Systems Engineering Approach to Ground Combat Vehicle Survivability in Urban Operations

Total Page:16

File Type:pdf, Size:1020Kb

Systems Engineering Approach to Ground Combat Vehicle Survivability in Urban Operations Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-09 Systems engineering approach to ground combat vehicle survivability in urban operations Wong, Luhai Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/50510 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYSTEMS ENGINEERING APPROACH TO GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS by Luhai Wong September 2016 Thesis Advisor: Christopher A. Adams Co-Advisor: Fotis A. Papoulias Second Reader: Joseph T. Klamo Approved for public release. Distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) September 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SYSTEMS ENGINEERING APPROACH TO GROUND COMBAT VEHICLE N/A SURVIVABILITY IN URBAN OPERATIONS 6. AUTHOR(S) Luhai Wong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER N/A 9. SPONSORING /MONITORING AGENCY NAME(S) AND 10. SPONSORING / ADDRESS(ES) MONITORING AGENCY N/A REPORT NUMBER N/A 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____. 12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE Approved for public release. Distribution is unlimited. 13. ABSTRACT (maximum 200 words) Ground combat vehicles (GCV) traditionally rely on passive armor to reduce their vulnerability against threats. This is insufficient now, given the increasing gap between threat lethality and passive armor capability and the change in threat scenario from relatively open terrain to urban terrain. This thesis provides an overview of system survivability and discusses the conventional approach to GCV survivability. This thesis then uses a systems engineering approach to guide the subsequent study, which identifies likely threats to GCVs in an urban environment and discusses potential susceptibility reduction techniques and technologies that can counter the threats. This thesis then develops a survivability assessment model (using Imagine That’s ExtendSim), which quantifies the different survivability characteristics of a GCV and determines the sets of survivability characteristics to meet the defined survivability requirement. Finally, this thesis demonstrates the use of a decision-making methodology (multi-attribute decision-making) to manage the capability conflicts that arise between survivability and other key platform capabilities. Therefore, this author hopes to help military planners and engineers design more robust, holistic and balanced survivability solutions for GCVs, to provide more flexibility against different types of threats and threat scenarios. 14. SUBJECT TERMS 15. NUMBER OF ground combat vehicle, survivability, susceptibility, vulnerability, urban operations PAGES 165 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT REPORT PAGE ABSTRACT Unclassified Unclassified Unclassified UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 i THIS PAGE INTENTIONALLY LEFT BLANK ii Approved for public release. Distribution is unlimited. SYSTEMS ENGINEERING APPROACH TO GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS Luhai Wong Senior Engineer, Defence Science & Technology Agency, Singapore B.S., University of Illinois, Urbana-Champaign, 2008 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN SYSTEMS ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 2016 Approved by: Christopher A. Adams Thesis Advisor Fotis A. Papoulias Co-Advisor Joseph T. Klamo Second Reader Ronald E. Giachetti Chair, Department of Systems Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT Ground combat vehicles (GCV) traditionally rely on passive armor to reduce their vulnerability against threats. This is insufficient now, given the increasing gap between threat lethality and passive armor capability and the change in threat scenario from relatively open terrain to urban terrain. This thesis provides an overview of system survivability and discusses the conventional approach to GCV survivability. This thesis then uses a systems engineering approach to guide the subsequent study, which identifies likely threats to GCVs in an urban environment and discusses potential susceptibility reduction techniques and technologies that can counter the threats. This thesis then develops a survivability assessment model (using Imagine That’s ExtendSim), which quantifies the different survivability characteristics of a GCV and determines the sets of survivability characteristics to meet the defined survivability requirement. Finally, this thesis demonstrates the use of a decision-making methodology (multi-attribute decision-making) to manage the capability conflicts that arise between survivability and other key platform capabilities. Therefore, this author hopes to help military planners and engineers design more robust, holistic and balanced survivability solutions for GCVs, to provide more flexibility against different types of threats and threat scenarios. v THIS PAGE INTENTIONALLY LEFT BLANK vi TABLE OF CONTENTS I. INTRODUCTION..................................................................................................1 