SECTIONAL CURVATURE-TYPE CONDITIONS on METRIC SPACES 2 and Poincaré Conditions, and Even the Measure Contraction Property
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Geometry: Curvature and Holonomy Austin Christian
University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics. -
Riemannian Geometry – Lecture 16 Computing Sectional Curvatures
Riemannian Geometry – Lecture 16 Computing Sectional Curvatures Dr. Emma Carberry September 14, 2015 Stereographic projection of the sphere Example 16.1. We write Sn or Sn(1) for the unit sphere in Rn+1, and Sn(r) for the sphere of radius r > 0. Stereographic projection φ from the north pole N = (0;:::; 0; r) gives local coordinates on Sn(r) n fNg Example 16.1 (Continued). Example 16.1 (Continued). Example 16.1 (Continued). We have for each i = 1; : : : ; n that ui = cxi (1) and using the above similar triangles, we see that r c = : (2) r − xn+1 1 Hence stereographic projection φ : Sn n fNg ! Rn is given by rx1 rxn φ(x1; : : : ; xn; xn+1) = ;:::; r − xn+1 r − xn+1 The inverse φ−1 of stereographic projection is given by (exercise) 2r2ui xi = ; i = 1; : : : ; n juj2 + r2 2r3 xn+1 = r − : juj2 + r2 and so we see that stereographic projection is a diffeomorphism. Stereographic projection is conformal Definition 16.2. A local coordinate chart (U; φ) on Riemannian manifold (M; g) is conformal if for any p 2 U and X; Y 2 TpM, 2 gp(X; Y ) = F (p) hdφp(X); dφp(Y )i where F : U ! R is a nowhere vanishing smooth function and on the right-hand side we are using the usual Euclidean inner product. Exercise 16.3. Prove that this is equivalent to: 1. dφp preserving angles, where the angle between X and Y is defined (up to adding multi- ples of 2π) by g(X; Y ) cos θ = pg(X; X)pg(Y; Y ) and also to 2 2. -
Chapter 13 Curvature in Riemannian Manifolds
Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + . -
3. Sectional Curvature of Lorentzian Manifolds. 1
3. SECTIONAL CURVATURE OF LORENTZIAN MANIFOLDS. 1. Sectional curvature, the Jacobi equation and \tidal stresses". The (3,1) Riemann curvature tensor has the same definition in the rie- mannian and Lorentzian cases: R(X; Y )Z = rX rY Z − rY rX Z − r[X;Y ]Z: If f(t; s) is a parametrized 2-surface in M (immersion) and W (t; s) is a vector field on M along f, we have the Ricci formula: D DW D DW − = R(@ f; @ f)W: @t @s @s @t t s For a variation f(t; s) = γs(t) of a geodesic γ(t) (with variational vector field J(t) = @sfjs=0 along γ(t)) this leads to the Jacobi equation for J: D2J + R(J; γ_ )_γ = 0: dt2 ? The Jacobi operator is the self-adjoint operator on (γ _ ) : Rp[v] = Rp(v; γ_ )_γ. When γ is a timelike geodesic (the worldline of a free-falling massive particle) the physical interpretation of J is the relative displacement (space- like) vector of a neighboring free-falling particle, while the second covariant 00 derivative J represents its relative acceleration. The Jacobi operator Rp gives the \tidal stresses" in terms of the position vector J. In the Lorentzian case, the sectional curvature is defined only for non- degenerate two-planes Π ⊂ TpM. Definition. Let Π = spanfX; Y g be a non-degenerate two-dimensional subspace of TpM. The sectional curvature σXY = σΠ is the real number σ defined by: hR(X; Y )Y; Xi = σhX ^ Y; X ^ Y i: Remark: by a result of J. -
Differential Geometry of Diffeomorphism Groups
CHAPTER IV DIFFERENTIAL GEOMETRY OF DIFFEOMORPHISM GROUPS In EN Lorenz stated that a twoweek forecast would b e the theoretical b ound for predicting the future state of the atmosphere using largescale numerical mo dels Lor Mo dern meteorology has currently reached a go o d correlation of the observed versus predicted for roughly seven days in the northern hemisphere whereas this p erio d is shortened by half in the southern hemisphere and by two thirds in the tropics for the same level of correlation Kri These dierences are due to a very simple factor the available data density The mathematical reason for the dierences and for the overall longterm unre liability of weather forecasts is the exp onential scattering of ideal uid or atmo spheric ows with close initial conditions which in turn is related to the negative curvatures of the corresp onding groups of dieomorphisms as Riemannian mani folds We will see that the conguration space of an ideal incompressible uid is highly nonat and has very p eculiar interior and exterior dierential geom etry Interior or intrinsic characteristics of a Riemannian manifold are those p ersisting under any isometry of the manifold For instance one can b end ie map isometrically a sheet of pap er into a cone or a cylinder but never without stretching or cutting into a piece of a sphere The invariant that distinguishes Riemannian metrics is called Riemannian curvature The Riemannian curvature of a plane is zero and the curvature of a sphere of radius R is equal to R If one Riemannian manifold can b e -
