13 Rice and Oats................................................................................................................... 13 Quality Assurance Program............................................................................................. 14 Section IV--Database Management.......................................................................................... 16 Electronic Data Path........................................................................................................ 16 Data Reporting................................................................................................................ 18 Online Database Search Tool.......................................................................................... 18 Section V--Sample Results and Discussion.............................................................................. 18 Overview......................................................................................................................... 18 Import Versus Domestic Residue Comparisons.............................................................. 19 Postharvest Applications................................................................................................. 20 Discussion of Results ..................................................................................................... 20 Special Projects............................................................................................................... 21 Environmental Contaminants.......................................................................................... 21 Tolerance Violations........................................................................................................ 21 Look Ahead..................................................................................................................... 23 Pesticide Data Program—Annual Summary, Calendar Year 2019 iii Figures Page No. 1 Pesticide Data Program (PDP) Program Operations Support and Data Users................... 2 2 Program Participants........................................................................................................... 3 3 Commodity Origin.............................................................................................................. 10 4 Origin of Selected Fresh Commodities: Kiwi and Radish Samples................................... 12 5 Pesticide Data Program (PDP) Data Pathway..................................................................... 17 Tables 1 Pesticide Data Program (PDP) Commodity Collection Schedule for 2019........................ 6 2 Distribution of Samples Collected by Each Participating State.......................................... 7 3 Acceptable Products for Collected Commodities................................................................ 8 4 Sample Preparation Steps for Analysis................................................................................ 14 Appendixes A-J Appendix A Commodity History Appendix B Distribution of Residues by Pesticide in Fruit and Vegetables Appendix C Distribution of Residues by Pesticide in Rice Appendix D Distribution of Residues by Pesticide in Oats Appendix E Distribution of Residues for Environmental Contaminants Appendix F Sample Origin by State or Country Appendix G Import Versus Domestic Pesticide Residue Comparisons Appendix H Pesticide Residues by Commodity Appendix I Number of Pesticides Detected per Sample Appendix J Samples Reported to the U.S. Food and Drug Administration as Exceeding the Tolerance or Without Established Tolerance Pesticide Data Program—Annual Summary, Calendar Year 2019 v Acknowledgements The States participating in the Pesticide Data Website: Program (PDP) deserve special recognition for their contributions to the program. The dedication http://www.ams.usda.gov/pdp and flexibility of sample collectors allow the U.S. Department of Agriculture’s (USDA) Agricultural Participating State Agencies Marketing Service (AMS) to adjust sampling protocols when responding to changing trends California Department of Food and Agriculture in commodity distribution and availability. PDP California Department of Pesticide Regulation acknowledges the contributions of the State Colorado Department of Agriculture laboratories in providing testing services to the Florida Department of Agriculture and program and the USDA, National Agricultural Consumer Services Statistics Service for providing statistical support. Maryland Department of Agriculture PDP also acknowledges the exceptional support Michigan Department of Agriculture and of the Health Effects Division staff of the U.S. Rural Development Environmental Protection Agency, Office of New York Department of Agriculture and Pesticide Programs, and the U.S. Food and Drug Markets Administration, Center for Food Safety and North Carolina Department of Agriculture & Applied Nutrition, Office of Food Safety, in Consumer Services helping to set the direction for PDP. Ohio Department of Agriculture Texas Department of Agriculture Data
Recommended publications
  • Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using the LUMI-CELL ER Bioassay
    DEVELOPMENTAL AND REPRODUCTIVE TOXICITY Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using The LUMI-CELL ER Bioassay John D. Gordon1, Andrew C: Chu1, Michael D. Chu2, Michael S. Denison3, George C. Clark1 1Xenobiotic Detection Systems, Inc., 1601 E. Geer St., Suite S, Durham, NC 27704, USA 2Alta Analytical Perspectives, 2714 Exchange Drive, Wilmington, NC 28405, USA 3Dept. of Environmental Toxicology, Meyer Hall, Univ. of California, Davis; Davis, CA 95616 USA Introduction Organochlorine pesticides are found in many ecosystems worldwide as result of agricultural and industrial activities and exist as complex mixtures. The use of these organochlorine pesticides has resulted in the contamination of lakes and streams, and eventually the animal and human food chain. Many of these pesticides, such as pp ’-DDT, pp ’-DDE, Kepone, Vinclozolin, and Methoxychlor (a substitute for the banned DDT), have been described as putative estrogenic endocrine disruptors, and act by mimicking endogenous estrogen 1-3 . Estrogenic compounds can have a significant detrimental effect on the endocrine and reproductive systems of both human and other animal populations 4 . Previous studies have shown a strong association between several EDCs (17p-Estradiol, DES, Zeralanol, Zeralenone, Coumestrol, Genistein, Biochanin A, Diadzein, Naringenin, Tamoxifin) and estrogenic activity via uterotropic assay, cell height, gland number, increased lactoferrin, and a transcriptional activity assay using BG1Luc4E2 cells4 . Some other examples of the effects of these EDCs are: decreased reproductive success and feminization of males in several wildlife species; increased hypospadias along with reductions in sperm counts in men; increase in the incidence of human breast and prostate cancers; and endometriosis 3-5 .