A. BACKGROUND ........................................................................................1 B. RESEARCH QUESTIONS .......................................................................3 II. WHAT IS SYSTEM SURVIVABILITY? ...........................................................5 A. SUSCEPTIBILITY ....................................................................................5 B. VULNERABILITY ....................................................................................8 III. GROUND COMBAT VEHICLES AND THEIR CAPABILITIES ................11 A. MOBILITY ...............................................................................................12 B. LETHALITY ............................................................................................13 C. SURVIVABILITY ...................................................................................14 IV. GROUND COMBAT VEHICLE SURVIVABILITY ......................................17 A. SURVIVABILITY ONION .....................................................................17 1. Destroy Enemies Beyond Their Engagement Range ................18 2. Avoid Being Detected ...................................................................18 3. Avoid Being Engaged ...................................................................19 4. If Engaged, Avoid Being Hit .......................................................19 5. If Hit, Withstand Penetration .....................................................21 6. If Penetrated, Withstand Being Killed .......................................22 B. CONVENTIONAL APPROACH TO GROUND COMBAT VEHICLE SURVIVABILITY ................................................................24 V. URBAN OPERATIONS ......................................................................................27 A. IMPETUS .................................................................................................27 B. DESCRIPTION OF URBAN OPERATIONS .......................................27 1. Lack of Situational Awareness ...................................................29 2. Increased Signature .....................................................................30 3. Lack of Mobility ...........................................................................30 4. High Risk of Collateral Damage .................................................30 C. VIGNETTES OF ACTUAL URBAN OPERATIONS .........................31 1. Battle of Grozny ...........................................................................32 2. Operation Defensive Shield .........................................................32 VI. SYSTEMS ENGINEERING APPROACH .......................................................35 A. THREAT ANALYSIS .............................................................................36 vii B. PROBLEM DEFINITION ......................................................................37 C. STAKEHOLDER ANALYSIS ...............................................................37 1. Orchestrators and Regulators ....................................................37 2. Researchers and Developers .......................................................38 3. Opponents .....................................................................................38
Recommended publications
  • Projected Acquisition Costs for the Army's Ground Combat Vehicles
    Projected Acquisition Costs for the Army’s Ground Combat Vehicles © MDart10/Shutterstock.com APRIL | 2021 At a Glance The Army operates a fleet of ground combat vehicles—vehicles intended to conduct combat opera- tions against enemy forces—and plans to continue to do so. Expanding on the Army’s stated plans, the Congressional Budget Office has projected the cost of acquiring such vehicles through 2050. Those projections include costs for research, development, test, and evaluation (RDT&E) and for procurement but not the costs of operating and maintaining the vehicles. CBO’s key findings are as follows: • Total acquisition costs for the Army’s ground combat vehicles are projected to average about $5 billion per year (in 2020 dollars) through 2050—$4.5 billion for procurement and $0.5 billion for RDT&E. • The projected procurement costs are greater (in constant dollars) than the average annual cost for such vehicles from 2010 to 2019 but approximately equal to the average annual cost from 2000 to 2019 (when spending was boosted because of operations in Iraq). • More than 40 percent of the projected acquisition costs of Army ground combat vehicles are for Abrams tanks. • Most of the projected acquisition costs are for remanufactured and upgraded versions of current vehicles, though the Army also plans to acquire an Optionally Manned Fighting Vehicle, which will replace the Bradley armored personnel carrier; an Armored Multi-Purpose Vehicle, which will replace the M113 armored personnel carrier; and a new Mobile Protected Firepower tank, which will be lighter than an Abrams tank. • The Army is also considering developing an unmanned Decisive Lethality Platform that might eventually replace Abrams tanks.