Curvature of Riemannian Manifolds
Curvature of Riemannian Manifolds Seminar Riemannian Geometry Summer Term 2015 Prof. Dr. Anna Wienhard and Dr. Gye-Seon Lee Soeren Nolting July 16, 2015 1 Motivation Figure 1: A vector parallel transported along a closed curve on a curved manifold.[1] The aim of this talk is to define the curvature of Riemannian Manifolds and meeting some important simplifications as the sectional, Ricci and scalar curvature. We have already noticed, that a vector transported parallel along a closed curve on a Riemannian Manifold M may change its orientation. Thus, we can determine whether a Riemannian Manifold is curved or not by transporting a vector around a loop and measuring the difference of the orientation at start and the endo of the transport. As an example take Figure 1, which depicts a parallel transport of a vector on a two-sphere. Note that in a non-curved space the orientation of the vector would be preserved along the transport. 1 2 Curvature In the following we will use the Einstein sum convention and make use of the notation: X(M) space of smooth vector fields on M D(M) space of smooth functions on M 2.1 Defining Curvature and finding important properties This rather geometrical approach motivates the following definition: Definition 2.1 (Curvature). The curvature of a Riemannian Manifold is a correspondence that to each pair of vector fields X; Y 2 X (M) associates the map R(X; Y ): X(M) ! X(M) defined by R(X; Y )Z = rX rY Z − rY rX Z + r[X;Y ]Z (1) r is the Riemannian connection of M. -
Lecture 8: the Sectional and Ricci Curvatures
LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ⊗2(^2V ∗) the set of 4-tensors that is anti-symmetric with respect to the first two entries and with respect to the last two entries. Lemma 1.1. Suppose T 2 ⊗2(^2V ∗), X; Y 2 V . Let X0 = aX +bY; Y 0 = cX +dY , then T (X0;Y 0;X0;Y 0) = (ad − bc)2T (X; Y; X; Y ): Proof. This follows from a very simple computation: T (X0;Y 0;X0;Y 0) = T (aX + bY; cX + dY; aX + bY; cX + dY ) = (ad − bc)T (X; Y; aX + bY; cX + dY ) = (ad − bc)2T (X; Y; X; Y ): 1 Now suppose (M; g) is a Riemannian manifold. Recall that 2 g ^ g is a curvature- like tensor, such that 1 g ^ g(X ;Y ;X ;Y ) = hX ;X ihY ;Y i − hX ;Y i2: 2 p p p p p p p p p p 1 Applying the previous lemma to Rm and 2 g ^ g, we immediately get Proposition 1.2. The quantity Rm(Xp;Yp;Xp;Yp) K(Xp;Yp) := 2 hXp;XpihYp;Ypi − hXp;Ypi depends only on the two dimensional plane Πp = span(Xp;Yp) ⊂ TpM, i.e. it is independent of the choices of basis fXp;Ypg of Πp. Definition 1.3. We will call K(Πp) = K(Xp;Yp) the sectional curvature of (M; g) at p with respect to the plane Πp. Remark. The sectional curvature K is NOT a function on M (for dim M > 2), but a function on the Grassmann bundle Gm;2(M) of M. -
Comparison Theorems in Riemannian Geometry
Comparison Theorems in Riemannian Geometry J.-H. Eschenburg 0. Introduction The subject of these lecture notes is comparison theory in Riemannian geometry: What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidis- tant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov's estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the "soul theorem" of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative cur- vature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner's method. The leading principle of the whole exposition is the use of convexity methods. Five ideas make these methods work: The comparison theory for the Riccati ODE, which probably goes back to L.Green [15] and which was used more systematically by Gromov [20], the triangle inequality for the Riemannian distance, the method of support function by Greene and Wu [16],[17],[34], the maximum principle of E.Hopf, generalized by E.Calabi [23], [4], and the idea of critical points of the distance function which was first used by Grove and Shiohama [21]. -
Differential Geometry Lecture 18: Curvature