    [Show full text]
  • Approved Uses of Registered Insecticides (Crop Based)
    Approved uses of registered insecticides (Crop based) Dosage / ha Formulation Spray fluid Crop Insecticide Common name of the pest a.i (gm) (gm/ml) (Liter) Bifenthrin 8 SC Mites 60 7.5ml/lit 10 lit/tree Carbofuran 3 CG Woolly aphid 5/tree 166/tree _ Chlorpyrifos 20 EC Aphid 0.0005 3750-5000 1500-2000 Dimethoate 30 EC Stem borer 0.0003 1485-1980 1500-2000 Red spider mite and two spotted Fenazaquin 10 EC 40 400 1000 mite Hexythiazox 5.45 W/W EC European Red Mite 0.00002 0.0004 10ltr./tree Malathion 50 EC Sanjose scale, Wooly aphid 0.0005 1500-2000 1500-2000 Sanjose scale 0.0007 4200-5600 1500-2000 Oxydemeton – Methyl 25 EC Apple Wooly Aphid 0.00025 1500-2000 1500-2000 100-150gm/ Phorate 10 CG Woolly aphid 10- 15/ plant _ plant European red Mite, Two spotted Propargite 57 EC 2.85-5.7 /tree 5-10 ml/tree 10 lit/tree mite Quinalphos 25 EC Wooly Aphid 0.0005 3000-4000 500-1000 European Red Mite & Red Spider Spiromesifen 22.9 SC 72(0.03) 300 1000 mite As per size of Thiacloprid 21.7 SC Thrips 0.01- 0.012 0.04-0.05 tree Apricot Dimethoate 30 EC Aphid 0.0003 1485-1980 1500-2000 Carbofuran 3 CG Shoot fly 1500 50000 _ Dimethoate 30 EC Milky weed bug 180-200 594-660 500-1000 Bajra Shoot fly 3000 30000 _ Phorate 10 CG White grub 2500 25000 _ Banana Carbofuran 3 CG Rhizome weevil 1 g/ suckers 33g/sucker _ Aphid 50g/suckers 166g/sucker _ Nematode 1.5g/suckers 50g/suckers _ Dimethoate 30 EC Aphid, Lace wing bug 0.0003 1485-1980 1500-2000 Tingyi bug 0.00025 1500-2000 1500-2000 Oxydemeton – Methyl 25 EC Aphids 0.0005 3000-4000 1500-2000 2.5 -1.25/ 25 -12.5/ Phorate 10 CG Aphid _ plant plant Quinalphos 25 EC Tingid bug 0.0005 3000-4000 500-1000 Phosalone 35 EC Aphid 500 1428 500-1000 Aphid 1000 33300 _ Barely Carbofuran 3 CG Jassid 1250 41600 _ Cyst nematode 1000 33300 _ Phorate 10 CG Aphid 1000 10000 _ Beans Chlorpyrifos 20 EC Pod borer , Black bug 600 3000 500-1000 Chlorantraniliprole 18.5 SC Pod borers 25 125 500 Chlorpyrifos 1.5 DP Helicoverpa armigera 375 25000 _ Azadirachtin 0.03 (300 PPM) Pod Borer _ _ _ Bacillus thuringiensis Var.
    [Show full text]
  • Endocrine Disruptors
    Endocrine disruptors Afke Groen & Christine Neuhold The RECIPES project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665 Authors Afke Groen, Maastricht University* Christine Neuhold, Maastricht University * currently works at the think tank Mr. Hans van Mierlo Stichting With thanks to our two anonymous interviewees Manuscript completed in April 2020 Document title WP2 Case study: Endocrine disruptors Work Package WP2 Document Type Deliverable Date 13 April 2020 Document Status Final version Acknowledgments & Disclaimer This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. WP2 Case study: Endocrine disruptors i Abstract Endocrine disrupting chemicals (EDCs) are at the centre stage of a scientific and regulatory controversy. Given the complexities, ambiguities and particularly the uncertainties surrounding the hazards of EDCs, the precautionary principle is of utmost relevance to the case. Even the definition of EDCs remains much contested, as do the scientific processes and methods through which to identify them. On the one hand, there is considerable societal pressure to regulate ECDs ‘now’. On the other hand, this quick regulation is often impossible as the limited evidence available does not suffice in the context of traditional EU scientific risk assessment.