    [Show full text]
  • Mp-Avt-108-56
    UNCLASSIFIED/UNLIMITED Active Defense Systems (ADS) Program – Formerly Integrated Army Active Protection System Program (IAAPS) Mr. Charles Acir USA TARDEC AMSTA-TR-R MS211 6501 East 11 Mile Road (Building 200) Warren, Michigan 48397-5000 586 574-6737 [email protected] Mr. Mark Middione United Defense, Advanced Development Center 328 West Brokaw Road, MS M51 Santa Clara, California 95052 408 289-2626 [email protected] SUMMARY United Defense’s Advanced Development Center was selected as the prime contractor for a program currently known as the Integrated Army Active Protection System in 1997. Along with our teammates, BAE Systems and Northrop Grumman Space Technology, United Defense performed a series of technology investigations, conducted simulation-supported concept development and down-selected to a best value integrated survivability suite (ISS) consisting of an optimal mix of armor, electronic warfare sensors, processors and soft kill countermeasure, and hard kill active protection in November of 1998. At that point the program transitioned to a development and demonstration phase in which the United Defense led team designed and fabricated the selected survivability suite (ISS), integrated the ISS onto a customer-selected EMD version BFVA3 test-bed and conducted live threat defeat testing. Static testing against a wide array of live threats successfully concluded in September of 2002. By December of 02, the IAAPS team was back at the range with the test-bed reconfigured for on-the-move (OTM) testing. Successful OTM defeats were conducted with the soft kill countermeasure in January of 2003, with hard kill defeats conducted in February through May of 2003.
    [Show full text]
  • The Army's Future Combat System (FCS)
    = -*=72>8= :9:7*=42'&9=>89*2= a= &(0,74:3)=&3)=88:*8=+47=43,7*88= 3)7*<= *.(0*79= 5*(.&1.89=.3= .1.9&7>=74:3)=47(*8= &>=,3`=,**3= 43,7*88.43&1= *8*&7(-=*7;.(*= 18/1**= <<<_(78_,4;= -,222= =*5479=+47=43,7*88 Prepared for Members and Committees of Congress -*=72>8= :9:7*=42'&9=>89*2= a=&(0,74:3)=&3)=88:*8=+47=43,7*88= = :22&7>= The Future Combat System (FCS) was a multiyear, multibillion dollar program at the heart of the Army’s transformation efforts. It is was to be the Army’s major research, development, and acquisition program consisting of 14 manned and unmanned systems tied together by an extensive communications and information network. FCS was intended to replace current systems such as the M-1 Abrams tank and the M-2 Bradley infantry fighting vehicle. The FCS program has been characterized by the Army and others as a high-risk venture due to the advanced technologies involved and the challenge of networking all of the FCS subsystems together so that FCS-equipped units could function as intended. The FCS program exists in a dynamic national security environment which ultimately played a role in determining the program’s fate. Some questioned if FCS, envisioned and designed prior to September 11, 2001 to combat conventional land forces, was relevant in current and anticipated future conflicts where counterinsurgency and stabilization operations are expected to be the norm. The Army contended, however, that FCS was relevant throughout the “entire spectrum of conflict” and that a number of FCS technologies and systems were effectively used in counterinsurgency and stabilization campaigns in Iraq and Afghanistan.
