Differential Geometry: Curvature and Holonomy Austin Christian

Total Page:16

File Type:pdf, Size:1020Kb

Differential Geometry: Curvature and Holonomy Austin Christian University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics. For their helpful comments and criticisms, I would also like to thank my committee members, Sheldon Davis and Regan Beckham. Less conspicuously, my classmates have helped me to mature mathematically and to hone my expository skills; they ought to share the credit for what clarity may be found in my exposition, and bear none of the blame for its shortcomings. I would be remiss to omit my father, who introduced me to mathematics, my mother, who has encouraged my efforts, or my siblings, grandmothers, and other family members, all of whom have been supportive throughout my education. Finally, the greatest gratitude is owed to my wonderful wife, Kristin. She encour- aged me to write when I was tired, forgave the late nights I spent on this project, and, most importantly, agreed to the penury of graduate school. I would be foolish to believe that this thesis could have been completed without her support, making it as much her accomplishment as my own. Contents List of Figures ..................................... iii Abstract ......................................... iv 1 Introduction ..................................... 1 2 Manifolds: Topological and Smooth ...................... 4 2.1 Topological Manifolds . 4 2.2 Partitions of Unity . 9 2.3 Topological Imbeddings . 13 2.4 Smooth Manifolds . 14 3 The Tangent Space ................................. 20 3.1 Tangent Vectors . 20 3.2 Smooth Maps and Their Differentials . 28 3.3 Smooth Vector Fields . 33 3.4 Local Flows . 39 4 Lie Groups ...................................... 47 4.1 The Classical Matrix Groups . 47 4.2 Lie Groups and Lie Algebras . 52 4.3 More on Lie Groups . 58 5 Bundles ........................................ 64 5.1 Vector Bundles . 64 5.2 Frames and Distributions . 67 5.3 Fiber Bundles . 71 6 Differential Forms .................................. 75 6.1 Tensors . 75 6.2 Alternating Tensors . 78 6.3 Differential Forms . 84 i 7 Riemannian Geometry ............................... 96 7.1 Affine Connections . 96 7.2 Riemannian Manifolds . 114 7.3 The Volume Form . 122 7.4 Gauss Curvature . 127 8 Curvature and Holonomy ............................. 133 8.1 Connections on Principal Bundles . 133 8.2 The Curvature Form and the Structural Equation . 139 8.3 The Ambrose-Singer Theorem . 145 ii List of Figures 2.1 Stereographic projection of S1........................... 5 2.2 Stereographic projection of S2........................... 8 2.3 A transition map. 15 3.1 The tangent bundle of S1............................. 31 2 3.2 Flow lines in R .................................. 42 3.3 The Lie Derivative. 44 4.1 A special linear transformation. 48 4.2 The Lie group S1.................................. 53 4.3 Integral curves of vector fields that do not commute. 63 5.1 The M¨obiusbundle. 65 7.1 A vector field along a curve. 97 1 2 7.2 Parallel transport about S in R ......................... 99 7.3 A covariant derivative. 101 7.4 Parallel transport on S2..............................107 8.1 A vertical vector. 134 8.2 Horizontal motion in our new connection. 137 iii Abstract DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY Austin Christian Thesis chair: David Milan, Ph.D. The University of Texas at Tyler May 2015 We develop the basic language of differential geometry, including smooth manifolds, bundles, and differential forms. Once this background is established, we explore paral- lelism in smooth manifolds | in particular, in Riemannian manifolds | and conclude by presenting a proof of the Ambrose-Singer theorem, which relates parallelism (holonomy) to curvature in principal bundles. iv Chapter 1 Introduction In the spring semester of 2014, David Milan | an analyst by trade | agreed to mentor the author in an independent study of differential geometry at UT Tyler. Over the course of that semester, the independent study covered much of the material found in [5], and the study spilled into the summer with the reading of [1], which was supported by many of the sources found in the References section of this paper. This thesis is essentially a report on that independent study, with Chapters 2 through 7 covering the background material learned from textbooks and selected readings, and with Chapter 8 reproducing Ambrose and Singer's proof of their theorem on holonomy found in [1]. In its earliest form, geometry could rightly be called the study of flat space. Cer- tainly Euclid's Elements concerned itself primarily with the structure of two-dimensional space and the manner in which its elements relate to one another. Eventually, however, flat two-dimensional (and even three-dimensional) Euclidean space could no longer contain mathematical curiosities. A study was needed of spaces which \live" in 3-space while having the local appearance of 2-space | for example, the surface on which we live. For