The Structure of Manifolds of Nonnegative Sectional Curvature

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of Manifolds of Nonnegative Sectional Curvature The Structure of Manifolds of Nonnegative Sectional Curvature by Christy Cameron B.Sc.(Hon.), Dalhousie University, 2005 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in The Faculty of Graduate Studies (Mathematics) The University Of British Columbia August, 2007 © Christy Cameron 2007 Abstract Understanding the structure of a Riemannian Manifold based on information about its sectional curvature is a challenging problem which has received much attention. According to the Soul Theorem any complete noncom- pact Riemannian manifold M of nonnegative sectional curvature contains a compact totally geodesic submanifold called the soul of M. Furthermore, the manifold is diffeomorphic to the normal bundle of the soul. This is a beautiful structural result which provides a significant contribution to the classification of Riemannian manifolds. In this paper we present a complete proof of the Soul Theorem which draws upon the theory and techniques developed over the years since its original proof in 1972. The proof relies heavily upon results from Comparison Geometry and the theory of convex sets. ii Table of Contents Abstract ii Table of Contents iii List of Figures iv Acknowledgements v 1 Introduction 1 1.1 The Soul Theorem - Significance 3 1.1.1 Existence of a Soul 3 1.1.2 Generalization of Simple Points 4 2 Comparison Theorems 6 2.1 Rauch Comparison Theorem 6 2.2 Toponogov's Theorem 18 3 Preliminaries for the Proof of The Soul Theorem 21 4 Proof of The Soul Theorem 34 4.1 Constructing the Soul 34 4.2 Finding a Diffeomorphism 45 5 Final Comments 49 5.1 Properties and Examples of a Soul 49 5.2 The Soul Conjecture 50 5.3 Recent Research Developments 51 Bibliography 53 iii List of Figures 2.1 Smooth variation of 7 7 2.2 A geodesic triangle 19 2.3 A geodesic hinge 19 3.1 Geodesic Cone 23 3.2 Construction of H1 26 3.3 Proof that d(q, Bli2) < t2 - h 30 3.4 Hypersurface and corresponding geodesic cone 32 4.1 Parallel Translation 36 4.2 Case 1 38 4.3 Case II 40 4.4 F(s,t) : [a,b] x [0,/] C 42 4.5 <p{s,t) : [a,b] x [0,1] -» C 43 5.1 Examples of the non-uniqueness of souls 49 iv Acknowledgements I wish to express my sincere thanks to my supervisor Dr. Ailana Fraser. I am grateful to her for introducing me to this subject and for all her help throughout this project. Her encouragement, guidance, and teaching, during my time at UBC are greatly appreciated. I also thank Dr. Jingyi Chen for the many helpful comments he made regarding an earlier draft of this paper. Finally I wish to thank my family and in particular my parents, for always being there with endless support and encouragement in all that I do. Chapter 1 Introduction Determining the structure of Riemannian manifolds based on information about sectional curvature has always been a central problem in Rieman• nian Geometry. Early investigations focused on the simplest case, namely those manifolds which possessed constant sectional curvature. A tremen• dous breakthrough came in the late 1920's with the establishment of the fact that for every K 6 K there exists exactly one (up to isometry) simply connected complete Riemannian manifold of constant sectional curvature K [1]. For manifolds of dimension n these are: Euclidean space (Rn) when K = 0, the n-Sphere (Sn) of radius when K > 0 and n- dimensional hyperbolic space (Hn) of curvature K < 0. To simplify later computations, model spaces based on this classification were defined with K = 0, K = — 1, K = 1. Through suitable adjustments to the metric all spaces with constant K are equivalent to the model space equipped with K of the same sign. Following the classification of manifolds admitting a metric of constant sectional curvature, the next step was to attempt to classify arbitrary Rie• mannian maniflods. Since much was known about the structure of manifolds of constant sectional curvature, a natural approach was to seek a classifica• tion of these manifolds through comparison with model spaces. The hope was that if information such as bounds on K were known it would be pos• sible to show that the manifold has a structure "close to" that of one of the model spaces. This technique forms the basis for the branch of Rieman• nian Geometry known as Comparison Geometry. Researchers in this area of mathematics have made immense contributions to the understanding of the structure of Riemannian manifolds and this remains an active area of research today. Since the classification of arbitrary Riemannian manifolds is a topic ex• tremely rich in theory and results, it is not possible to provide a complete overview of the history in this paper. For our purposes we will restrict our attention to complete noncompact Riemannian manifolds of nonnegative