Finding CN XI: a Review of Defining the Spinal Accessory Nerve in Anatomical and Evolutionary Contexts Theodore C
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Exä|Xã Tüà|Väx the Accessory Nerve Rezigalla AA*, EL Ghazaly A*, Ibrahim AA*, Hag Elltayeb MK*
exä|xã TÜà|vÄx The Accessory Nerve Rezigalla AA*, EL Ghazaly A*, Ibrahim AA*, Hag Elltayeb MK* The radical neck dissection (RND) in the management of head and neck cancers may be done in the expense of the spinal accessory nerve (SAN) 1. De-innervations of the muscles supplied by SAN and integrated in the movements of the shoulder joint, often result in shoulder dysfunction. Usually the result is shoulder syndrome which subsequently affects the quality of life1. The modified radical neck dissections (MRND) and selective neck dissection (SND) intend to minimize the dysfunction of the shoulder by preserving the SAN, especially in supra-hyoid neck dissection (Level I-III±IV) and lateral neck dissection (level II-IV)2, 3. This article aims to focus on the SAN to increase the awareness during MRND and SND. Keywords: Spinal accessory, Sternocleidomastoid, Trapezius, Cervical plexus. he accessory nerve is a motor nerve The Cranial Root: but it is considered as containing some The cranial root is the smaller, attached to the sensory fibres. It is formed in the post-olivary sulcus of the medulla oblongata T 8,10 posterior cranial fossa by the union of its (Fig.1) and arises forms the caudal pole of 4, 7, 9 cranial and spinal roots 4-8 (i.e. the internal the nucleus ambiguus (SVE) and possibly 11, 14 and external branches respectively9,10) but also of the dorsal vagal nucleus , although 11 these pass for a short distance only11. The both of them are connected . cranial root joins the vagus nerve and The nucleus ambiguus is the column of large considered as a part of the vagus nerve, being motor neurons that is deeply isolated in the branchial or special visceral efferent reticular formation of the medulla 11 nerve4,5,9,11. -
Surgical Outcomes of 156 Spinal Accessory Nerve Injuries Caused by Lymph Node Biopsy Procedures
SPINE CLINICAL ARTICLE J Neurosurg Spine 23:518–525, 2015 Surgical outcomes of 156 spinal accessory nerve injuries caused by lymph node biopsy procedures Sang Hyun Park, MD, PhD,1 Yoshua Esquenazi, MD,2 David G. Kline, MD,3 and Daniel H. Kim, MD2 1Department of Anesthesiology and Pain Medicine, Jeju National University Medical School, Jeju, Korea; 2Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas; and 3Department of Neurosurgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana OBJECT Iatrogenic injuries to the spinal accessory nerve (SAN) are not uncommon during lymph node biopsy of the posterior cervical triangle (PCT). In this study, the authors review the operative techniques and surgical outcomes of 156 surgical repairs of the SAN following iatrogenic injury during lymph node biopsy procedures. METHODs This retrospective study examines the authors’ clinical and surgical experience with 156 patients with SAN injury between 1980 and 2012. All patients suffered iatrogenic SAN injuries during lymph node biopsy, with the vast majority (154/156, 98.7%) occurring in Zone I of the PCT. Surgery was performed on the basis of anatomical and electro- physiological findings at the time of the operation. The mean follow-up period was 24 months (range 8–44 months). RESULTs Of the 123 patients who underwent graft or suture repair, 107 patients (87%) improved to Grade 3 functional- ity or higher using the Louisiana State University Health Science Center (LSUHSC) grading system. Neurolysis was performed in 29 patients (19%) when the nerve was found in continuity with recordable nerve action potential (NAP) across the lesion. -
Trigeminal Nerve Block
Trigeminal Nerve Block Why use this treatment? This procedure is used for trigeminal neuralgia, described by many patients as one of the most painful afflictions known. TN sufferers experience sudden attacks of pain that are typically brief, but severe. TN pain occurs on only one side, involving the upper, middle and/or lower portions of the face. Attacks may come on without warning or be triggered by specific light stimulation in the affected area of the face. Common triggers include touch, talking, eating, drinking, chewing, tooth brushing, hair combing, water from a shower and even kissing. There are a number of causes for trigeminal neuralgia, including pressure from blood vessels on the trigeminal nerve, multiple sclerosis, brain tumors, or injury to the nerve from head trauma, dental or sinus trauma or from failed procedures that were intended to treat the neuralgia. TN pain after traumatic injury is usually constant aching or burning, but can also get worse with exposure to wind or cold. How does a trigeminal nerve block work? A trigeminal nerve block delivers steroids and/or local anesthetic directly into the space around the trigeminal nerve root. The area is bathed in the medicine. The injection is given to reduce inflammation and provide pain relief for several days to several months. How is the procedure done? You will be placed on an x-ray table and your skin will be cleansed and prepared. This procedure is performed under local anesthetic with light IV sedation. A needle is inserted into the skin beside the mouth, and directed through an opening at the base of the skull. -