centuries surfaces were studied by a variety of mathematicians, but, as is the case in many fields of mathematics, it was Gauss who made the first substantial progress in studying the metric properties of surfaces at an infinitesimal level. In 1822, in response to a prize problem of the Royal Society of Sciences of Copenhagen, Gauss presented what is today called a conformal representation of one surface upon another [17, p. 463]. This is a map between surfaces which preserves the \metric" properties, such as length and angle. Then, in 1827, Gauss proved the remarkable fact that the curvature of a surface, a measure of its shape, is an intrinsic property, meaning that it can be determined from infinitesimal measurements on the surface [11]. But it was a student of Gauss | Riemann | that considered both Euclidean space and surfaces to in fact be special cases of manifolds. In 1854, Riemann presented his habilitation thesis at the University of G¨ottingen,which was entitled \On the Hypotheses which Lie at the Foundations of Geometry." In it, he introduced the notion of an \n-fold extended manifold" and argued that Space...constitutes only a particular case of a triply extended magnitude. A nec- essary sequel of this is that the propositions of geometry are not derivable from general concepts of quantity, but that those properties by which space is dis- tinguished from other conceivable triply extended magnitudes can be gathered only from experience [17, pp. 411-412]. From Riemann's viewpoint, we should not be studying geometry in Euclidean n-space, but studying geometry in any space of dimension n, and determing the characteristics of our 1 space which make its geometry different from the Euclidean case. The goal of the present paper is to develop the background in smooth manifolds (mani- folds on which differential calculus makes sense) necessary to study two important concepts: curvature and parallelism. There are various definitions for curvature on a manifold, but all of them attempt to describe the \shape" of the manifold. Parallelism, on the other hand, regulates what motions in a manifold we consider to be \straight". In Chapter 7 we will study each of these notions in the case of a Riemannian manifold, which is a smooth manifold on which the usual geometric properties are defined. In Chapter 8 we present a more general look at each of these concepts, and relate them to one another with the Ambrose-Singer theorem [1]. In Chapters 2 and 3 we introduce the basic terminology of smooth manifold theory. This begins with defining topological manifolds, giving topological results, and developing smooth manifolds from the topological variety. We then proceed to characterize the tan- gent space of a smooth manifold, interpreting this space both as a collection of infinitesimal curves in the manifold and as the collection of directional derivatives of real-valued func- tions on the manifold. All of the material in these chapters is entirely standard. To a great extent these chapters follow corresponding chapters in [5], as this was the text used in the aforementioned independent study. It should be noted, however, that we flesh out many of the details which were left to the reader in that text. In many cases this means provid- ing proofs which were designated exercises by [5]; in such cases, the originality of the proof is denoted by a y symbol, though this practice is abandoned beyond these first two chapters.
Recommended publications
  • Scalar Curvature and Geometrization Conjectures for 3-Manifolds
    Comparison Geometry MSRI Publications Volume 30, 1997 Scalar Curvature and Geometrization Conjectures for 3-Manifolds MICHAEL T. ANDERSON Abstract. We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After dis- cussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of these conjectures and outline an approach toward their proof. Introduction In the late seventies and early eighties Thurston proved a number of very re- markable results on the existence of geometric structures on 3-manifolds. These results provide strong support for the profound conjecture, formulated by Thur- ston, that every compact 3-manifold admits a canonical decomposition into do- mains, each of which has a canonical geometric structure. For simplicity, we state the conjecture only for closed, oriented 3-manifolds. Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented, 2 prime 3-manifold. Then there is a finite collection of disjoint, embedded tori Ti 2 in M, such that each component of the complement M r Ti admits a geometric structure, i.e., a complete, locally homogeneous RiemannianS metric. A more detailed description of the conjecture and the terminology will be given in Section 1. A complete Riemannian manifold N is locally homogeneous if the universal cover N˜ is a complete homogenous manifold, that is, if the isometry group Isom N˜ acts transitively on N˜. It follows that N is isometric to N=˜ Γ, where Γ is a discrete subgroup of Isom N˜, which acts freely and properly discontinuously on N˜.
