Do Carmo Riemannian Geometry 1. Review Example 1.1. When M

Total Page:16

File Type:pdf, Size:1020Kb

Do Carmo Riemannian Geometry 1. Review Example 1.1. When M DIFFERENTIAL GEOMETRY NOTES HAO (BILLY) LEE Abstract. These are notes I took in class, taught by Professor Andre Neves. I claim no credit to the originality of the contents of these notes. Nor do I claim that they are without errors, nor readable. Reference: Do Carmo Riemannian Geometry 1. Review 2 Example 1.1. When M = (x; jxj) 2 R : x 2 R , we have one chart φ : R ! M by φ(x) = (x; jxj). This is bad, because there’s no tangent space at (0; 0). Therefore, we require that our collection of charts is maximal. Really though, when we extend this to a maximal completion, it has to be compatible with φ, but the map F : M ! R2 is not smooth. Definition 1.2. F : M ! N smooth manifolds is differentiable at p 2 M, if given a chart φ of p and of f(p), then −1 ◦ F ◦ φ is differentiable. Given p 2 M, let Dp be the set of functions f : M ! R that are differentiable at p. Given α :(−, ) ! M with 0 α(0) = p and α differentiable at 0, we set α (0) : Dp ! R by d α0(0)(f) = (f ◦ α) (0): dt Then 0 TpM = fα (0) : Dp ! R : α is a curve with α(0) = p and diff at 0g : d This is a finite dimensional vector space. Let φ be a chart, and αi(t) = φ(tei), then the derivative at 0 is just , and dxi claim that this forms a basis. For F : M ! N differentiable, define dFp : TpM ! TF (p)N by 0 0 (dFp)(α (0))(f) = (f ◦ F ◦ α) (0): Need to check that this is well-defined. n k −1 −1 Example 1.3. If F : R ! R with k ≤ n, and dFα is surjective for all x 2 F (0), then F (0) is a smooth manifold. TM = f(x; V ): X 2 M; v 2 TpMg. M smooth manifold, G a group acting on M properly discontinuously, that is, F : G × M ! M so that for all g 2 G, Fg : M ! M by x 7! F (g; x) is a diffeomorphism. Fgh = FgFh and Fe = 1. For all x 2 M, there exists U neighbourhood n of x such that Fg(U) \ U = ; for all g 2 G, g 6= e. Set N = M = fx ∼ Fg(x): g 2 Gg is a manifold. Recall: F : M ! M is a diffeo if F bijective, differentiable, AND F −1 is diff Theorem 1.4. Given M smooth manifold, there is M~ simply connected manifold such that π1(M) acts properly discon- n tinuously on M~ and M = M/π~ 1(M). Example 1.5. RPn = Sn= fx ∼ −xg. CPn = Cn+1 − f0g= fx ∼ λx : λ 6= 0g. Definition 1.6. A vector field X is a map M ! TM. Let X(M) be the set of all vector fields. Given X; Y 2 X(M), define the Lie bracket to act by [X; Y ](f) = X (Y (f)) − Y (X(f)) : 1 DIFFERENTIAL GEOMETRY NOTES 2 Satisfying [[X; Y ] ;Z] + [[Y; Z] ;X] + [[Z; X] ;Y ] = 0: 2. Riemannian Metric n Definition 2.1. Let M be an n-dimensional manifold. A metric g on M is a symmetric bilinear map gp : TpM×TpM ! R for all p 2 M so that (1) gp (aX + Y; Z) = agp (X; Z) + gp (Y; Z) all a 2 R, X; Y; Z 2 TpM (2) gp (X; Y ) = gp (Y; X) (3) gp(X; X) > 0 for all X 2 TpM − 0 (4) If X; Y 2 X(M), then p 7! gp (X(p);Y (p)) is a smooth function Theorem 2.2. Every manifold has a metric (partition of unity) n @ @ Let (U; ') be a chart for M . Then gij(x) = g ( ; ) for all x 2 U and i; j = 1; :::; n. Then the matrix (gij) is '(x) @xi @xj positive definite and symmetric. Additionally, gij(x) are smooth functions of x. P @ P @ If we write X; Y 2 T M as X = ai and Y = bj then '(x) @xi @xj X @ @ X g (X; Y ) = a b g ; = a b g : '(x) i j ' @x @x i j ij i;j i j i;j ' −1 (V; ') is another chart, gij from first chart, gij from another chart. Let h = ◦ φ, then Claim 2.3. @ = P @hk @ . @xi k @xi @yk Proof. For all f 2 C1(M), @ @ @ X @hk @f ◦ (f) = (f ◦ φ) = (f ◦ ◦ h) = ◦ : @xi @xi @xi @xi @yk Therefore, φ @ @ X @hk @h` gij = g ; = gk`: @xi @xj @xi @xj k;` As a matrix, φ T gij = (Dh) g (Dh) : Given a curve γ : I ! M, the length(γ) = pg (γ0(t); γ0(t))dt: ˆI If R is a region of M, so that R ⊆ φ(U) of a chart, q vol(R) = det(gij)dx1:::dxn: ˆφ−1(R) If R is not contained in a single chart, use a partition of unity. n n n Example 2.4. On R , for X; Y 2 TxR = R , gx(X; Y ) = X · Y is called the Eucliean metric. n n+k If M ⊆ R is a manifold, gp (X; Y ) = X · Y is called induced metric. n n+1 n+1 n S = x 2 R : jxj = 1 ⊆ R then gsn is the induced metric on S . n n 4 B = fx 2 : jxj < 1g then g n (X; Y ) = X · Y is called the hyperbolic metric R H 1−|xj22 Definition 2.5. F :(M; g) ! (N; h) is an isometry if (1) F is a local diffeomorphism (2) g(X; Y ) = h ((dF )(X); (dF )(Y )) for all X; Y 2 X(M) DIFFERENTIAL GEOMETRY NOTES 3 Example 2.6. Any two curves of the same length are isometric. f(x; y): y > 0g is isometric to a cone (locally) Isometries of (Rn; Euclidean Metric) are rigid motions n Isometries of (S ; gsn ) = O(n + 1). For A 2 O(n + 1), Ax · Ax = AT A x · x = x · x = 1 for all x 2 Sn: Therefore, A is an isometry of Sn. n n n n n n Isometries of (H ; gH ) are comformal maps from B to B . F : B ! B is comformal if (dF )x (X) · (dF )x (Y ) = λ(x)X · Y . Definition 2.7. A connection r : X(M) × X(M) ! X(M) so that 1 (1) rfX+Y Z = frX Z + rY Z where f 2 C (M) (2) rX (fY + Z) = X(f)Y + frX Y + rX Z A connection is symmetric if rX Y − rY X = [X; Y ] : A connection is compatible with metric g if for all X; Y; Z 2 X(M), X (g(Y; Z)) = g (rX Y; Z) + g (Y; rX Z) : A connection compatible with g and symmetric is called a Levi-Civita connection. In coordinates (U; '), @ X k @ r @ = Γij ; @xi @xj @xk k P @ P @ where Γ is called the Christoffel symbols. If X = ai and Y = bj , then @xi j @xj 0 1 X X @ X @ X @bj @ rX Y = air @ @ bj A = aibjr @ + ai @xi @x @xi @x @x @x i j j i;j j i;j i j X k @ X @ = aibjΓi;j + X(bj) @xk @xj i;j;k j X k @ X @ = aibjΓij + X(bk) @xk @xk i;j;k k Suppose γ : I ! M is a curve, and Y (t) 2 Tγ(t)M. If γ has self intersection, γ(t1) = γ(t2), Y may take different values there. rγ0(t)Y is well-defined from the above expression, because the first term just need values. The second part, we just need that the first vector field X to be differentiable along the integral curves defined by Y . Theorem 2.8. Levi-Civita connections exist and are unique. Proof. We have X (hY; Zi) = hrX Y; Zi + hY; rX Zi Y (hZ; Xi) = hrY Z; Xi + hZ; rY Xi Z (hX; Y i) = hrZ X; Y i + hX; rZ Y i Now add the first two, and subtract the last, to get (using symmetricity) X (hY; Zi) + Y (hZ; Xi) − Z (hX; Y i) = 2 hrX Y; Zi + hZ; [Y; X]i + hY; [X; Z]i + hX; [Y; Z]i : Therefore, 1 hr Y; Zi = (X hY; Zi + Y hZ; Xi − Z hX; Y i) − hZ; [Y; X]i − hY; [X; Z]i − hX; [Y; Z]i ; X 2 DIFFERENTIAL GEOMETRY NOTES 4 which defines it. For a chart (U; '), then by combining symmetry and Christofell symbols, @ @ X ` 1 @ @ @ r @ ; = Γij · gk` = gjk + gik − gij : @xi @xj @xk 2 @xi @xj @xk ` If gij is g−1 , then ij ij k` ` X g @ @ @ Γij = gjk + gik − gij : 2 @xi @xj @xk k n Example 2.9. On (R ; Euclidean) ;DX Y = (X(y1); :::; X(yn)) = (hX; Dy1i ; :::; hX; Dyni) where Y = (y1; :::; yn). For M n ⊆ Rn+k, X; Y 2 X(M), T rX Y = (DX Y ) induced connection (the T is the projection to the tangent space, as a subspace of Rn+k). 0 Definition 2.10. Let (M; g) be a Riemannian manifold. A curve γ : I ! M is a geodesic if rγ0(t)γ (t) = 0 for all t 2 I (its acceleration is constant). n 0 0 0 Example 2.11. On R with the Euclidean metric, a curve γ(t) = (γ1(t); :::; γn(t)) and so γ (t) = (γ1(t); :::; γn(t)). Then 0 0 00 00 00 rγ0(t)γ (t) = Dγ0(t)γ (t) = (γ1 (t); :::; γn(t)) = γ (t): Therefore, γ ⊆ Rn is a geodesic iff γ00(t) = 0 for all t.