Cranial Nerves - Iii (Cn Ix, X, Xi & Xii)
CRANIAL NERVES - III (CN IX, X, XI & XII) DR. SANGEETA KOTRANNAVAR ASSISTANT PROFESSOR DEPT. OF ANATOMY USM KLE IMP BELAGAVI OBJECTIVES • Describe the functional component, nuclei of origin, course, distribution and functional significance of cranial nerves IX, X, XI and XII • Describe the applied anatomy of cranial nerves IX, X, XI and XII overview Relationship of the last four cranial nerves at the base of the skull The last four cranial nerves arise from medulla & leave the skull close together, the glossopharyngeal, vagus & accessory through jugular foramen, and the hypoglossal nerve through the hypoglossal canal Functional components OF CN Afferent Efferent General General somatic afferent fibers General somatic efferent fibers Somatic (GSA): transmit exteroceptive & (GSE): innervate skeletal muscles proprioceptive impulses from skin of somatic origin & muscles to somatic sensory nuclei General General visceral afferent General visceral efferent(GVE): transmit visceral fibers (GVA): transmit motor impulses from general visceral interoceptive impulses motor nuclei &relayed in parasympathetic from the viscera to the ganglions. Postganglionic fibers supply visceral sensory nuclei glands, smooth muscles, vessels & viscera Special Special somatic afferent fibers (SSA): ------------ Somatic transmit sensory impulses from special sense organs eye , nose & ear to brain Special Special visceral afferent fibers Special visceral efferent fibers (SVE): visceral (SVA): transmit sensory transmit motor impulses from the impulses from special sense brain to skeletal muscles derived from taste (tounge) to the brain pharyngeal arches : include muscles of mastication, face, pharynx & larynx Cranial Nerve Nuclei in Brainstem: Schematic picture Functional components OF CN GLOSSOPHARYNGEAL NERVE • Glossopharyngeal nerve is the 9th cranial nerve. • It is a mixed nerve, i.e., composed of both the motor and sensory fibres, but predominantly it is sensory. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Clinical Anatomy of the Trigeminal Nerve
Clinical Anatomy of Trigeminal through the superior orbital fissure Nerve and courses within the lateral wall of the cavernous sinus on its way The trigeminal nerve is the fifth of to the trigeminal ganglion. the twelve cranial nerves. Often Ophthalmic Nerve is formed by the referred to as "the great sensory union of the frontal nerve, nerve of the head and neck", it is nasociliary nerve, and lacrimal named for its three major sensory nerve. Branches of the ophthalmic branches. The ophthalmic nerve nerve convey sensory information (V1), maxillary nerve (V2), and from the skin of the forehead, mandibular nerve (V3) are literally upper eyelids, and lateral aspects "three twins" carrying information of the nose. about light touch, temperature, • The maxillary nerve (V2) pain, and proprioception from the enters the middle cranial fossa face and scalp to the brainstem. through foramen rotundum and may or may not pass through the • The three branches converge on cavernous sinus en route to the the trigeminal ganglion (also called trigeminal ganglion. Branches of the semilunar ganglion or the maxillary nerve convey sensory gasserian ganglion), which contains information from the lower eyelids, the cell bodies of incoming sensory zygomae, and upper lip. It is nerve fibers. The trigeminal formed by the union of the ganglion is analogous to the dorsal zygomatic nerve and infraorbital root ganglia of the spinal cord, nerve. which contain the cell bodies of • The mandibular nerve (V3) incoming sensory fibers from the enters the middle cranial fossa rest of the body. through foramen ovale, coursing • From the trigeminal ganglion, a directly into the trigeminal single large sensory root enters the ganglion. -
Painful Polio Our Fight Against Polio—A Vaccine- Preventable Infectious Disease—Is at Its Peak