    [Show full text]
  • [Math.DG] 1 Feb 2002
    The BIC of a conical fibration. Martintxo Saralegi-Aranguren∗ Robert Wolak† Universit´ed’Artois Uniwersytet Jagiellonski November 14, 2018 Abstract In the paper we introduce the notions of a singular fibration and a singular Seifert fi- bration. These notions are natural generalizations of the notion of a locally trivial fibration to the category of stratified pseudomanifolds. For singular foliations defined by such fibra- tions we prove a de Rham type theorem for the basic intersection cohomology introduced the authors in a recent paper. One of important examples of such a structure is the natural projection onto the leaf space for the singular Riemannian foliation defined by an action of a compact Lie group on a compact smooth manifold. The failure of the Poincar´eduality for the homology and cohomology of some singular spaces led Goresky and MacPherson to introduce a new homology theory called intersection homology which took into account the properties of the singularities of the considered space (cf. [10]). This homology is defined for stratified pseudomanifolds. The initial idea was generalized in several ways. The theories of simplicial and singular homologies were developed as well as weaker notions of the perversity were proposed (cf. [11, 12]). Several versions of the Poincar´eduality were proved taking into account the notion of dual perversities. Finally, the deRham intersection cohomology was defined by Goresky and MacPherson for Thom-Mather stratified spaces. The first written reference is the paper by J.L. Brylinski, cf. [6]. This led to the search for the ”de Rham - type” theorem for the intersection cohomology. The first author in his thesis and several subsequent publications, (cf.
    [Show full text]
  • DISCRETE DIFFERENTIAL GEOMETRY: an APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 Curvature—Overview • Intuitively, describes “how much a shape bends” – Extrinsic: how quickly does the tangent plane/normal change? – Intrinsic: how much do quantities differ from flat case? N T B Curvature—Overview • Driving force behind wide variety of physical phenomena – Objects want to reduce—or restore—their curvature – Even space and time are driven by curvature… Curvature—Overview • Gives a coordinate-invariant description of shape – fundamental theorems of plane curves, space curves, surfaces, … • Amazing fact: curvature gives you information about global topology! – “local-global theorems”: turning number, Gauss-Bonnet, … Curvature—Overview • Geometric algorithms: shape analysis, local descriptors, smoothing, … • Numerical simulation: elastic rods/shells, surface tension, … • Image processing algorithms: denoising, feature/contour detection, … Thürey et al 2010 Gaser et al Kass et al 1987 Grinspun et al 2003 Curvature of Curves Review: Curvature of a Plane Curve • Informally, curvature describes “how much a curve bends” • More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent Equivalently: Here the angle brackets denote the usual dot product, i.e., . Review: Curvature and Torsion of a Space Curve •For a plane curve, curvature captured the notion of “bending” •For a space curve we also have torsion, which captures “twisting” Intuition: torsion is “out of plane bending” increasing torsion Review: Fundamental Theorem of Space Curves •The fundamental theorem of space curves tells that given the curvature κ and torsion τ of an arc-length parameterized space curve, we can recover the curve (up to rigid motion) •Formally: integrate the Frenet-Serret equations; intuitively: start drawing a curve, bend & twist at prescribed rate.
    [Show full text]
  • Kähler Manifolds, Ricci Curvature, and Hyperkähler Metrics
    K¨ahlermanifolds, Ricci curvature, and hyperk¨ahler metrics Jeff A. Viaclovsky June 25-29, 2018 Contents 1 Lecture 1 3 1.1 The operators @ and @ ..........................4 1.2 Hermitian and K¨ahlermetrics . .5 2 Lecture 2 7 2.1 Complex tensor notation . .7 2.2 The musical isomorphisms . .8 2.3 Trace . 10 2.4 Determinant . 11 3 Lecture 3 11 3.1 Christoffel symbols of a K¨ahler metric . 11 3.2 Curvature of a Riemannian metric . 12 3.3 Curvature of a K¨ahlermetric . 14 3.4 The Ricci form . 15 4 Lecture 4 17 4.1 Line bundles and divisors . 17 4.2 Hermitian metrics on line bundles . 18 5 Lecture 5 21 5.1 Positivity of a line bundle . 21 5.2 The Laplacian on a K¨ahlermanifold . 22 5.3 Vanishing theorems . 25 6 Lecture 6 25 6.1 K¨ahlerclass and @@-Lemma . 25 6.2 Yau's Theorem . 27 6.3 The @ operator on holomorphic vector bundles . 29 1 7 Lecture 7 30 7.1 Holomorphic vector fields . 30 7.2 Serre duality . 32 8 Lecture 8 34 8.1 Kodaira vanishing theorem . 34 8.2 Complex projective space . 36 8.3 Line bundles on complex projective space . 37 8.4 Adjunction formula . 38 8.5 del Pezzo surfaces . 38 9 Lecture 9 40 9.1 Hirzebruch Signature Theorem . 40 9.2 Representations of U(2) . 42 9.3 Examples . 44 2 1 Lecture 1 We will assume a basic familiarity with complex manifolds, and only do a brief review today. Let M be a manifold of real dimension 2n, and an endomorphism J : TM ! TM satisfying J 2 = −Id.