curvature. Myers and Bonnet began the classification of this family of manifolds when they developed their much celebrated Bonnet-Myers Theorem which 1 Chapter 1. Introduction states that any Riemannian manifold with sectional curvature K satisfying K > S > 0 has diameter less than or equal to This theorem implies that when the sectional curvatures are bounded away from zero then the manifold is necessarily compact. Thus the only noncompact complete man• ifolds of nonnegative curvature must contain points at which the sectional curvature gets arbitrarily close to zero. By exploiting the Gauss-Bonnet formula specified for surfaces in R2, Cohn-Vossen determined the structure of all such manifolds in dimension 2. In particular, any 2-dimensional non- compact complete manifold with K > 0 is either diffeomorphic to M.2 or is flat [4]. This was a significant finding but a new approach would be required to classify manifolds of higher dimension. In 1969, Gromoll and Meyer [6] discovered a new technique which al• lowed them to determine the structure of Riemannian manifolds when the curvature is strictly positive. Their remarkable result is that any such n- dimensional noncompact manifold is diffeomorphic to 1™. A crucial step in their novel approach which allowed for classification involved associat• ing to each point in the manifold a totally convex set. A set is said to be totally convex if whenever a geodesic has endpoints in the set then the en• tire geodesic is contained in the set. The techniques used by Gromoll and Meyer could not be generalized from the case of positive curvature to that of nonnegative curvature. But shortly thereafter, Cheeger and Gromoll [4] discovered that through the use of Toponogov's Theorem it is possible to construct totally convex sets associated to every point in a complete man• ifold carrying the relaxed condition that K > 0. Toponogov's Theorem is a result from Comparison Geometry which allowed Cheeger and Gromoll to draw geometric conclusions regarding a manifold having K > 0 through comparison with ordinary Euclidean space. Toponogov's Theorem will be discussed in detail in Chapter 2. This construction lead immediately to the discovery of what is now known as The Soul Theorem. This is a beautiful structural result and so we state it below as a separate theorem. Theorem 1.0.1. (The Soul Theorem) Every complete noncompact Riemannian manifold of nonnegative sectional curvature contains a compact totally geodesic subnianifold known as the soul of a manifold. Furthermore, the manifold is diffeomorphic to the normal bundle of any of its souls. Cheeger and Gromoll are responsible for the discovery of the Soul Theo• rem but their proof exhibited only a homeomorphism between the manifold and its soul. Their proof was extremely technical and they included a brief 2 Chapter 1. Introduction description on how to "smooth out" the homeomorphism to obtain a dif- feomorphism between the structures. Two years later, Walter A. Poor used his own new approach to explicitly construct the necessary diffeomorphism establishing the Soul Theorem in its entirety [15]. The remainder of this paper will focus on the Soul Theorem and in par• ticular we will consolidate information from various sources to provide a complete unified proof of the theorem. Although technical at times, the proof contains many beautiful geometric arguments and highlights in par• ticular the usefulness of the study of totally convex sets in understanding the structure of manifolds. Following the proof of the theorem we will re• turn to a brief discussion of the implications of the Soul Theorem on the classification of noncompact manifolds of nonnegative curvature. 1.1 The Soul Theorem - Significance The Soul Theorem is remarkable not only for its significance in the classi• fication of noncompact manifolds of nonnegative curvature. The statement of the theorem itself is quite surprising and in addition it provides a gener• alization of structures present in manifolds of strictly positive curvature. 1.1.1 Existence of a Soul According to the Soul Theorem, every complete noncompact manifold of nonnegative curvature contains a totally geodesic submanifold. As demon• strated in the discussion which follows, this is quite a remarkable statement since in general an arbitrary Riemannian manifold will not contain such a manifold. By definition, a totally geodesic submanifold 5 is a submanifold in which every geodesic in S is also a geodesic in the surrounding manifold M. Consider the Levi-Civita connection VM on M and the induced connection V5 on S and suppose X and Y are vector fields tangent to S and extended arbitrarily to M. We may write v^y = (v^r)T + (v^y)x the sum of the tangential and normal components respectively. We define the second fundamental form II to be the map II : T(TS) x T(TS) -» T(NS) satisfying 3 Chapter 1.