Recommended publications
  • Riemannian Geometry and the General Theory of Relativity
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1967 Riemannian geometry and the general theory of relativity Marie McBride Vanisko The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Vanisko, Marie McBride, "Riemannian geometry and the general theory of relativity" (1967). Graduate Student Theses, Dissertations, & Professional Papers. 8075. https://scholarworks.umt.edu/etd/8075 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. p m TH3 OmERAl THEORY OF RELATIVITY By Marie McBride Vanisko B.A., Carroll College, 1965 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MOKT/JTA 1967 Approved by: Chairman, Board of Examiners D e a ^ Graduante school V AUG 8 1967, Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V W Number: EP38876 All rights reserved INFORMATION TO ALL USERS The quality of this reproduotion is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missir^ pages, these will be noted. Also, if matedal had to be removed, a note will indicate the deletion. UMT Oi*MMtion neiitNna UMi EP38876 Published ProQuest LLQ (2013).
    [Show full text]
  • Riemannian Geometry Learning for Disease Progression Modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman
    Riemannian geometry learning for disease progression modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman To cite this version: Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman. Riemannian geometry learning for disease progression modelling. 2019. hal-02079820v2 HAL Id: hal-02079820 https://hal.archives-ouvertes.fr/hal-02079820v2 Preprint submitted on 17 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Riemannian geometry learning for disease progression modelling Maxime Louis1;2, Rapha¨elCouronn´e1;2, Igor Koval1;2, Benjamin Charlier1;3, and Stanley Durrleman1;2 1 Sorbonne Universit´es,UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM) 2 Inria Paris, Aramis project-team, 75013, Paris, France 3 Institut Montpelli`erainAlexander Grothendieck, CNRS, Univ. Montpellier Abstract. The analysis of longitudinal trajectories is a longstanding problem in medical imaging which is often tackled in the context of Riemannian geometry: the set of observations is assumed to lie on an a priori known Riemannian manifold. When dealing with high-dimensional or complex data, it is in general not possible to design a Riemannian geometry of relevance. In this paper, we perform Riemannian manifold learning in association with the statistical task of longitudinal trajectory analysis.
    [Show full text]
  • An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
    An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity Leonor Godinho and Jos´eNat´ario Lisbon, 2004 Contents Chapter 1. Differentiable Manifolds 3 1. Topological Manifolds 3 2. Differentiable Manifolds 9 3. Differentiable Maps 13 4. Tangent Space 15 5. Immersions and Embeddings 22 6. Vector Fields 26 7. Lie Groups 33 8. Orientability 45 9. Manifolds with Boundary 48 10. Notes on Chapter 1 51 Chapter 2. Differential Forms 57 1. Tensors 57 2. Tensor Fields 64 3. Differential Forms 66 4. Integration on Manifolds 72 5. Stokes Theorem 75 6. Orientation and Volume Forms 78 7. Notes on Chapter 2 80 Chapter 3. Riemannian Manifolds 87 1. Riemannian Manifolds 87 2. Affine Connections 94 3. Levi-Civita Connection 98 4. Minimizing Properties of Geodesics 104 5. Hopf-Rinow Theorem 111 6. Notes on Chapter 3 114 Chapter 4. Curvature 115 1. Curvature 115 2. Cartan’s Structure Equations 122 3. Gauss-Bonnet Theorem 131 4. Manifolds of Constant Curvature 137 5. Isometric Immersions 144 6. Notes on Chapter 4 150 1 2 CONTENTS Chapter 5. Geometric Mechanics 151 1. Mechanical Systems 151 2. Holonomic Constraints 160 3. Rigid Body 164 4. Non-Holonomic Constraints 177 5. Lagrangian Mechanics 186 6. Hamiltonian Mechanics 194 7. Completely Integrable Systems 203 8. Notes on Chapter 5 209 Chapter 6. Relativity 211 1. Galileo Spacetime 211 2. Special Relativity 213 3. The Cartan Connection 223 4. General Relativity 224 5. The Schwarzschild Solution 229 6. Cosmology 240 7. Causality 245 8. Singularity Theorem 253 9. Notes on Chapter 6 263 Bibliography 265 Index 267 CHAPTER 1 Differentiable Manifolds This chapter introduces the basic notions of differential geometry.