    [Show full text]
  • The Army's M-1 Abrams, M-2/M-3 Bradley, and M-1126 Stryker: Background and Issues for Congress
    The Army’s M-1 Abrams, M-2/M-3 Bradley, and M-1126 Stryker: Background and Issues for Congress (name redacted) Specialist in Military Ground Forces April 5, 2016 Congressional Research Service 7-.... www.crs.gov R44229 The Army’s M-1 Abrams, M-2/M-3 Bradley, and M-1126 Stryker Summary The M-1 Abrams Tank, the M-2/M-3 Bradley Fighting Vehicle (BFV), and the M-1126 Stryker Combat Vehicle are the centerpieces of the Army’s Armored Brigade Combat Teams (ABCTs) and Stryker Brigade Combat Teams (SBCTs). In addition to the military effectiveness of these vehicles, Congress is also concerned with the economic aspect of Abrams, Bradley, and Stryker recapitalization and modernization. Due to force structure cuts and lack of Foreign Military Sales (FMS) opportunities, Congress has expressed a great deal of concern with the health of the domestic armored combat vehicle industrial base. ABCTs and SBCTs constitute the Army’s “heavy” ground forces; they provide varying degrees of armored protection and mobility that the Army’s light, airborne (parachute), and air assault (helicopter transported) infantry units that constitute Infantry Brigade Combat Teams (IBCTs) do not possess. These three combat vehicles have a long history of service in the Army. The first M-1 Abrams Tank entered service with the Army in 1980; the M-2/M-3 Bradley Fighting Vehicle in 1981; and the Stryker Combat Vehicle in 2001. Under current Army modernization plans, the Army envisions all three vehicles in service with Active and National Guard forces beyond FY2028. There are several different versions of these vehicles in service.
    [Show full text]
  • Armoured Fighting Vehicle Team Performance Prediction Against
    AFV DEFENCE: JUNE 29, 2021 1 Armoured Fighting Vehicle Team Performance Prediction against Missile Attacks with Directed Energy Weapons Graham V. Weinberg and Mitchell M. Kracman [email protected] Abstract A recent study has introduced a procedure to quantify the survivability of a team of armoured fighting vehicles when it is subjected to a single missile attack. In particular this study investigated the concept of collaborative active protection systems, focusing on the case where vehicle defence is provided by high power radio frequency directed energy weapons. The purpose of the current paper is to demonstrate how this analysis can be extended to account for more than one missile threat. This is achieved by introducing a jump stochastic process whose states represent the number of missiles defeated at a given time instant. Analysis proceeds through consideration of the sojourn times of this stochastic process, and it is shown how consideration of these jump times can be related to transition probabilities of the auxiliary stochastic process. The latter probabilities are then related to the probabilities of detection and disruption of missile threats. The sum of these sojourn times can then be used to quantify the survivability of the team at any given time instant. Due to the fact that there is much interest in the application of high energy lasers in the context of this paper, the numerical examples will thus focus on such directed energy weapons for armoured fighting vehicle team defence. I. INTRODUCTION Performance prediction of collaborative active defence systems for a team of armoured fighting vehicles (AFV) is of significant importance to defence forces investing in modern technology.
    [Show full text]
  • Korean Assault
    Korean Assault Republic of Korea (ROK) Data and information on vehicles obtained from army-technology.com This is the fighting vehicle preview for the Korean Assault K1 Sometimes referred to as the Korean M1 (it was developed for Korea by General Dynamics Land Systems Division), the K1 or Type 88 (official title) entered service in 1985/86. The K1 is armed with the Abrams 105mm gun and fires the same ammunition. The K1 is outfitted with thermal imaging system and the gun is stabilized. K1A1 The K1A1 is an upgraded version of the K1 MBT. Its firing range is enhanced by a 120mm M256 smoothbore gun, together with an improved gun and turret drive system. The M256 gun is also installed on the US M1A1/2 main battle tanks and fires the same ammunition as the M1A1. The fire control system includes the Korean Commander's Panoramic Sight (KCPS) which includes a thermal imager, KGPS gunner's sight with thermal imager, laser rangefinder and dual field of view day TV camera and KBCS ballistic fire control computer. 1 K2 Black Panther The main armament of the K2 Black Panther is a 120mm L/55 smoothbore gun with automatic loader. The autoloader ensures the loading of projectiles on the move even when the vehicle moves on uneven surfaces. The 120mm gun can fire about 10 rounds per minute. The K2 Black Panther is equipped with auto target detection and tracking system, and hunter killer function. The gunner's primary sight (GPS) and commander's panoramic sight (CPS) are stabilized, and include a thermal imager and laser rangefinder enabling day / night observation.