Recommended publications
  • SECTIONAL CURVATURE-TYPE CONDITIONS on METRIC SPACES 2 and Poincaré Conditions, and Even the Measure Contraction Property
    SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES MARTIN KELL Abstract. In the first part Busemann concavity as non-negative curvature is introduced and a bi-Lipschitz splitting theorem is shown. Furthermore, if the Hausdorff measure of a Busemann concave space is non-trivial then the space is doubling and satisfies a Poincaré condition and the measure contraction property. Using a comparison geometry variant for general lower curvature bounds k ∈ R, a Bonnet-Myers theorem can be proven for spaces with lower curvature bound k > 0. In the second part the notion of uniform smoothness known from the theory of Banach spaces is applied to metric spaces. It is shown that Busemann functions are (quasi-)convex. This implies the existence of a weak soul. In the end properties are developed to further dissect the soul. In order to understand the influence of curvature on the geometry of a space it helps to develop a synthetic notion. Via comparison geometry sectional curvature bounds can be obtained by demanding that triangles are thinner or fatter than the corresponding comparison triangles. The two classes are called CAT (κ)- and resp. CBB(κ)-spaces. We refer to the book [BH99] and the forthcoming book [AKP] (see also [BGP92, Ots97]). Note that all those notions imply a Riemannian character of the metric space. In particular, the angle between two geodesics starting at a com- mon point is well-defined. Busemann investigated a weaker notion of non-positive curvature which also applies to normed spaces [Bus55, Section 36]. A similar idea was developed by Pedersen [Ped52] (see also [Bus55, (36.15)]).
    [Show full text]
  • Comparison Theorems in Riemannian Geometry
    Comparison Theorems in Riemannian Geometry J.-H. Eschenburg 0. Introduction The subject of these lecture notes is comparison theory in Riemannian geometry: What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidis- tant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov's estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the "soul theorem" of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative cur- vature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner's method. The leading principle of the whole exposition is the use of convexity methods. Five ideas make these methods work: The comparison theory for the Riccati ODE, which probably goes back to L.Green [15] and which was used more systematically by Gromov [20], the triangle inequality for the Riemannian distance, the method of support function by Greene and Wu [16],[17],[34], the maximum principle of E.Hopf, generalized by E.Calabi [23], [4], and the idea of critical points of the distance function which was first used by Grove and Shiohama [21].
    [Show full text]
  • Jeff Cheeger
    Progress in Mathematics Volume 297 Series Editors Hyman Bass Joseph Oesterlé Yuri Tschinkel Alan Weinstein Xianzhe Dai • Xiaochun Rong Editors Metric and Differential Geometry The Jeff Cheeger Anniversary Volume Editors Xianzhe Dai Xiaochun Rong Department of Mathematics Department of Mathematics University of California Rutgers University Santa Barbara, New Jersey Piscataway, New Jersey USA USA ISBN 978-3-0348-0256-7 ISBN 978-3-0348-0257-4 (eBook) DOI 10.1007/978-3-0348-0257-4 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012939848 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • The Metric Projection Onto the Soul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 1, Pages 55{69 S 0002-9947(99)02237-0 Article electronically published on March 8, 1999 THE METRIC PROJECTION ONTO THE SOUL LUIS GUIJARRO AND GERARD WALSCHAP Abstract. We study geometric properties of the metric projection π : M S ! of an open manifold M with nonnegative sectional curvature onto a soul S. π is shown to be C∞ up to codimension 3. In arbitrary codimensions, small metric balls around a soul turn out to be convex, so that the unit normal bundle of S also admits a metric of nonnegative curvature. Next we examine how the horizontal curvatures at infinity determine the geometry of M, and study the structure of Sharafutdinov lines. We conclude with regularity properties of the cut and conjugate loci of M. The resolution of the Soul conjecture of Cheeger and Gromoll by Perelman showed that the structure of open manifolds with nonnegative sectional curvature is more rigid than expected. One of the key results in [14] is that the metric pro- jection π : M S which maps a point p in M to the point π(p)inSthat is closest to p is a Riemannian→ submersion. Perelman also observed that this map is at least 1 2 of class C ,andlateritwasshownin[9]thatπis at least C ,andC∞ at almost every point. The existence of such a Riemannian submersion combined with the restriction on the sign of the curvature suggests that the geometry of M must be special. The purpose of this paper is to illustrate this in several different directions.