    [Show full text]
  • Cyantraniliprole
    PUBLIC RELEASE SUMMARY on the Evaluation of the New Active Constituent Cyantraniliprole in the Product DuPont Exirel Insecticide APVMA Product Number 64103 OCTOBER 2013 © Australian Pesticides and Veterinary Medicines Authority 2013 ISSN: 1443-1335 (electronic) ISBN: 978-1-922188-50-2 (electronic) Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Australian Pesticides and Veterinary Medicines Authority (APVMA). Creative Commons licence With the exception of the Coat of Arms and other elements specifically identified, this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence. This is a standard form agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. A summary of the licence terms is available from www.creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from www.creativecommons.org/licenses/by/3.0/au/legalcode. The APVMA’s preference is that you attribute this publication (and any approved material sourced from it) using the following wording: Source: licensed from the Australian Pesticides and Veterinary Medicines Authority (APVMA) under a Creative Commons Attribution 3.0 Australia Licence. In referencing this document the Australian Pesticides and Veterinary Medicines Authority should be cited as author, publisher and copyright owner. Use of the Coat of Arms The terms under which the Coat of Arms can be used are set out on the Department of the Prime Minister and Cabinet website (see www.dpmc.gov.au/guidelines).
    [Show full text]
  • CYANTRANILIPROLE (263) the First Draft Was Prepared by Mr. David Lunn New Zealand Food Safety Authority, Wellington, New Zealand
    Cyantraniliprole 361 CYANTRANILIPROLE (263) The first draft was prepared by Mr. David Lunn New Zealand Food Safety Authority, Wellington, New Zealand EXPLANATION Cyantraniliprole is a diamide insecticide with a mode of action (ryanodine receptor activation) similar to chlorantraniliprole and flubendiamide. It has root systemic activity with some translaminar movement and is effective against the larval stages of lepidopteran insects; and also on thrips, aphids, and some other chewing and sucking insects. Authorisations exist for the use of cyantraniliprole in Canada, Columbia, Malaysia, New Zealand, Vietnam and the CLISS countries in West Africa. Authorisations are also being progressed in Australia, Europe and USA under an OECD Joint Review exercise. Cyantraniliprole was scheduled by the Forty-fourth Session of the CCPR as a new compound for consideration by the 2013 JMPR. Residue and analytical aspects of cyantraniliprole were considered for the first time by the present meeting. The manufacturer submitted studies on metabolism, analytical methods, supervised field trials, processing, freezer storage stability, environmental fate in soil and rotational crop residues. In this evaluation, the values presented in the tables are as reported in the various studies, but in the accompanying text, they have generally been rounded to two significant digits. Abbreviations have also been used for the various cyantraniliprole metabolites mentioned in the study reports. These include: IN-F6L99 3-Bromo-N-methyl-1H-pyrazole-5-carboxamide IN-HGW87
    [Show full text]
  • Effects of Cyantraniliprole, a Novel Anthranilic Diamide Insecticide, Against Asian Citrus Psyllid Under Laboratory and Field Co
    Submitted to: Correspondence to: Pest Management Science Lukasz L. Stelinski, Entomology and Nematology Department, Citrus Research & Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850. Ph: 863 956 8851. Fax: 863 956 4631. Email: [email protected] Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions Siddharth Tiwari and Lukasz L. Stelinski* Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 *Corresponding author Accepted Article This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ps.3468. © 2012 Society of Chemical Industry Abstract BACKGROUND:The Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), is the most destructive pest of citrus in Florida. The development of insecticide resistance in several populations of D. citrihas been documented. There is an urgent need to develop and integrate novel tools for the successful management of D. citri and also to prevent the development of insecticide resistance. RESULTS:We investigated the effects of a relatively newer chemistry, cyantraniliprole, against D. citri. The contact toxicity of cyantraniliprole was 297 fold higher against D. citrithan its primary parasitoid,Tamarixia radiata(Hymenoptera: Eulophidae). D. citrisettled and fed less on cyantraniliprole-treated plants than controls at concentrations as low as 0.025 and 0.125 µg AI mL-1, respectively. D. citri egg production, first instar emergence and adult emergence were significantly reduced on plants treated with 0.25, 0.02 and 0.25 µg AI mL-1of cyantraniliprole, respectively, when compared with control plants.