Differential geometry Lecture 18: Curvature David Lindemann University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670 14. July 2020 David Lindemann DG lecture 18 14. July 2020 1 / 31 1 Riemann curvature tensor 2 Sectional curvature 3 Ricci curvature 4 Scalar curvature David Lindemann DG lecture 18 14. July 2020 2 / 31 Recap of lecture 17: defined geodesics in pseudo-Riemannian manifolds as curves with parallel velocity viewed geodesics as projections of integral curves of a vector field G 2 X(TM) with local flow called geodesic flow obtained uniqueness and existence properties of geodesics constructed the exponential map exp : V ! M, V neighbourhood of the zero-section in TM ! M showed that geodesics with compact domain are precisely the critical points of the energy functional used the exponential map to construct Riemannian normal coordinates, studied local forms of the metric and the Christoffel symbols in such coordinates discussed the Hopf-Rinow Theorem erratum: codomain of (x; v) as local integral curve of G is d'(TU), not TM David Lindemann DG lecture 18 14. July 2020 3 / 31 Riemann curvature tensor Intuitively, a meaningful definition of the term \curvature" for 3 a smooth surface in R , written locally as a graph of a smooth 2 function f : U ⊂ R ! R, should involve the second partial derivatives of f at each point. How can we find a coordinate- 3 free definition of curvature not just for surfaces in R , which are automatically Riemannian manifolds by restricting h·; ·i, but for all pseudo-Riemannian manifolds? Definition Let (M; g) be a pseudo-Riemannian manifold with Levi-Civita connection r. -
Jeff Cheeger
Progress in Mathematics Volume 297 Series Editors Hyman Bass Joseph Oesterlé Yuri Tschinkel Alan Weinstein Xianzhe Dai • Xiaochun Rong Editors Metric and Differential Geometry The Jeff Cheeger Anniversary Volume Editors Xianzhe Dai Xiaochun Rong Department of Mathematics Department of Mathematics University of California Rutgers University Santa Barbara, New Jersey Piscataway, New Jersey USA USA ISBN 978-3-0348-0256-7 ISBN 978-3-0348-0257-4 (eBook) DOI 10.1007/978-3-0348-0257-4 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012939848 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
The Second Fundamental Form. Geodesics. the Curvature Tensor
Differential Geometry Lia Vas The Second Fundamental Form. Geodesics. The Curvature Tensor. The Fundamental Theorem of Surfaces. Manifolds The Second Fundamental Form and the Christoffel symbols. Consider a surface x = @x @x x(u; v): Following the reasoning that x1 and x2 denote the derivatives @u and @v respectively, we denote the second derivatives @2x @2x @2x @2x @u2 by x11; @v@u by x12; @u@v by x21; and @v2 by x22: The terms xij; i; j = 1; 2 can be represented as a linear combination of tangential and normal component. Each of the vectors xij can be repre- sented as a combination of the tangent component (which itself is a combination of vectors x1 and x2) and the normal component (which is a multi- 1 2 ple of the unit normal vector n). Let Γij and Γij denote the coefficients of the tangent component and Lij denote the coefficient with n of vector xij: Thus, 1 2 P k xij = Γijx1 + Γijx2 + Lijn = k Γijxk + Lijn: The formula above is called the Gauss formula. k The coefficients Γij where i; j; k = 1; 2 are called Christoffel symbols and the coefficients Lij; i; j = 1; 2 are called the coefficients of the second fundamental form. Einstein notation and tensors. The term \Einstein notation" refers to the certain summation convention that appears often in differential geometry and its many applications. Consider a formula can be written in terms of a sum over an index that appears in subscript of one and superscript of P k the other variable. For example, xij = k Γijxk + Lijn: In cases like this the summation symbol is omitted. -
Do Carmo Riemannian Geometry 1. Review Example 1.1. When M
DIFFERENTIAL GEOMETRY NOTES HAO (BILLY) LEE Abstract. These are notes I took in class, taught by Professor Andre Neves. I claim no credit to the originality of the contents of these notes. Nor do I claim that they are without errors, nor readable. Reference: Do Carmo Riemannian Geometry 1. Review 2 Example 1.1. When M = (x; jxj) 2 R : x 2 R , we have one chart φ : R ! M by φ(x) = (x; jxj). This is bad, because there’s no tangent space at (0; 0). Therefore, we require that our collection of charts is maximal. Really though, when we extend this to a maximal completion, it has to be compatible with φ, but the map F : M ! R2 is not smooth. Definition 1.2. F : M ! N smooth manifolds is differentiable at p 2 M, if given a chart φ of p and of f(p), then −1 ◦ F ◦ φ is differentiable. Given p 2 M, let Dp be the set of functions f : M ! R that are differentiable at p. Given α :(−, ) ! M with 0 α(0) = p and α differentiable at 0, we set α (0) : Dp ! R by d α0(0)(f) = (f ◦ α) (0): dt Then 0 TpM = fα (0) : Dp ! R : α is a curve with α(0) = p and diff at 0g : d This is a finite dimensional vector space. Let φ be a chart, and αi(t) = φ(tei), then the derivative at 0 is just , and dxi claim that this forms a basis. For F : M ! N differentiable, define dFp : TpM ! TF (p)N by 0 0 (dFp)(α (0))(f) = (f ◦ F ◦ α) (0): Need to check that this is well-defined.