    [Show full text]
  • Paracompactness and C2 -Paracompactness
    Turkish Journal of Mathematics Turk J Math (2019) 43: 9 – 20 http://journals.tubitak.gov.tr/math/ © TÜBİTAK Research Article doi:10.3906/mat-1804-54 C -Paracompactness and C2 -paracompactness Maha Mohammed SAEED∗,, Lutfi KALANTAN,, Hala ALZUMI, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia Received: 17.04.2018 • Accepted/Published Online: 29.08.2018 • Final Version: 18.01.2019 Abstract: A topological space X is called C -paracompact if there exist a paracompact space Y and a bijective function f : X −! Y such that the restriction fjA : A −! f(A) is a homeomorphism for each compact subspace A ⊆ X .A topological space X is called C2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function f : X −! Y such that the restriction fjA : A −! f(A) is a homeomorphism for each compact subspace A ⊆ X . We investigate these two properties and produce some examples to illustrate the relationship between them and C -normality, minimal Hausdorff, and other properties. Key words: Normal, paracompact, C -paracompact, C2 -paracompact, C -normal, epinormal, mildly normal, minimal Hausdorff, Fréchet, Urysohn 1. Introduction We introduce two new topological properties, C -paracompactness and C2 -paracompactness. They were defined by Arhangel’skiĭ. The purpose of this paper is to investigate these two properties. Throughout this paper, we denote an ordered pair by hx; yi, the set of positive integers by N, the rational numbers by Q, the irrational numbers by P, and the set of real numbers by R. T2 denotes the Hausdorff property. A T4 space is a T1 normal space and a Tychonoff space (T 1 ) is a T1 completely regular space.
    [Show full text]
  • Quantum Dynamical Manifolds - 3A
    Quantum Dynamical Manifolds - 3a. Cold Dark Matter and Clifford’s Geometrodynamics Conjecture D.F. Scofield ApplSci, Inc. 128 Country Flower Rd. Newark, DE, 19711 scofield.applsci.com (June 11, 2001) The purpose of this paper is to explore the concepts of gravitation, inertial mass and spacetime from the perspective of the geometrodynamics of “mass-spacetime” manifolds (MST). We show how to determine the curvature and torsion 2-forms of a MST from the quantum dynamics of its constituents. We begin by reformulating and proving a 1876 conjecture of W.K. Clifford concerning the nature of 4D MST and gravitation, independent of the standard formulations of general relativity theory (GRT). The proof depends only on certain derived identities involving the Riemann curvature 2-form in a 4D MST having torsion. This leads to a new metric-free vector-tensor fundamental law of dynamical gravitation, linear in pairs of field quantities which establishes a homeomorphism between the new theory of gravitation and electromagnetism based on the mean curvature potential. Its generalization leads to Yang-Mills equations. We then show the structure of the Riemann curvature of a 4D MST can be naturally interpreted in terms of mass densities and currents. By using the trace curvature invariant, we find a parity noninvariance is possible using a de Sitter imbedding of the Poincar´egroup. The new theory, however, is equivalent to the Newtonian one in the static, large scale limit. The theory is compared to GRT and shown to be compatible outside a gravitating mass in the absence of torsion. We apply these results on the quantum scale to determine the gravitational field of leptons.