    [Show full text]
  • Complete Manifolds with Nonnegative Sectional Curvature
    COMPLETE MANIFOLDS WITH NONNEGATIVE SECTIONAL CURVATURE KEEGAN YAO Abstract. Many major results in Riemannian geometry are of the form cur- vature implies topology. In this paper, we will specifically study how nonneg- ative sectional curvature impacts the topology of a manifold. To do this, we first introduce fundamental concepts in Riemannian geometry and briefly dis- cuss fundamental comparison theorems. Finally, we will finish by discussing how complete manifolds with nonnegative sectional curvature can be reduced to compact manifolds. Contents 1. Introduction 1 2. Riemannian Metric 2 3. Levi-Civita Connection 4 4. Curvature 7 5. Geodesics and Jacobi Fields 9 6. First Comparison Theorems 12 7. Complete Manifolds of Nonnegative Sectional Curvature 16 Acknowledgments 25 References 25 1. Introduction Historically, differential geometry explores the properties of curves and surfaces in R3. Namely, it explores how curvature can be described and how certain prop- erties of a curve or surface are impacted by its curvature. Many of these ideas originally relied on the presence of a normal vector, which depends on how it is embedded in Rn. We desire to develop a method of studying manifolds which does not rely on how it sits within its ambient space. In doing so, we can also study the geometry of higher dimensional manifolds without relying on a visual intuition of their embeddings. This desire to study manifolds intrinsically and therefore develop an intuition for the geometric properties of arbitrary manifolds will motivate the introduction of Riemannian geometry. Major results in Riemannian geometry often relate the curvature of a manifold to its topology. The restriction to complete manifolds of nonnegative sectional curvature limits our study to generally well-behaved manifolds and is, therefore, a good first example to the connection between curvature and topology.
    [Show full text]
  • Lectures on Riemannian Geometry
    Lectures on Riemannian Geometry Shiping Liu e-mail: [email protected] Department of Mathematics, USTC typed by Yirong Hu, Shiyu Zhang, Qizhi Zhao. Contents Introduction3 1 Riemannian Metric5 1.1 Definition................................5 1.2 Examples................................6 1.3 When are two Riemannian manifolds “equivalent”?..........8 1.4 Existencce of Riemannian Metrics...................8 1.5 The Metric Structure..........................9 1.6 Riemannian Measure, Volume..................... 14 1.7 Divergence Theorem.......................... 18 2 Geodesics 23 2.1 Geodesic equations and Christoffel symbols.............. 23 2.2 Minimizing Properties of Geodesics.................. 28 2.3 Global Properties:Hopf-Rinow Theorem................ 37 2.4 Existence of geodesics in given homotopy class............ 43 3 Connections, Parallelism, and covariant Derivatives. 49 3.1 Affine Connections............................ 49 3.2 Parallelism............................... 53 3.3 Covariant derivatives of a tensor field................. 57 3.4 Levi-Civita Riemannian Connections.................. 59 3.5 The First variation of Arc Length and Energy............. 66 3.6 Covariant differentiation, Hessian, and Laplacian........... 69 3.7 Appendix: The technical lemma..................... 71 4 Curvatures 73 4.1 The Second Variation.......................... 73 4.2 Properties of Curvature tensor : Geometric meaning and Symmetries. 77 4.2.1 Ricci Identity.......................... 77 4.2.2 Geometric meaning :A test case [Spivak 2.Chap6.Thm 10].. 78 4.2.3 Bianchi Identities........................ 80 4.2.4 Riemannian curvature tensor.................. 82 4.3 Sectional Curvature........................... 84 3 CONTENTS 1 4.4 Ricii Curvature and Scalar curvature................. 89 4.5 The Second Variation : Revisited [JJ,4.1] [WSY,chap 6]........ 95 5 Space forms and Jacobi fields 113 5.1 Isometries and totally geodesic submanifold.............