Feature Article UNMET HEALTH NEEDS Painful Polio Our fight against polio—a vaccine- preventable infectious disease—is at its peak. Ensuring complete immunization of every child is the key to oust the deadly polio virus from our planet.. P. CHEENA CHAWLA HILDREN are beautiful gifts of Nature. Sheer neglect of hygiene in the early days of life can play havoc in the Cinfant body, letting germs of a wide Although polio was well the capsid. Besides protecting the variety make home in the tiny organs recognized as a human affliction for genetic material of poliovirus, the playing a dangerous game of life and long, it was only in 1908 that the culprit capsid proteins enable this virus to death. The aftermath of an infectious bug for this disease, the polio virus, infect certain types of cells. childhood illness is most appalling if was identified by Karl Landsteiner. Three different serotypes of polio survival is at the cost of living with a Polio spread widely in Europe and the virus are known to cause the disease — crippled body for whole life. This United States in late 1880s and as the poliovirus type 1 (PV1), type 2 (PV2), exactly happens when the deadly virus, virus circulated rampantly around the and type 3 (PV3) — each having a known to cause polio, strikes! globe, polio cases dramatically slightly different capsid protein. One of the most dreaded childhood increased. It was in the face of such Although all these viral serotypes are diseases, polio mostly strikes children epidemics in early 1900s, paralyzing extremely dangerous and result in the under five years of age. -
Neuromuscular Ultrasound of Cranial Nerves
JCN Open Access REVIEW pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2015;11(2):109-121 / http://dx.doi.org/10.3988/jcn.2015.11.2.109 Neuromuscular Ultrasound of Cranial Nerves Eman A. Tawfika b Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) Francis O. Walker b which may provide additional value in the assessment of cranial nerves in different neuro- Michael S. Cartwright muscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial a Department of Physical Medicine nerves is considered in its initial stage of research, thus, there is a need to summarize the re- and Rehabilitation, search results achieved to date. Detailed scanning protocols, which assist in mastery of the Faculty of Medicine, techniques, are briefly mentioned in the few reference textbooks available in the field. This re- Ain Shams University, view article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: op- Cairo, Egypt bDepartment of Neurology, tic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future ap- Medical Center Boulevard, plications are discussed. Wake Forest University School of Medicine, Key Wordszz neuromuscular ultrasound, cranial nerve, optic, facial, vagus, spinal accessory. Winston-Salem, NC, USA INTRODUCTION Neuromuscular ultrasound (NMUS) refers to the use of high resolution ultrasound of nerve and muscle to assess primary neuromuscular disorders. Beginning with a few small studies in the 1980s, it has evolved into a growing subspecialty area of clinical and re- search investigation. Over the last decade, electrodiagnostic laboratories throughout the world have adopted the technique because of its value in peripheral entrapment and trau- matic neuropathies. -
A Review of the Mandibular and Maxillary Nerve Supplies and Their Clinical Relevance
AOB-2674; No. of Pages 12 a r c h i v e s o f o r a l b i o l o g y x x x ( 2 0 1 1 ) x x x – x x x Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/aob Review A review of the mandibular and maxillary nerve supplies and their clinical relevance L.F. Rodella *, B. Buffoli, M. Labanca, R. Rezzani Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy a r t i c l e i n f o a b s t r a c t Article history: Mandibular and maxillary nerve supplies are described in most anatomy textbooks. Accepted 20 September 2011 Nevertheless, several anatomical variations can be found and some of them are clinically relevant. Keywords: Several studies have described the anatomical variations of the branching pattern of the trigeminal nerve in great detail. The aim of this review is to collect data from the literature Mandibular nerve and gives a detailed description of the innervation of the mandible and maxilla. Maxillary nerve We carried out a search of studies published in PubMed up to 2011, including clinical, Anatomical variations anatomical and radiological studies. This paper gives an overview of the main anatomical variations of the maxillary and mandibular nerve supplies, describing the anatomical variations that should be considered by the clinicians to understand pathological situations better and to avoid complications associated with anaesthesia and surgical procedures. # 2011 Elsevier Ltd. -
Landmark for Identifying Spinal Accessory Nerve in Anterior Triangle of Neck-Surgeon’S Perspective