    [Show full text]
  • EPA Method 525.2
    METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY Revision 2.0 J.W. Eichelberger, T.D. Behymer, W.L. Budde - Method 525, Revision 1.0, 2.0, 2.1 (1988) J.W. Eichelberger, T.D. Behymer, and W.L. Budde - Method 525.1 Revision 2.2 (July 1991) J.W. Eichelberger, J.W. Munch, and J.A. Shoemaker Method 525.2 Revision 1.0 (February, 1994) J.W. Munch - Method 525.2, Revision 2.0 (1995) NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 525.2-1 METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY 1.0 SCOPE AND APPLICATION 1.1 This is a general purpose method that provides procedures for determination of organic compounds in finished drinking water, source water, or drinking water in any treatment stage. The method is applicable to a wide range of organic compounds that are efficiently partitioned from the water sample onto a C18 organic phase chemically bonded to a solid matrix in a disk or cartridge, and sufficiently volatile and thermally stable for gas chromatog-raphy. Single-laboratory accuracy and precision data have been determined with two instrument systems using both disks and cartridges for most of the following compounds: Chemical Abstract Services Analyte MW1 Registry Number Acenaphthylene 152 208-96-8 Alachlor 269 15972-60-8 Aldrin 362 309-00-2 Ametryn 227
    [Show full text]
  • Possible Enzymatic Mechanism Underlying Chemical Tolerance and Characteristics of Tolerant Population in Scapholeberis Kingi
    Possible Enzymatic Mechanism Underlying Chemical Tolerance and Characteristics of Tolerant Population in Scapholeberis Kingi Makoto Ishimota ( [email protected] ) The Institute of Environmental Toxicology https://orcid.org/0000-0003-4686-0244 Mebuki Kodama The Institute of Environmental Toxicology Naruto Tomiyama The Institute of Environmental Toxicology Research Article Keywords: Cladocera, Insecticide, Tolerance, Acetylcholinesterase, Peroxidase, Superoxide dismutase, Multi-generational study, Field population. Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-492302/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract To determine the potential effects of pesticides on aquatic organisms inhabiting a realistic environment, we explored the characteristics and mechanisms of chemical tolerance in Scapholeberis kingi. We established a chemical-tolerant population via continuous exposure to pirimicarb, an acetylcholinesterase (AChE) inhibitor, and examined the effects of pirimicarb concentration on the intrinsic growth rates (r) of tolerant cladocerans. We also explored the association between r and feeding rate and tested the involvement of antioxidant enzymes [peroxidase (PO) and superoxide dismutase] and AChE in pirimicarb sensitivity. S. kingi was continuously exposed to sublethal pirimicarb concentrations (0, 2.5, 5, and 10 µg/L) for 15 generations and changes (half maximal effective concentration at 48 h, 48 h-EC50) in chemical sensitivity were investigated. In the F14 generation, the sensitivity of the 10 µg/L group was three times lower than that of the control group, suggesting the acquisition of chemical tolerance. Moreover, r was signicantly and negatively correlated with 48 h-EC50, suggesting a tness cost for tolerance.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Insecticide Control of Drosophila Suzukii in Commercial Sweet Cherry Crops Under Cladding
    insects Article Insecticide Control of Drosophila suzukii in Commercial Sweet Cherry Crops under Cladding Bethan Shaw 1 , Sebastian Hemer 2, Madeleine F. L. Cannon 1, Francesco Rogai 1 and Michelle T. Fountain 1,* 1 Pest and Pathology Ecology Department, NIAB EMR, New Road, East Malling, Kent ME19 6BJ, UK 2 Research and Development Department, Berry Garden Growers Ltd., Tatlingbury Oast, Five Oak Green, Tonbridge, Kent TN12 6RG, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 2 July 2019; Published: 4 July 2019 Abstract: Drosophila suzukii Matsumura is a damaging invasive pest of sweet cherry. Using a series of laboratory leaf contact assays, semi-field, and orchard spray programs we aimed to determine the impact of insecticide programs on D. suzukii adult mortality and oviposition in cladding-protected sweet cherry crops. Tests included assessing adult D. suzukii mortality after contact with leaves sprayed either one or two weeks previously and emergence of adults from fruits. Spinosad, lambda-cyhalothrin, acetamiprid, lime, pyrethrin, deltamethrin, and cyantraniliprole all reduced fruit damage up to day 7 after application. Of these active ingredients, only spinosad, lambda-cyhalothrin, and cyantraniliprole gave satisfactory control up to 14 days. There was no significant difference in D. suzukii mortality when exposed to leaves treated either one or two weeks previously with an application of either spinosad, cyantraniliprole, or lambda-cyhalothrin; however, mortality was significantly higher than D. suzukii in contact with untreated leaves. In eight commercial orchards, fortnightly spray applications including spinosad, cyantraniliprole, and lambda-cyhalothrin gave effective control of D. suzukii until harvest with very few damaged fruits.