    [Show full text]
  • AUTONOMY in WEAPON SYSTEMS
    WORKING PAPER | FEBRUARY 2015 An Introduction to AUTONOMY in WEAPON SYSTEMS By: Paul Scharre and Michael C. Horowitz ABOUT CNAS WORKING PAPERS: Working Papers are designed to enable CNAS analysts to either engage a broader community-of- interest by disseminating preliminary research findings and policy ideas in advance of a project’s final report, or to highlight the work of an ongoing project that has the potential to make an immediate impact on a critical and time-sensitive issue. PROJECT ON ETHICAL AUTONOMY | WORKING PAPER About the Authors Michael C. Horowitz is an Adjunct Senior Fellow at CNAS and an Associate Professor of Political Science at the University of Pennsylvania. Paul Scharre is a Fellow and Director of the 20YY Warfare Initiative at CNAS. The Ethical Autonomy project is a joint endeavor of CNAS’ Technology and National Security Program and the 20YY Warfare Initiative, and is made possible by the generous support of the John D. and Catherine T. MacArthur Foundation. PREFACE Information technology is driving rapid increases in the autonomous capabilities of unmanned systems, from self-driving cars to factory robots, and increasingly autonomous unmanned systems will play a sig- nificant role in future conflicts as well. “Drones” have garnered headline attention because of the manner of their use, but drones are in fact remotely piloted by a human, with relatively little automation and with a person in control of any weapons use at all times. As future military systems incorporate greater autonomy, however, the way in which that autonomy is incorporated into weapon systems will raise challenging legal, moral, ethical, policy and strategic stability issues.
    [Show full text]
  • MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
    MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2.
    [Show full text]
  • (FCS) “Spin- Outs” and Ground Combat Vehicle (GCV): Background and Issues for Congress
    Army Future Combat System (FCS) “Spin- Outs” and Ground Combat Vehicle (GCV): Background and Issues for Congress Andrew Feickert Specialist in Military Ground Forces Nathan Jacob Lucas Section Research Manager November 30, 2009 Congressional Research Service 7-5700 www.crs.gov RL32888 CRS Report for Congress Prepared for Members and Committees of Congress Army Future Combat System (FCS) Spin-Outs and Ground Combat Vehicle (GCV) Summary The Future Combat System (FCS) was a multiyear, multibillion dollar program at the heart of the Army’s transformation efforts. It was to be the Army’s major research, development, and acquisition program, consisting of 14 manned and unmanned systems tied together by an extensive communications and information network. FCS was intended to replace current systems such as the M-1 Abrams tank and the M-2 Bradley infantry fighting vehicle. The FCS program has been characterized by the Army and others as a high-risk venture because of the advanced technologies involved and the challenge of networking all of the FCS subsystems together so that FCS-equipped units could function as intended. On April 6, 2009, Secretary of Defense Gates announced that he intended to significantly restructure the FCS program. The Department of Defense (DOD) would then plan to accelerate the spin out of selected FCS technologies to all brigade combat teams (BCTs). Gates also recommended cancelling the manned ground vehicle (MGV) component of the program, which was intended to field eight separate tracked combat vehicle variants built on a common chassis that would eventually replace combat vehicles such as the M-1 Abrams tank, the M-2 Bradley infantry fighting vehicle, and the M-109 Paladin self-propelled artillery system.