Global Journal of Otolaryngology ISSN 2474-7556 Short Communication Glob J Otolaryngol - Volume 10 Issue 3 September 2017 Copyright © All rights are reserved by Ameya Bihani DOI: 10.19080/GJO.2017.10.555787 Landmark for Identifying Spinal Accessory Nerve in Anterior Triangle of Neck-Surgeon’s Perspective Ameya Bihani* Tata Memorial Hospital, India Submission: September 06, 2017; Published: September 13, 2017 *Corresponding author: Ameya Bihani, Fellowship in head and neck oncosurgey, Tata Memorial Hospital, Mumbai, India, Tel: Email: Abstract There have been multiple studies on defining landmarks for spinal accessory nerve but most of them have stressed upon the identification of nerve in the posterior triangle of the neck. I have highlighted few landmarks that are less known for identification of spinal accessory nerve and their importance. The five landmarks which were analysed are posterior belly of digastric, transverse process of atlas, internal jugular vein, sternocleidomastoidKeywords: Spinal accessory muscle andnerve; small Posterior calibre belly veins of present digastrics; superficial Transverse to spinal process accessory of atlas nerve. Introduction nerve passing within 1 cm distance. In 40 cases out of 50, the nerve Identifying the spinal accessory nerve is of utmost importance went on the anterior surface of the process and rest 10 cases it went lateral to it. With surgery point of view, the nerve went deeper to shoulder dysfunction with limited overhead abduction and in neck dissection. The injury to the nerve results in significant the posterior belly of digastric in all 50 cases and in 48 cases out of progressive winging of scapula. There have been multiple studies 50 , it crossed the posterior belly of digastric at its midpoint. -
Clinical Weekly - 148Th Edition
11thAugust 2017 Clinical Weekly - 148th Edition #JournalTuesday - by Abi Peck Article: Femoral neck stress fracture: the importance of clinical suspicion and early review. Download here 1. What is a stress fracture? 2. What are the symptoms? 3. What are the risk factors? 4. Why should stress fractures be treated/ managed appropriately? 5. How should a stress fracture be managed? 6. What would be the imaging of choice? #ClinicalSkillsFriday - by Josh Featherstone Cranial nerve 11 – Accessory Nerve General anatomy and function It provides motor function for the sternocleidomastoid (SCM) and trapezius muscles. The spinal accessory nerve originates in the upper spinal cord to the level of about C6. The accessory nerve enters the skull through the foramen magnum and travels along the inner wall of the skull towards the jugular foramen. Leaving the skull, the nerve travels through the jugular foramen with cranial nerves 9 and 10. The spinal accessory nerve is the only cranial nerve to enter and exit the skull. After leaving the skull, the cranial component detaches from the spinal component. The spinal accessory nerve continues alone and heads backwards and downwards. In the neck and innervates both the SCM and trapezius muscles. Diseases of accessory nerve function: -Trauma -Injury can cause wasting of the shoulder muscles, winging of the scapula, and weakness of shoulder abduction and external rotation -RTA Testing of accessory nerve function for clinicians -Strength testing of these muscles can be measured during a neurological examination to assess function of the spinal accessory nerve. -Upper trapezius muscles can be tested by resisting shrugging -SCM can be tested by asking the patient to rotate the neck and resist neck flexion. -
Your Inner Fish
CHAPTER FIVE GETTING AHEAD It was two nights before my anatomy final and I was in the lab at around two in the morning, memorizing the cranial nerves. There are twelve cranial nerves, each branching to take bizarre twists and turns through the inside of the skull. To study them, we bisected the skull from forehead to chin and sawed open some of the bones of the cheek. So there I was, holding half of the head in each hand, tracing the twisted paths that the nerves take from our brains to the different muscles and sense organs inside. I was enraptured by two of the cranial nerves, the trigeminal and the facial. Their complicated pattern boiled down to something so simple, so outrageously easy that I saw the human head in a new way. That insight came from understanding the far simpler state of affairs in sharks. The elegance of my realization—though not its novelty; comparative anatomists had had it a century or more ago— and the pressure of the upcoming exam led me to forget where I was. At some point, I looked around. It was the middle of the night and I was alone in the lab. I also 108 happened to be surrounded by the bodies of twenty-five human beings under sheets. For the first and last time, I got the willies. I worked myself into such a lather that the hairs on the back of my neck rose, my feet did their job, and within a nanosecond I found myself at the bus stop, out of breath.