    [Show full text]
  • NON-EXISTENCE of METRIC on Tn with POSITIVE SCALAR
    NON-EXISTENCE OF METRIC ON T n WITH POSITIVE SCALAR CURVATURE CHAO LI Abstract. In this note we present Gromov-Lawson's result on the non-existence of metric on T n with positive scalar curvature. Historical results Scalar curvature is one of the simplest invariants of a Riemannian manifold. In general dimensions, this function (the average of all sectional curvatures at a point) is a weak measure of the local geometry, hence it's suspicious that it has no relation to the global topology of the manifold. In fact, a result of Kazdan-Warner in 1975 states that on a compact manifold of dimension ≥ 3, every smooth function which is negative somewhere, is the scalar curvature of some Riemannian metric. However people know that there are manifolds which carry no metric whose scalar scalar curvature is everywhere positive. The first examples of such manifolds were given in 1962 by Lichnerowicz. It is known that if X is a compact spin manifold and A^ 6= 0 then by Lichnerowicz formula (which will be discussed later) then X doesn't carry any metric with everywhere positive scalar curvature. Note that spin assumption is essential here, since the complex projective plane has positive sectional curvature and non-zero A^-genus. Despite these impressive results, one simple question remained open: Can the torus T n, n ≥ 3, carry a metric of positive scalar curvature? This question was settled for n ≤ 7 by R. Schoen and S. T. Yau. Their method involves the existence of smooth solution of Plateau problem, so the dimension restriction n ≤ 7 is essential.
    [Show full text]
  • Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
    Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces, meaning polygonal curves and triangulated polyhedral surfaces. We find that the most useful analogs are those which preserve integral relations for curvature, like the Gauß/Bonnet theorem. For simplicity, we usually restrict our attention to curves and surfaces in euclidean three space E3, although many of the results would easily generalize to other ambient manifolds of arbitrary dimension. Most of the material here is not new; some is even quite old. Although some refer- ences are given, no attempt has been made to give a comprehensive bibliography or an accurate picture of the history of the ideas. 1. Smooth curves, Framings and Integral Curvature Relations A companion article [Sul06] investigated the class of FTC (finite total curvature) curves, which includes both smooth and polygonal curves, as a way of unifying the treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape invariant under Euclidean motions. The only first-order information is the tangent line; since all lines in space are equivalent, there are no first-order invariants. Second-order information is given by the osculating circle, and the invariant is its curvature κ = 1/r. For a plane curve given as a graph y = f(x) let us contrast the notions of curvature and second derivative.
    [Show full text]
  • Base-Paracompact Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 128 (2003) 145–156 www.elsevier.com/locate/topol Base-paracompact spaces John E. Porter Department of Mathematics and Statistics, Faculty Hall Room 6C, Murray State University, Murray, KY 42071-3341, USA Received 14 June 2001; received in revised form 21 March 2002 Abstract A topological space is said to be totally paracompact if every open base of it has a locally finite subcover. It turns out this property is very restrictive. In fact, the irrationals are not totally paracompact. Here we give a generalization, base-paracompact, to the notion of totally paracompactness, and study which paracompact spaces satisfy this generalization. 2002 Elsevier Science B.V. All rights reserved. Keywords: Paracompact; Base-paracompact; Totally paracompact 1. Introduction A topological space X is paracompact if every open cover of X has a locally finite open refinement. A topological space is said to be totally paracompact if every open base of it has a locally finite subcover. Corson, McNinn, Michael, and Nagata announced [3] that the irrationals have a basis which does not have a locally finite subcover, and hence are not totally paracompact. Ford [6] was the first to give the definition of totally paracompact spaces. He used this property to show the equivalence of the small and large inductive dimension in metric spaces. Ford also showed paracompact, locally compact spaces are totally paracompact. Lelek [9] studied totally paracompact and totally metacompact separable metric spaces. He showed that these two properties are equivalent in separable metric spaces.
    [Show full text]
  • Differentiable Manifolds
    Gerardo F. Torres del Castillo Differentiable Manifolds ATheoreticalPhysicsApproach Gerardo F. Torres del Castillo Instituto de Ciencias Universidad Autónoma de Puebla Ciudad Universitaria 72570 Puebla, Puebla, Mexico [email protected] ISBN 978-0-8176-8270-5 e-ISBN 978-0-8176-8271-2 DOI 10.1007/978-0-8176-8271-2 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011939950 Mathematics Subject Classification (2010): 22E70, 34C14, 53B20, 58A15, 70H05 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.birkhauser-science.com) Preface The aim of this book is to present in an elementary manner the basic notions related with differentiable manifolds and some of their applications, especially in physics. The book is aimed at advanced undergraduate and graduate students in physics and mathematics, assuming a working knowledge of calculus in several variables, linear algebra, and differential equations.
    [Show full text]