    [Show full text]
  • Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
    International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Riemannian Geometry – Lecture 16 Computing Sectional Curvatures
    Riemannian Geometry – Lecture 16 Computing Sectional Curvatures Dr. Emma Carberry September 14, 2015 Stereographic projection of the sphere Example 16.1. We write Sn or Sn(1) for the unit sphere in Rn+1, and Sn(r) for the sphere of radius r > 0. Stereographic projection φ from the north pole N = (0;:::; 0; r) gives local coordinates on Sn(r) n fNg Example 16.1 (Continued). Example 16.1 (Continued). Example 16.1 (Continued). We have for each i = 1; : : : ; n that ui = cxi (1) and using the above similar triangles, we see that r c = : (2) r − xn+1 1 Hence stereographic projection φ : Sn n fNg ! Rn is given by rx1 rxn φ(x1; : : : ; xn; xn+1) = ;:::; r − xn+1 r − xn+1 The inverse φ−1 of stereographic projection is given by (exercise) 2r2ui xi = ; i = 1; : : : ; n juj2 + r2 2r3 xn+1 = r − : juj2 + r2 and so we see that stereographic projection is a diffeomorphism. Stereographic projection is conformal Definition 16.2. A local coordinate chart (U; φ) on Riemannian manifold (M; g) is conformal if for any p 2 U and X; Y 2 TpM, 2 gp(X; Y ) = F (p) hdφp(X); dφp(Y )i where F : U ! R is a nowhere vanishing smooth function and on the right-hand side we are using the usual Euclidean inner product. Exercise 16.3. Prove that this is equivalent to: 1. dφp preserving angles, where the angle between X and Y is defined (up to adding multi- ples of 2π) by g(X; Y ) cos θ = pg(X; X)pg(Y; Y ) and also to 2 2.
    [Show full text]
  • SECTIONAL CURVATURE-TYPE CONDITIONS on METRIC SPACES 2 and Poincaré Conditions, and Even the Measure Contraction Property
    SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES MARTIN KELL Abstract. In the first part Busemann concavity as non-negative curvature is introduced and a bi-Lipschitz splitting theorem is shown. Furthermore, if the Hausdorff measure of a Busemann concave space is non-trivial then the space is doubling and satisfies a Poincaré condition and the measure contraction property. Using a comparison geometry variant for general lower curvature bounds k ∈ R, a Bonnet-Myers theorem can be proven for spaces with lower curvature bound k > 0. In the second part the notion of uniform smoothness known from the theory of Banach spaces is applied to metric spaces. It is shown that Busemann functions are (quasi-)convex. This implies the existence of a weak soul. In the end properties are developed to further dissect the soul. In order to understand the influence of curvature on the geometry of a space it helps to develop a synthetic notion. Via comparison geometry sectional curvature bounds can be obtained by demanding that triangles are thinner or fatter than the corresponding comparison triangles. The two classes are called CAT (κ)- and resp. CBB(κ)-spaces. We refer to the book [BH99] and the forthcoming book [AKP] (see also [BGP92, Ots97]). Note that all those notions imply a Riemannian character of the metric space. In particular, the angle between two geodesics starting at a com- mon point is well-defined. Busemann investigated a weaker notion of non-positive curvature which also applies to normed spaces [Bus55, Section 36]. A similar idea was developed by Pedersen [Ped52] (see also [Bus55, (36.15)]).