    [Show full text]
  • On Frankel's Theorem
    Canad. Math. Bull. Vol. 46 (1), 2003 pp. 130–139 On Frankel’s Theorem Peter Petersen and Frederick Wilhelm Abstract. In this paper we show that two minimal hypersurfaces in a manifold with positive Ricci curvature must intersect. This is then generalized to show that in manifolds with positive Ricci cur- vature in the integral sense two minimal hypersurfaces must be close to each other. We also show what happens if a manifold with nonnegative Ricci curvature admits two nonintersecting minimal hypersurfaces. 1 Introduction Recall that one of the basic properties of planar elliptic geometries is that two distinct “lines” must intersect. Examples of this behavior can be found among the projective spaces RP2, CP2, HP2 and CaP2 where “lines” are interpreted as being totally geodesic spheres of dimension 1, 2, 4 and 8 respectively. Note that these submanifolds lie in the middle dimension. Thus Frankel’s Theorem (see [6]) gives a far reaching gener- alization of this phenomenon: Theorem 1 (Frankel) In a complete connected Riemannian n-manifold of positive sectional curvature two closed totally geodesic submanifolds of dimension n1 and n2 must intersect provided n + n n. 1 2 ≥ The proof is a simple consequence of Synge’s second variation formula. Theorem 2 (Synge) Let c : [0, l] M be a unit speed geodesic and V (s, t) a variation → ∂V of c with the properties that V (0, t) = c(t) and the variational field ∂s (0, t) = E(t) is a unit, normal, parallel field along c, then for the arclength functional l ∂V L(s) = 0 ∂t ! " " " " we have " " dL (0) = 0, ds d2L l ∂V l 2 (0) = sec(E, c˙) dt + c˙, ∂V (0, t) .
    [Show full text]
  • Riemannian Geometry
    Riemannian Geometry 1.2.1 Definition A Riemannian metric on a C∞ manifold M is a correspondence, which as- sociates to each point p ∈ M, an inner product (−, −)p (a symmetric bilinear positive-definite form), on the tangent space TpM, which varies differentiably. 1.2.10 Proposition A differentiable manifold M has a Riemannian metric. 2.2.1 Definition An affine connection ∇ on a C∞ mfd M is a map (X(M) is the space of vector fields on M) ∇ : X(M) × X(M) → X(M) (denoted by (X, Y ) → ∇X Y ), s.t. (1) ∇fX+gY Z = f · ∇X Z + g · ∇Y Z, (2) ∇X (Y + Z) = ∇X Y + ∇X Z, (3) ∇X (fY ) = f∇X Y + X(f) · Y , for any X, Y, Z ∈ X(M), and f, g ∈ C∞(M). 2.2.2 Proposition M is a smooth mfd with an affine connection ∇. Then ∃! correspondence which associates to a vector field V along the smooth curve c : I → M, another DV vector field dt along c, called the covariant derivative of V along c, such that: D DV DW (1) dt (V + W ) = dt + dt , D df DV (2) dt (fV ) = dt · V + f · dt , DV (3) if V is induced by a vector field Y ∈ X(M), then = ∇ dc Y . dt dt 2.2.3 Remark The vector (∇X Y )p depends only on the value of X at p, and the value of Y along a curve tangent to X(p). 2.2.6 Proposition D We can parallel translate (s.t. dt = 0) a vector along a curve.
    [Show full text]
  • Book Reviews
    BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 4, Pages 459{465 S 0273-0979(00)00869-7 Article electronically published on April 19, 2000 Riemannian Geometry and Geometric Analysis, by J. Jost, Universitext, Springer, New York, 1995, 400 pp., $54.00, ISBN 3-540-57113-2 Riemannian Geometry, by P. Petersen, Graduate Texts in Mathematics, vol. 171, Springer-Verlag, New York, 1998, xvi + 432 pp., $49.95, ISBN 0-387-98212-4 Riemannian Geometry, by T. Sakai, Translations of Math. Monographs, vol. 149, Amer. Math. Soc., Providence, RI, 1995, xiv+358 pp., $59.00, ISBN 0-8218- 0284-4 The three books under consideration treat advanced topics in differential, mostly Riemannian geometry. Each of them covers a vast number of topics, and it would be too ambitious to enumerate all of them here. Below I will, however, include a short description of the contents and structure of each of the books. An excellent introduction to this review and the subject of Riemannian geometry is J. Kazdan's review [Kaz] of Chavel's book [Ch2], all the more so since this book is among the serious competitors of the three books considered here. Each of the three books we consider here starts at an elementary level, but it is probably advisable to get some first exposure to Riemannian geometry from some other source. This remark applies the least to the book by Petersen, where the author spends some time discussing basic concepts in elementary examples. I think that all three books will be useful as reference books and as sources of inspiration for advanced students and their teachers.