    [Show full text]
  • 1 of 3 GC+LC-USA
    Updated: 07/18/2016 1 of 3 GC+LC-USA Limit of Quantitation (LOQ): 0.010 mg/kg (ppm) Sample Types: Low Fat Content Samples Minimum Sample Size: 100 grams (~1/4 pound). Certain products require more for better sample representation. Instrument: GC-MS/MS and LC-MS/MS Turnaround: 24-48 hours Accreditation: Part of AGQ USA's ISO/IEC 17025 Accreditation Scope 4,4'-Dichlorobenzophenone Bupirimate Cyantraniliprole Diflufenican Abamectin Buprofezin Cyazofamid Dimethoate Acephate Butachlor Cycloate Dimethoate (Sum) Acequinocyl Butocarboxim Cycloxydim Dimethomorph Acetamiprid Butralin Cyflufenamid Diniconazole Acetochlor Cadusafos Cyfluthrin Dinocap Acrinathrin Captafol Cymoxanil Dinotefuran Alachlor Captan Cyproconazole Diphenylamine Aldicarb Captan (Sum) Cyprodinil Disulfoton Aldicarb (Sum) Carbaryl Cyromazine Disulfoton (Sum) Aldicarb-sulfone Carbofuran DDD-o,p Disulfoton-sulfone Aldicarb-sulfoxide Carbofuran-3-hydroxy DDD-p,p +DDT-o,p Disulfoton-sulfoxide Aldrin Carbophenothion DDE-o,p Ditalimfos Ametryn Carbosulfan DDE-p,p Diuron Amitraz Carboxine DDT (Sum) Dodemorph Atrazine Carfentrazone-ethyl DDT-p,p Dodine Azadirachtin Chinomethionat DEET Emamectin Benzoate Azamethiphos Chlorantraniliprole Deltamethrin Endosulfan (A+B+Sulf) Azinphos-ethyl Chlordane Demeton Endosulfan Alfa Azinphos-methyl Chlordane Trans Demeton-S-methyl-sulfone Endosulfan Beta Azoxystrobin Chlorfenapyr Desmedipham Endosulfan Sulfate Benalaxyl Chlorfenson Diafenturion Endrin Ben-Carb-TPM (Sum) Chlorfenvinphos Dialifos EPN Bendiocarb Chlorfluazuron Diazinon Epoxiconazole
    [Show full text]
  • The Insecticides Act, 1968 (Act No.46 of 1968)
    The Insecticides Act, 1968 (Act No.46 of 1968) An Act to regulate the import, manufactures, sale, transport, distribution and use of insecticides with a view to prevent risk to human beings or animals and for matters connected therewith. [2 nd September 1968] Be it enacted by Parliament in the Nineteenth Year of the Republic of India as follows: 1. Short title, extent and commencement. * a. This Act may be called the Insecticides Act, 1968. b. It extends to the whole of India. c. It shall come into force on such date as the Central Government may, by notification in the official Gazette, appoint and different dates may be appointed for different States and for different provisions of Act. 2. Application of other laws not barred * The provisions of this Act shall be in addition to, and not in derogation of, any other law for the time being in force. 3. Definitions- In this Act, unless the context otherwise requires- a. "animals" means animals useful to human beings and includes fish and fowl, and such kinds of wild life as the Central Government may, by notification in the official Gazette, specify, being kinds which in its opinion, it is desirable to protect or preserve; b. "Board" means the Central Insecticides Board constituted under Sec.4; c. "Central Insecticides Laboratory" means the Central Insecticides Laboratory established, or as the case may be, the institution specified under Sec.16; d. "Import" means bringing into any place within the territories to which this Act extends from a place outside those territories; e. "Insecticide" means- i.
    [Show full text]