    [Show full text]
  • National Defense Authorization Act for Fiscal Year 2018
    1 115TH CONGRESS " ! REPORT 1st Session HOUSE OF REPRESENTATIVES 115–200 NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2018 R E P O R T OF THE COMMITTEE ON ARMED SERVICES HOUSE OF REPRESENTATIVES ON H.R. 2810 together with ADDITIONAL VIEWS [Including cost estimate of the Congressional Budget Office] JULY 6, 2017.—Committed to the Committee of the Whole House on the State of the Union and ordered to be printed VerDate Sep 11 2014 10:45 Jul 07, 2017 Jkt 026108 PO 00000 Frm 00001 Fmt 6012 Sfmt 6012 E:\HR\OC\HR200.XXX HR200 congress.#13 NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2018 VerDate Sep 11 2014 10:45 Jul 07, 2017 Jkt 026108 PO 00000 Frm 00002 Fmt 6019 Sfmt 6019 E:\HR\OC\HR200.XXX HR200 1 115TH CONGRESS " ! REPORT 1st Session HOUSE OF REPRESENTATIVES 115–200 NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2018 R E P O R T OF THE COMMITTEE ON ARMED SERVICES HOUSE OF REPRESENTATIVES ON H.R. 2810 together with ADDITIONAL VIEWS [Including cost estimate of the Congressional Budget Office] JULY 6, 2017.—Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U.S. GOVERNMENT PUBLISHING OFFICE 26–108 WASHINGTON : 2017 VerDate Sep 11 2014 10:45 Jul 07, 2017 Jkt 026108 PO 00000 Frm 00003 Fmt 4012 Sfmt 4012 E:\HR\OC\HR200.XXX HR200 congress.#13 COMMITTEE ON ARMED SERVICES ONE HUNDRED FIFTEENTH CONGRESS WILLIAM M. ‘‘MAC’’ THORNBERRY, Texas, Chairman WALTER B. JONES, North Carolina ADAM SMITH, Washington JOE WILSON, South Carolina ROBERT A.
    [Show full text]
  • BCT Modernization Plan
    BCT Modernization Plan The BCT Modernization Plan is informed by the comprehensive lessons learned from more than eight years of war, focuses on the evolving needs of our warfighters in a rapidly changing security environ- ment, and exploits the knowledge and technologies developed under the Future Combat Systems program. Instead of mak- ing one modernization decision and then applying it across the Army over two or more decades as was typically done in the past, the BCT Modernization Plan recog- nizes that modernization decisions must be made incrementally to stay ahead of the demands of the security environment and the needs of our warfighters. The Army’s new plan emphasizes the role of battle- tested soldiers in the development of new equipment, provides for the incremental delivery of the network, incorporates mine resistant ambush protected (MRAP) vehi- cles into formations, accelerates the field- ing of capability packages across all BCTs, and initiates a new ground combat vehicle program as an element of a holistic plan for all combat vehicles. The Army’s BCT Modernization Plan is closely linked with the Army force genera- tion model (ARFORGEN), which continu- ously supplies warfighters within both the active and reserve components. ARFOR- GEN-based equipping is the main effort by which the Army manages equipment based on defined equipping goals linked to each phase (reset, train-ready, available) of the ARFORGEN cycle. Equipping resources are ARMY BRIGADE COMBAT allotted to units to meet their mission dur- TEAM MODERNIZATION ing
    [Show full text]
  • Air Defense Assets
    PREFACE This document summarizes research conducted in 1998 by the RAND Arroyo Center on an exploration and assessment of the ability to insert mechanized forces in enemy-controlled terrain. We specifically investigated the use of tilt-rotor aircraft for vertical envelopment concepts, with particular emphasis on survivability implications and the potential enabling role that technology can play. The vertical envelopment concept used for this study was that of rapid deployment of an air-mechanized Army After Next (AAN) battle force into ambush positions against the second echelon of an invading Red force. The work involved the application of high-resolution, force-on-force simulation for the quantitative analysis. Although the research was conducted prior to the Army’s current transformation efforts and used a conventional Russian-based threat, it can still provide useful insights into some of the challenges of tomorrow’s nonlinear battlespace. The results of the research should be of interest to defense policymakers, concept and materiel developers, and technologists. We note that the air-mechanized (air-mech) battle force design and employment concept used in this study represented the work of the AAN study project in the FY96–98 timeframe and has no relationship to the current “Air–Mech” concepts proposed by BG (ret.) David Grange and others.* The “battle force” was a notional design construct used by AAN to analyze possible future organizational constructs without the constraints of current unit paradigms. The air-mech concept explored was the organic capability, within a battle force, to air maneuver both troops and medium-weight combat systems at both tactical and operational depths.
    [Show full text]