    [Show full text]
  • METRIC FIBRATIONS in EUCLIDEAN SPACE* a Systematic Study of The
    ASIAN J. MATH. © 1997 International Press Vol. 1, No. 4, pp. 716-728, December 1997 004 METRIC FIBRATIONS IN EUCLIDEAN SPACE* DETLEF GROMOLLt AND GERARD WALSCHAP* A systematic study of the local and global geometry of metric foliations in space forms was begun in [5] and [6], primarily for the spherical case. Recall that a metric foliation Tk (without singular focal loci) in a Riemannian manifold Qn+A; is a smooth partition into locally everywhere equidistant leaves of dimension fc, or equivalently, a Riemannian foliation bundlelike with respect to the fixed ambient metric, so locally given in terms of Riemannian submersions. For generic Q, such foliations do not exist, except with leaves of codimension n = 1, i.e., parallel hypersurfaces. However, they are abundant for some of the most important metrics, notably when Q has constant curvature: basic classes of examples here are foliations by principal orbits of isometric group actions and by the exponentials of parallel normals of any submanifold with flat normal bundle. Understanding metric foliations seems to be most difficult at the local level. Global problems have roots in the classical theory of isoparametric hypersurfaces and isometric group actions. They are also playing an ever increasing role in Riemannian geometry, and arise in particular in connection with rigidity aspects of nonnegatively curved spaces: The extension of the Diameter Sphere Theorem required the classifica- tion of metric fibrations of Euclidean spheres [6] in an essential way. The stronger form of the Soul Theorem proved by G. Perelman [11] finally established that all complete manifolds with nonnegative curvature can be constructed as certain metric fibrations over compact ones.
    [Show full text]
  • Various Covering Spectra for Complete Metric Spaces∗
    ASIAN J. MATH. c 2015 International Press Vol. 19, No. 1, pp. 171–202, January 2015 007 VARIOUS COVERING SPECTRA FOR COMPLETE METRIC SPACES∗ CHRISTINA SORMANI† AND GUOFANG WEI‡ Abstract. Here we study various covering spectra for complete noncompact length spaces with universal covers (including Riemannian manifolds and the pointed Gromov Hausdorff limits of Riemannian manifolds with lower bounds on their Ricci curvature). We relate the covering spectrum to the (marked) shift spectrum of such a space. We define the slipping group generated by elements of the fundamental group whose translative lengths are 0. We introduce a rescaled length, the rescaled covering spectrum and the rescaled slipping group. Applying these notions we prove that certain complete noncompact Riemannian manifolds with nonnegative or positive Ricci curvature have finite fundamental groups. Throughout we suggest further problems both for those interested in Riemannian geometry and those interested in metric space theory. Key words. Metric spaces, covering spectrum, universal covers, fundamental groups. AMS subject classifications. 53B20, 53C30. 1. Introduction. The covering spectrum of a compact Riemannian manifold or length space captures the metric properties needed to obtain topological information about the given space. In prior work of the authors [36], we applied the covering spectrum to determine the properties of the fundamental group of a compact metric space and to determine whether that space has a universal cover. We proved the covering spectrum is determined by the marked length spectrum and the elements of the covering spectrum lie in the half length spectrum. Then de Smit, Gornet and Sutton developed a means of producing pairs of compact manifolds which have the same covering spectrum in [12].
    [Show full text]
  • Geometry Of, and Via, Symmetries
    GEOMETRY OF, AND VIA, SYMMETRIES KARSTEN GROVE It is well known that Lie groups and homogeneous spaces provide a rich source of interesting examples for a variety of geometric aspects. Likewise it is often the case that topological and geometric restrictions yield the existence of isometries in a more or less direct way. The most obvious example of this is the group of deck transformations of the universal cover of a non- simply connected manifold. More subtle situations arise in the contexts of rigidity problems and of collapsing with bounded curvature. Our main purpose here is to present the view point that the geometry of isometry groups provide a natural and useful link between theory and examples in Riemannian geometry. This fairly unexplored territory is fascinating and interesting in its own right. At the same time it enters naturally when such groups arise in settings as above. More importantly, perhaps, this study also provides a systematic search for geometrically interesting examples, where the group of isometries is short of acting transitively in contrast to the case of homogeneous spaces mentioned above. Although the general philosophy presented here applies to many di®erent situations, we will illustrate our point of view primarily within the context of manifolds with nonnegative or positive curvature. We have divided our presentation into ¯ve sections. The ¯rst section is concerned with basic equivariant Riemannian geometry of smooth compact transformation groups, including a treat- ment of Alexandrov geometry of orbit spaces. Section two is the heart of the subject. It deals with the geometry and topology in the presence of symmetries.
    [Show full text]