    [Show full text]
  • Geometric GSI’19 Science of Information Toulouse, 27Th - 29Th August 2019
    ALEAE GEOMETRIA Geometric GSI’19 Science of Information Toulouse, 27th - 29th August 2019 // Program // GSI’19 Geometric Science of Information On behalf of both the organizing and the scientific committees, it is // Welcome message our great pleasure to welcome all delegates, representatives and participants from around the world to the fourth International SEE from GSI’19 chairmen conference on “Geometric Science of Information” (GSI’19), hosted at ENAC in Toulouse, 27th to 29th August 2019. GSI’19 benefits from scientific sponsor and financial sponsors. The 3-day conference is also organized in the frame of the relations set up between SEE and scientific institutions or academic laboratories: ENAC, Institut Mathématique de Bordeaux, Ecole Polytechnique, Ecole des Mines ParisTech, INRIA, CentraleSupélec, Institut Mathématique de Bordeaux, Sony Computer Science Laboratories. We would like to express all our thanks to the local organizers (ENAC, IMT and CIMI Labex) for hosting this event at the interface between Geometry, Probability and Information Geometry. The GSI conference cycle has been initiated by the Brillouin Seminar Team as soon as 2009. The GSI’19 event has been motivated in the continuity of first initiatives launched in 2013 at Mines PatisTech, consolidated in 2015 at Ecole Polytechnique and opened to new communities in 2017 at Mines ParisTech. We mention that in 2011, we // Frank Nielsen, co-chair Ecole Polytechnique, Palaiseau, France organized an indo-french workshop on “Matrix Information Geometry” Sony Computer Science Laboratories, that yielded an edited book in 2013, and in 2017, collaborate to CIRM Tokyo, Japan seminar in Luminy TGSI’17 “Topoplogical & Geometrical Structures of Information”.
    [Show full text]
  • Riemann's Contribution to Differential Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • 3. Sectional Curvature of Lorentzian Manifolds. 1
    3. SECTIONAL CURVATURE OF LORENTZIAN MANIFOLDS. 1. Sectional curvature, the Jacobi equation and \tidal stresses". The (3,1) Riemann curvature tensor has the same definition in the rie- mannian and Lorentzian cases: R(X; Y )Z = rX rY Z − rY rX Z − r[X;Y ]Z: If f(t; s) is a parametrized 2-surface in M (immersion) and W (t; s) is a vector field on M along f, we have the Ricci formula: D DW D DW − = R(@ f; @ f)W: @t @s @s @t t s For a variation f(t; s) = γs(t) of a geodesic γ(t) (with variational vector field J(t) = @sfjs=0 along γ(t)) this leads to the Jacobi equation for J: D2J + R(J; γ_ )_γ = 0: dt2 ? The Jacobi operator is the self-adjoint operator on (γ _ ) : Rp[v] = Rp(v; γ_ )_γ. When γ is a timelike geodesic (the worldline of a free-falling massive particle) the physical interpretation of J is the relative displacement (space- like) vector of a neighboring free-falling particle, while the second covariant 00 derivative J represents its relative acceleration. The Jacobi operator Rp gives the \tidal stresses" in terms of the position vector J. In the Lorentzian case, the sectional curvature is defined only for non- degenerate two-planes Π ⊂ TpM. Definition. Let Π = spanfX; Y g be a non-degenerate two-dimensional subspace of TpM. The sectional curvature σXY = σΠ is the real number σ defined by: hR(X; Y )Y; Xi = σhX ^ Y; X ^ Y i: Remark: by a result of J.
    [Show full text]
  • Differential Geometry of Diffeomorphism Groups
    CHAPTER IV DIFFERENTIAL GEOMETRY OF DIFFEOMORPHISM GROUPS In EN Lorenz stated that a twoweek forecast would b e the theoretical b ound for predicting the future state of the atmosphere using largescale numerical mo dels Lor Mo dern meteorology has currently reached a go o d correlation of the observed versus predicted for roughly seven days in the northern hemisphere whereas this p erio d is shortened by half in the southern hemisphere and by two thirds in the tropics for the same level of correlation Kri These dierences are due to a very simple factor the available data density The mathematical reason for the dierences and for the overall longterm unre liability of weather forecasts is the exp onential scattering of ideal uid or atmo spheric ows with close initial conditions which in turn is related to the negative curvatures of the corresp onding groups of dieomorphisms as Riemannian mani folds We will see that the conguration space of an ideal incompressible uid is highly nonat and has very p eculiar interior and exterior dierential geom etry Interior or intrinsic characteristics of a Riemannian manifold are those p ersisting under any isometry of the manifold For instance one can b end ie map isometrically a sheet of pap er into a cone or a cylinder but never without stretching or cutting into a piece of a sphere The invariant that distinguishes Riemannian metrics is called Riemannian curvature The Riemannian curvature of a plane is zero and the curvature of a sphere of radius R is equal to R If one Riemannian manifold can b e
    [Show full text]